
LIKELIHOOD BASED
INFERENCE ON

THE BOX-COX FAMILY OF

TRANSFORMATIONS:

SAS AND MATLAB PROGRAMS

Scott Hyde

Department of Mathematical Sciences

Montana State University

April 7, 1999

A writing project submitted in partial fulfillment
of the requirements for the degree

Master of Science in Statistics

APPROVAL

of a writing project submitted by

SCOTT HYDE

This writing project has been read by the writing project director and has been found
to be satisfactory regarding content, English usage, format, citations, bibliographic
style, and consistency, and is ready for submission to the Statistics Faculty.

Date Robert J. Boik
Writing Project Director

Contents

1 Introduction 1

1.1 Conventional Linear Model . 1

1.2 Box-Cox Family of Transformations . 2

2 Estimation of the Transformation Parameter 3

2.1 Derivation of the Log Likelihood Function 3

3 Newton-Raphson Algorithm 6

4 Confidence Intervals for λ 8

4.1 Asymptotic Distribution of MLE . 9

4.2 Inversion of LR Test . 12

5 Examples 13

6 Programming Notes 17

A Appendix 20

A.1 SAS Code . 20

A.2 MATLAB Code . 25

A.3 Finding the limit of ui and vi . 30

A.4 Finding the form for the observed Fisher’s Total Information matrix. . 31

References 34

Box-Cox MLE computation 1

A SAS program to compute the MLE of the
Box-Cox Transformation parameter

Abstract

Box and Cox [3] proposed a parametric family of power transformations of the data
to reduce problems with non-normality and heteroscedasticity. This paper presents
programs in SAS and MATLAB to compute the MLE and to compute approximate
confidence intervals for the Box-Cox transformation parameter.

1 Introduction

1.1 Conventional Linear Model

In the conventional linear model, the response is modeled by a linear combination
of parameters and explanatory variables plus random fluctuation. Additionally, the
errors, or random fluctuation, εj, j = 1, . . . , n are assumed to be independent and
normally distributed with mean 0 and variance σ2. In short,

y = Xβ + ε,

where
ε ∼ N(0, σ2I).

Note that y is an n × 1 vector, X is a n × p matrix, and β is a p × 1 vector of
undetermined coefficients.

Box and Cox [3] note that the above model implies several assumptions, namely

1. Linearity of Structure for E(y);

2. Constancy of Error Variances;

3. Normality of Distributions; and

4. Independence of Observations.

Typically, the first and last assumptions are assumed to have been met. But, when
these assumptions are not met, then conventional methods of inference, prediction,
and estimation fail. Procedures are available for examining departures from these
assumptions. If replications are available, then a standard lack of fit test can be

Box-Cox MLE computation 2

performed. The Durbin-Watson test can be used to test for a serial correlation (i.e.,
AR(1)).

For the second of the above assumptions, there are several methods for detecting
heteroscedasticity. One method consists of examining a plot of the residuals versus the
predicted values. If the residual plot shows random scatter, then there is little evidence
against the homogeneity of variance assumption. Nonetheless, this does not imply that
homogeneity is satisfied. Other methods, including the residual plot method, can be
found in Chapter 6 of Sen & Srivastava’s textbook [11].

Two methods are prominent for detecting non-normality. These methods, namely
probability plots and inference tests, also are described in Sen and Srivastava [11].
Probability plots are constructed by plotting the data versus quantiles γi of the normal
distribution. More specifically, the ith normal quantile is

γi = Φ−1

(
i− 3/8

n + 1/4

)
.

When plotting γi versus the ordered data, a line should form if the data are normal. If
the data are not normal, then other patterns will emerge. Inference tests for normality
include the Shapiro-Wilk test, which seems to be the standard for small data sets.
Other methods include the square of the correlation between the ordered data and the
γi’s, which was initially used as an approximation to the Shapiro-Wilk statistic. When
n is large, the Kolmogorov test statistic may be used.

If the first three assumptions are not satisfied, then a transformation of the original
data may help so that methods of inference, prediction, and estimation can be valid.
Several different transformation choices have been discussed by various authors. One
main goal is to attain approximate constant variance. References are given to other
papers in Box and Cox [3], Hoyle [5], and Sakia [9]. While there are many choices
for transformations, this paper discusses the Box-Cox transformation of the dependent
variable.

1.2 Box-Cox Family of Transformations

The Box-Cox transformation family introduces a new parameter λ and transforms the
response, y, to z = y(λ). The transformation is as follows:

z = y(λ) =

yλ − 1

λ
if λ 6= 0;

ln y if λ = 0.

(1)

The objective of this family of transformations is to produce data which follow a
normal distribution more closely than the original data. While this transformation
does not guarantee that the transformed data are normal, it does reduce problems
with estimation, prediction, and inference.

Box-Cox MLE computation 3

The transformation above can be used only on positive response variables. One
transformation suggested by Box and Cox [3] which allows for negative data is

y(λ) =

(y + λ2)

λ1 − 1

λ1

if λ1 6= 0;

ln(y + λ2) if λ1 = 0.

The discussion in this paper is based on equation (1).

2 Estimation of the Transformation Parameter

Estimation of λ can be done by Bayesian methods, by likelihood-based methods, or by
other methods. One estimator may be chosen over another if one is more robust. In
fact, the mle of λ is not robust. A robust estimator of λ was described by Carroll [4].
Although the mle of λ is not robust, there are still situations where it is a very good
estimator. For this reason, the mle of λ will be discussed in this paper.

2.1 Derivation of the Log Likelihood Function

Maximum likelihood estimation consists of the following steps. First, the likelihood
function is specified. Second, the likelihood function is maximized with respect to the
unknown parameters. For the models in this paper, the maximizers (i.e., mles) can be
obtained by taking the derivative of the likelihood function, setting the derivative to
zero, and solving for the unknown parameters.

To construct the likelihood function, the distribution of the data, y, can be derived
based on the assumption that the transformed data y(λ) are normal. The density of
the multivariate normal distribution (with one response variable) can be written in
matrix form as

f(z|β,Σ) =
exp

{
−1

2
(z − µ)′Σ−1(z − µ)

}
(2π)

n
2 |Σ| 12

,

where z = y(λ).

If linearity of the structure for E(y) (i.e. µ = Xβ) and homogeneity of variance (i.e.
Σ = σ2I) are satisfied, then a slightly different density function emerges:

f(z|β, σ2) =
exp

{
− 1

2σ2 (z −Xβ)′(z −Xβ)
}

(2πσ2)
n
2

.

But, the pdf of y, not z is needed. By multiplying the pdf of z by the Jacobian, the
pdf of y is found to be

f(y|β, σ2, λ) =
exp

{
− 1

2σ2 (z −Xβ)′(z −Xβ)
}

(2πσ2)
n
2

n∏
i=1

yλ−1
i .

Box-Cox MLE computation 4

Consequently, the log likelihood function is

ln L(β, σ2, λ|y) = − 1

2σ2
(z −Xβ)′(z −Xβ)− n

2
ln(2πσ2) + (λ− 1)

n∑
i=1

ln yi.

The mles of β, σ2, and λ are found by maximizing the log likelihood function.
Finding the values of the parameters that maximize the log likelihood is easily done
by doing the maximization separately for each parameter and substituting its mle into
the log likelihood function.

First, the mle of β will be found. Taking the derivative of ln L with respect to β,
setting it equal to zero, and solving for β yields

∂ ln L(β, σ2, λ|y)

∂β
= − 1

2σ2
(−2X ′z + 2X ′Xβ)

set
= 0

=⇒ 2X ′Xβ = 2X ′z

=⇒ β̃ = (X ′X)−X ′z,

where (X ′X)− is any generalized inverse of X ′X. Substituting β̃ for β into the log
likelihood function yields

ln L(σ2, λ|y, β̃) = − 1

2σ2
(z −Hz)′(z −Hz)− n

2
ln(2πσ2) + (λ− 1)

n∑
i=1

ln yi (2)

= − 1

2σ2
z′(I −H)z − n

2
ln(2πσ2) + (λ− 1)

n∑
i=1

ln yi, (3)

where H = X(X ′X)−X ′.

Taking the derivative of (2) with respect to σ2 and solving the resulting equation
yields

∂ ln L(σ2, λ|yβ̃)

∂σ2
= − 1

2σ4
z′(I −H)z − n

2σ2

set
= 0

=⇒ z′(I −H)z

σ4
=

n

σ2

=⇒ σ̂2 =
z′(I −H)z

n
.

Accordingly, the concentrated log likelihood function is

ln L(λ|y) = ln L(λ|y, β̃, σ̂2) = −1

2

nσ̂2

σ̂2
− n

2
ln(2πσ̂2) + (λ− 1)

n∑
i=1

ln yi

= −n

2
ln(2πe)− n

2
ln(σ̂2(z)) + (λ− 1)

n∑
i=1

ln yi. (4)

Box-Cox MLE computation 5

Equation (4) represents a partially maximized log likelihood function that depends
only on λ. Therefore, maximizing (4) with respect to λ will complete the estimation
problem. The derivative of ln L(λ|y) can be written as

∂ ln L(λ|y)

∂λ
= − n

2σ̂2

∂σ̂2(z)

∂λ
+

n∑
i=1

ln yi,

which, using the chain rule for vectors, can be simplified as

∂ ln L(λ|y)

∂λ
= − n

2σ̂2

(
∂z′

∂λ

∂σ̂2(z)

∂z

)
+

n∑
i=1

ln yi.

Expressions for ∂z′

∂λ
and ∂σ̂2(z)

∂z
are necessary to simplify the above expression. Because

z = y(λ), it follows that

∂zi

∂λ
= ui =

λyλ

i ln yi − yλ
i + 1

λ2
if λ 6= 0;

(ln yi)
2

2
if λ = 0

(5)

where, as shown in appendix A.3,

(ln yi)
2

2
= lim

λ→0

∂zi

∂λ
.

It is convenient to arrange these derivatives into a vector:

∂z

∂λ
= u,

where u is an n × 1 vector consisting of {ui}. The derivative ∂σ̂2(λ)
∂z

can be found by
using the rule of quadratic forms found in chapter 8 of Schott [10]. The result is

∂σ̂2(z)

∂z
=

1

n

∂z′(I −H)z

∂z
=

2(I −H)z

n
.

Combining the preceding gives

∂σ̂2(z)

∂λ
=

∂z′

∂λ

∂σ̂2(z)

∂z

= u′
(

2(I −H)z

n

)

=
2u′(I −H)z

n
.

In summary,

∂ ln L(λ|y)

∂λ
= −u′(I −H)z

σ̂2
+

n∑
i=1

ln yi. (6)

Solving for λ proves to be difficult. Apparently, there is no closed form solution to the
likelihood equation ∂ ln L(λ|y)

∂λ
= 0. Therefore, iterative techniques need to be used. One

such method is the Newton-Raphson algorithm.

Box-Cox MLE computation 6

3 Newton-Raphson Algorithm

The Newton-Raphson algorithm is an iterative method used to find an unconstrained
maximum or minimum, or to solve an equation. A full motivation of the subject can
be found in chapter 10 of Kennedy and Gentle [6]. A synopsis of the algorithm follows.

Consider a differentiable scalar function f of an n × 1 vector θ. If an exact
expression for the optimizer of f(θ) does not exist, then an approximation for the
optimizer of f(θ) can be derived. First, expand f(θ) in a second order Taylor Series
about the vector θ0 (an initial guess):

f(θ) ≈ f(θ0) + g(θ0)(θ − θ0) +
1

2
(θ − θ0)

′H(θ0)(θ − θ0), (7)

where the gradient function is

g(θ0) =

[
∂f

∂θ

]
θ=θ0

,

and the Hessian matrix is

H(θ0) =

[
∂2f

∂θ ∂θ′

]
θ=θ0

.

An approximate optimizer of f(θ) can be found by taking the derivative of the Taylor
approximation of f(θ) with respect to θ, setting it equal to zero, and solving for θ.

By using vector calculus [10], the derivative of (7) becomes

∂f

∂θ
= g(θ0) + H(θ0)(θ − θ0)

set
= 0.

Solving for θ gives

θ = θ0 −H(θ0)
−1g(θ0). (8)

By renaming θ as θ1 in equation (8), an iterative process can be established, and is

θk+1 = θk −H(θk)
−1g(θk), (9)

where θk is the kth iteration and θk+1 is the (k + 1)st iteration. Equation (9) should
be repeatedly evaluated until convergence to the solution θ̂. Convergence will occur at
a quadratic rate, which is one reason that this algorithm is often used. Nonetheless,
if the initial guess is “too far” from the optimizer, then convergence may not occur.
So, an “educated”, rather than arbitrary guess should be used. Once convergence has
occurred, the Hessian matrix can be used to determine whether θ̂ is a local minimizer
or maximizer. If H(θ̂) is positive definite, then θ̂ is a minimizer of f(θ); and if −H(θ̂)
is positive definite, then θ̂ is a maximizer.

Box-Cox MLE computation 7

Applying this general result to finding mles is simple. All that is necessary is iden-
tifying f(θ). Either the concentrated likelihood function L(λ|y), or the concentrated
log likelihood function ln L(λ|y) are normally used for f(θ). In this case, estimation
proceeds using f(θ) = ln L(λ|y).

Note that g(λ) already has been derived in (6). The Hessian matrix is the only
remaining component that is needed to apply the Newton-Raphson method.

Before proceeding, two preliminary results are needed. First, define matrices A,
B, and C with sizes of m× l, l× r, and p× q respectively. Then the derivative of the
product AB with respect to C is the mp× rq matrix

∂(AB)

∂C
=

(
∂A

∂C

)
(Iq ⊗B) + (Ip ⊗A)

(
∂B

∂C

)
. (10)

Second, the derivative of the inverse of an v × v nonsingular matrix, A, whose
entries are functions of a p× q matrix C is

∂A−1

∂C
= −(Ip ⊗A−1)

(
∂A

∂C

)
(Iq ⊗A−1). (11)

Using (10), the derivative of (6) with respect to λ′ is found by identifying

A = −u′(I −H)z, B = (σ̂2)−1, and C = λ′ = λ,

and m = l = r = p = q = 1. Consequently,

∂2 ln L(λ|y)

∂λ2
=

(
∂A

∂C

)
B + A

(
∂B

∂C

)

=

(
∂ [−u′(I −H)z]

∂λ

)
(σ̂2)−1 − u′(I −H)z

(
∂(σ̂2)−1

∂λ

)
. (12)

Now, each individual derivative in (12) needs to be computed. To evaluate ∂(σ̂2)−1

∂λ
,

equation (11) is used by identifying

A = (σ̂2)−1 and C = λ.

Therefore,

∂(σ̂2)−1

∂λ
= −(σ̂2)−1

(
∂σ̂2

∂λ

)
(σ̂2)−1

= − 1

(σ̂2)2

(
2u′(I −H)z

n

)

= −2u′(I −H)z

n(σ̂2)2
.

Box-Cox MLE computation 8

Finding an expression for
∂[−u′(I −H)z]

∂λ
involves the use of (10). Note that

A = −u′, B = (I −H)z, C = λ′ = λ,

m = r = p = q = 1, and l = n. As a result,

∂ [−u′(I −H)z]

∂λ
=

(
−∂u′

∂λ

)
(I −H)z − u′(I −H)

(
∂z

∂λ

)

= v′(I −H)z − u′(I −H)u,

where v is the n× 1 vector containing

vi = −∂ui

∂λ
=

2− [(λ ln yi)

2 − 2λ ln yi + 2] yλ
i

λ3
if λ 6= 0;

−(ln yi)
3

3
if λ = 0,

(13)

and, as shown in appendix A.3,

(ln yi)
3

3
= − lim

λ→0

∂ui

∂λ
.

In summary,

∂2 ln L(λ|y)

∂λ2
=

(
∂ [−u′(I −H)z]

∂λ

)
(σ̂2)−1 − u′(I −H)z

(
∂(σ̂2)−1

∂λ

)

=
v′(I −H)z − u′(I −H)u

σ̂2
+ u′(I −H)z

(
2u′(I −H)z

n(σ̂2)2

)
.(14)

After simplifying (14), the equation of the Hessian can be written as

H(λ) =
∂2 ln L

∂λ2
=

v′(I −H)z − u′(I −H)u

σ̂2
+

2

n

(
u′(I −H)z

σ̂2

)2

. (15)

In conclusion, the mle of λ can be found using the Newton-Raphson algorithm
(9), with the gradient defined in (6), and the Hessian defined in (15).

4 Confidence Intervals for λ

While there are a variety of methods to find confidence intervals for parameters, only
two are discussed in this paper. One is based on the asymptotic distribution of mles,
whereas the other is based on the inversion of the LR Test. Both yield approximate
(1− α)100% confidence intervals.

Box-Cox MLE computation 9

4.1 Asymptotic Distribution of MLE

Finding a confidence interval using the asymptotic distribution of maximum likelihood
estimators is similar to the pivotal method for finding confidence intervals for location
parameters. Let θ̂ be the mle of θ, a p×1 vector of parameters. Because the distribution
of θ̂ is asymptotically normal ([7], pg 198), an approximate (1 − α)100% confidence
interval for one of the parameters in θ can be found using

θ̂i ± z?ŜE(θ̂i),

where z? is the
(
1− α

2

)
100th percentile of the standard normal distribution, and ŜE(θ̂i)

is an estimate of the standard error of θ̂i. Once the mle is known, the standard errors
are all that remain in constructing the intervals. By finding the estimates to the
parameters of the asymptotic distribution of θ̂, expressions for the standard errors can
be found as the square root of the diagonal entries of the estimated covariance matrix.
First, the distribution of θ̂ will be stated, followed by a derivation of the approximate
asymptotic distribution of λ̂.

Designate the log likelihood function as `(θ | y). Define U as

U =
∂`(θ | y)

∂θ
,

and denote the observed Fisher’s total information matrix as

Ĵ(θ) = −∂U

∂θ′ = −∂2`(θ | y)

∂θ ∂θ′ .

Then Fisher’s total information matrix, J , is defined as

J(θ) = E[Ĵ(θ)] = E(UU ′).

The distribution of
√

n(θ̂ − θ), as n → ∞, converges to a normal distribution. In
particular, [

J(θ)

n

] 1
2 √

n(θ̂ − θ)
dist−→ N(0, I), (16)

where J(θ) is Fisher’s total information matrix [7]. Nonetheless, J(θ) is typically not

known, yet by substituting an n− 1
2 consistent estimator, Ĵ (θ̂)

n
for J (θ)

n
in equation

(16), the same result is obtained. Accordingly,

Ĵ(θ̂)
1
2 (θ̂ − θ)

dist−→ N(0, I) and θ̂
·∼ N(θ, Ĵ(θ̂)−1).

In this paper,

θ =

 β
σ2

λ

Box-Cox MLE computation 10

and

− Ĵ(θ) =

∂2`(θ | y)

∂β ∂β′
∂2`(θ | y)

∂β ∂σ2

∂2`(θ | y)

∂β ∂λ(
∂2`(θ | y)

∂β ∂σ2

)′
∂2`(θ | y)

∂(σ2)2

∂2`(θ | y)

∂σ2 ∂λ(
∂2`(θ | y)

∂β ∂λ

)′ (
∂2`(θ | y)

∂σ2 ∂λ

)′
∂2`(θ | y)

∂λ2

(17)

=
1

σ2

X ′X
X ′(z −Xβ)

σ2
−X ′u

(z −Xβ)′X

σ2

(z −Xβ)′(z −Xβ)

σ4
− n

σ2
−u′(z −Xβ)

σ2

−u′X −(z −Xβ)′u

σ2
u′u− v′(z −Xβ)

.

Appendix A.4 gives details about the expression for Ĵ(θ).

The square root of the diagonal entries of Ĵ(θ)−1 is an estimate of the standard
error for each of the estimators. An estimator for the standard error of λ̂ is of particular
interest and can be found using inverses of partitioned matrices. First, partition −Ĵ(θ)
as

−Ĵ(θ) =
1

σ2

X ′X
X ′(z −Xβ)

σ2
−X ′u

(z −Xβ)′X

σ2

(z −Xβ)′(z −Xβ)

σ4
− n

σ2
−u′(z −Xβ)

σ2

−u′X −(z −Xβ)′u

σ2
u′u− v′(z −Xβ)

=
1

σ2

(
Ĵ(θ)11 Ĵ(θ)12

Ĵ(θ)21 Ĵ(θ)22

)
.

Then one estimator for Var(λ̂) is

V̂ar(λ̂) = σ2
(
Ĵ(θ)22 − Ĵ(θ)21

[
Ĵ(θ)11

]−1
Ĵ(θ)12

)−1

.

Two problems exists with this estimator of Var(λ̂). First, Ĵ(θ)11 is singular, and
second, each Ĵ(θ)ij matrix depends on unknown parameters. The latter problem can

averted by substituting the mles for β and σ2. The inverse of Ĵ(θ̂)11 does not exist,

but a generalized inverse does exist and Ĵ(θ̂)21

[
Ĵ(θ̂)11

]−
Ĵ(θ̂)12 does not depend on

the choice of the generalized inverse. Simplifications to Ĵ(θ̂)11 occur because

X ′(z −Xβ̃)

σ̂2
=

0︷ ︸︸ ︷
X ′(I −H) z

σ̂2
= 0,

Box-Cox MLE computation 11

and
(z −Xβ̃)′(z −Xβ̃)

(σ̂2)2
− n

2σ̂2
=

1

σ̂2

[
nσ̂2

σ̂2
− n

2

]
=

n

2σ̂2
.

Simplified, Ĵ(θ̂)11 becomes (
X ′X 0

0 n
2σ̂2

)
.

One choice for
[
Ĵ(θ̂)11

]−
is (

(X ′X)− 0

0 2σ̂2

n

)
.

As a result, Ĵ(θ̂)21

[
Ĵ(θ̂)11

]−
Ĵ(θ̂)12 simplifies to

=
(

û′X
ẑ′(I −H)û

σ̂2

) (X ′X)− 0

0
2σ̂2

n

 X ′û

û′(I −H)ẑ

σ̂2

=
(

û′X(X ′X)−
2ẑ′(I −H)û

n

) X ′û
û′(I −H)ẑ

σ̂2

= û′ X(X ′X)−X ′︸ ︷︷ ︸
H

û +
2(û′(I −H)ẑ)2

nσ̂2
,

where û and ẑ are u and z of (5) and (1) in which λ̂ is substituted for λ.

Further, an explicit expression for V̂ar(λ̂) can be derived:

V̂ar(λ̂) = σ̂2
(
Ĵ(θ̂)22 − Ĵ(θ̂)21

[
Ĵ(θ̂)11

]−
Ĵ(θ̂)12

)−1

= σ̂2

[
û′û− v̂′(I −H)ẑ −

(
û′Hû +

2(û′(I −H)ẑ)2

nσ̂2

)]−1

= σ̂2

[
û′(I −H)û− v̂′(I −H)ẑ − 2(û′(I −H)ẑ)2

nσ̂2

]−1

= −

 v̂′(I −H)ẑ − û′(I −H)û

σ̂2
+

2

n

(
û′(I −H)ẑ

σ̂2

)2
−1

= −H(λ̂)−1,

Box-Cox MLE computation 12

where H(λ̂) is given in (15). Accordingly,

ŜE(λ̂) =
1√

−H(λ̂)
.

In conclusion, an approximate (1−α)100% confidence interval for λ can be found
using

λ̂± z?ŜE(λ̂)

where z? is the
(
1− α

2

)
100th percentile of the standard normal distribution.

4.2 Inversion of LR Test

An alternative method for finding a confidence interval for λ is based on the inversion
of the likelihood ratio test of Ho : λ = λ0 vs Ha : λ 6= λ0. All values of λ0 which yield
a Fail to Reject decision are included in the confidence interval.

To implement this inversion, the deviance statistic is used. For λ, the deviance is
defined as

D(λ) = −2
[
`(λ | y)− `(λ̂ | y)

]
,

where `(λ | y) is the concentrated log likelihood function given in (4). The deviance
has an asymptotic χ2 distribution [7]. More specifically, if Ho is true, then

D(λ)
dist−→ χ2

1,

as n →∞/ Thus, a (1− α)100% confidence interval for λ can be found by solving

D(λ) = χ2
1−α,1 (18)

for λ. A graphical description of the confidence interval is displayed in Figure 1.

The values of λ which solve (18) can be found using the Newton-Raphson algorithm
for roots given in chapter 5 of Kennedy and Gentle [6]. The equation to solve is

f(λ) = `(λ | y)− `(λ̂ | y) +
1

2
χ2

1−α,1 = 0.

Here f ′(λ) = ∂`(λ|y)

∂λ
, and is given by equation (6). Thus, the iterative equation for

solving for λ is

λk+1 = λk −
f(λk)

f ′(λk)
.

To implement this algorithm, initial guesses are required. The endpoints of the
confidence interval generated by the asymptotic distribution given in the last section
work well.

Box-Cox MLE computation 13

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−5

0

5

10

15

λ

D
e
v
ia

n
c
e

χ2
.95,1

 = 3.8415

Lower bound

mle

Upper bound

Confidence Interval Construction with LRT Test

Figure 1: Matlab plot illustrating inversion of LRT confidence interval

5 Examples

To demonstrate the SAS and MATLAB programs, three data sets will be used. The
first data set comes from Neter, Wasserman and Kutner [8]. Measurements of the
plasma level of polyamine for 25 healthy children with varying ages were taken.

The general SAS program is given in Appendix A.1. To use the program for this
data set, several modifications of the program are required. The correct filename and
variable names in the input statement should be specified in the data step:

data in;

infile ’dataplasma’;

input age plasma;

Box-Cox MLE computation 14

Next, the model should be specified in the glmmod procedure. The model is specified
in the same manner as in the glm procedure. The model for the Neter data is a one
way classification. The modified code is

proc glmmod outdesign=design noprint;

class age;

model plasma = age;

run;

The last thing to change or omit is the title2 statement in the gplot procedure. The
SAS Box-Cox transformation program produces the following output:

OUTPUT

ML Estimate -0.43576

Lower Bound -1.14820

Upper Bound 0.21272

Bounds are based on an approximate 95% Confidence Interval

Using the theoretical result that -2[loglik(lambda0) - loglik(mle)]

is distributed approximately as a one degree of freedom chi-squared

random variable when the null hypotheses (lambda=lambda0) is true.

Neter reported the mle for λ to be between −.4 and −.5, which is consistent with the
SAS result. Because the 95% confidence interval given above does not contain 1, the
LR test concludes that a transformation is needed. A plot of ln L(λ|y) versus λ is
shown in Figure 2. The SAS code to produce this plot is in Appendix A.1.

The second example is a biological experiment using a 3× 4 factorial design with
replication, and can be found in Box and Cox [3]. The two factors in this experiment
are poisons with three levels and treatments with four levels. Every combination of
poison and treatments was assigned to four animals. The survival time for each animal
was recorded. Because this is a two way classification with no interaction, the model
statement is

proc glmmod outdesign=design noprint;

class poison treatment;

model survival = poison treatment;

run;

When run initially, the SAS program gives an overflow error and does not converge.
Changing the initial guess enables the program to converge. From a starting point of
λ = .5, SAS generates

Box-Cox MLE computation 15

Figure 2: SAS plot for Plasma example

OUTPUT

ML Estimate -0.75016

Lower Bound -1.13803

Upper Bound -0.35609

Box and Cox give similar results in their paper. In fact, Box and Cox mention that the
estimate for λ agrees with the assumption that the response and explanatory variables
should be inversely proportional. A plot of the log likelihood is shown in Figure 3.

The third data set is taken from Batchelder, Rogers, and Walker [1], but also was
described in Boik and Marasinghe [2]. It is a three way classification with no third
order interaction. The factors in this example are mulches (three levels), years (three
levels), and types of soil (four levels). Tobacco yield for each combination of the factors
was measured. SAS output for this example is

Box-Cox MLE computation 16

Figure 3: SAS plot for biological experiment

OUTPUT

ML Estimate 0.68951

Lower Bound 0.13732

Upper Bound 1.34040

This corresponds exactly to the results published in Boik and Marasinghe [2]. A graph
of the log likelihood is displayed in Figure 4.

Using MATLAB is more difficult than using SAS because it is more tedious to
specify the design matrix. Nonetheless, the matlab commands dummyvar and x2fx are
helpful when generating design matrices. In fact, results for some simple models can
easily be constructed. Figure 5 shows the corresponding output for the plasma data.
MATLAB code is given in Appendix A.2.

Box-Cox MLE computation 17

Figure 4: Sas plot for Tobacco example

6 Programming Notes

Several programming strategies were implemented to efficiently find the mle and the
confidence interval.

First, the SAS program uses the glmmod procedure to produce the design matrix
for the specified model. This makes it easier to use than MATLAB. The first variable
in the design data set is the response variable, and the remaining variables are the
columns of the design matrix. The iml procedure constructs the design matrix from
this data set.

Second, there are several user adjustable variables which can be changed. The
first is the initial guess for λ. Sometimes, the initial guess for λ should be different
that 1 to ensure convergence (e.g., the Box Cox biological example). Additionally, the

Box-Cox MLE computation 18

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−52

−50

−48

−46

−44

−42

−40

−38

−36

−1.1482

0.21272

−0.43576

λ

L
o

g
 l
ik

e
lih

o
o

d

Approximate 95%CI for λ for the Plasma data

Figure 5: Matlab plot for Plasma data

confidence level can be changed if a confidence interval other than 95% is desired. The
variables small and tol can be specified according to the user’s preferences.

The last strategy implemented was using the full rank singular value decomposition
to save on memory storage. Many of the quadratic forms derived include the matrix
I − H (e.g. v′(I − H)u). Rather than forming the n × n matrix I − H , H is
decomposed into

H = X(X ′X)−X ′ = X

(X ′X)−︷ ︸︸ ︷
SD−1S′ X ′ =

F︷ ︸︸ ︷
XSD− 1

2

F ′︷ ︸︸ ︷
D− 1

2 S′X ′ = FF ′,

where D is an r×r diagonal matrix with non-negative entries, S is an n×r matrix, and
r = rank(X). As a result, F is an n × r matrix. By factoring H this way, quadratic

Box-Cox MLE computation 19

forms can be rewritten as

v′(I −H)u = v′(I − FF ′)u = v′u− (v′F)(F ′u).

This reduces the storage space from n2 to nr. Because r is typically much smaller than
n, this saves a relatively large amount of space.

Box-Cox MLE computation 20

A Appendix

A.1 SAS Code

To execute this code on a different data set, the following changes are required. First,
in the data statements, the infile filename, the input variable names, and the model
specified in proc glmmod must be modified appropriately.

Second, the user defined variables can be changed. The initial guess for λ may
need to be different than 1 in order for convergence of the estimate. Also, changes in
the confidence level are made here.

Third, in the gplot procedure, any number of changes can be made, with the
minimum being the title2 statement, which should be suitably changed.

dm ’log;clear;out;clear;’; /*This clears the log and output windows*/

/*SAS program for finding the maximum likelihood estimate of the */

/*Box-Cox transformation parameter assuming normality of the */

/*transformed data and homogeneity of variance */

/*===*/

data in;

infile ’datatobacco’;

input mulch year soil response;

/* proc glmmod is used only to construct the design matrix, which*/

/* is used in proc iml. You will need to specify the model in */

/*proc glmod. Only one response variable can be used. */

proc glmmod outdesign=design noprint;

class mulch year soil;

model response = mulch year soil

mulch*year mulch*soil year*soil;

run;

/*===*/

proc iml;

/*This section of the code breaks up the data set, design, */

/*into the response variable (y) and the design matrix (X) */

use design;

names = contents();

p = nrow(names);

response = names[1,];

dematrix = names[2:p,1];

read all var response into y;

Box-Cox MLE computation 21

read all var dematrix into X;

n=nrow(X);

/*===*/

/*User Adjustable variables*/

lam = 1; /*Initial guess for the mle of lambda. */

ConLevel = .95; /*Specify the Confidence Level here. */

small = 1.e-10; /*Numbers smaller than this are zero. */

tol = 1.e-10; /*Estimate error tolerances. */

/*===*/

/* Constants used throughout the program */

XPX = X‘*X;

call svd(UU,QQ,V,XPX);

r = max(loc(QQ>small)); /*rank of XPX*/

U = UU[,1:r];

Q = QQ[1:r];

F = X*U*diag(Q##-.5); /*Note that H = X*ginv(X‘*X)*X‘ = F*F‘*/

free UU U QQ Q V XPX; /*Free the space. These won‘t be used again.*/

pi = arcos(-1); /*This is pi*/

logy = log(y);

slogy = logy[+]; /*Sum of the logy‘s*/

one = J(n,1);

/* This loop generates both the maximum likelihood estimate of lambda*/

/* and the ConLevel*100% confidence interval for lambda. */

do i = 1 to 3;

step = 1;

if i = 2 then

do;

const = -n/2*(log(2*pi) + 1)-slogy-loglik+cinv(ConLevel,1)/2;

iguess = probit((1+ConLevel)/2)*sqrt(-1/H);

end;

/*This statement chooses the initial guesses for finding the lower*/

/*and upper bound on lambda*/

if i ^= 1 then

if i=2 then lam = mlelam - iguess;

else lam = mlelam + iguess;

do until(abs(step) < tol);

if abs(lam) < small then /*This specifies the limit of Z, U, and V*/

do; /*when lambda approaches zero (undefined */

Z=logy; /*otherwise). */

U=logy##2/2;

if i=1 then V=-logy##3/3;

Box-Cox MLE computation 22

end;

else /*Normal values for Z,U, and V when */

do; /*lambda is not zero. */

ylam = y##lam;

ly=lam*logy;

Z=(ylam-one)/lam;

U=((ly-one)#ylam + one)/lam##2;

if i=1 then V=(2-(ly##2-2*ly+2*one)#ylam)/lam##3;

end;

/*F is used to save storage space. Instead of n^2 storage*/

/*space needed only n*r is needed where r=rank(X) */

fz = F‘*Z;

fu = F‘*U;

/*(ms) mle of the variance of the transformed data*/

ms = (Z‘*Z-fz‘*fz)/n; /*also Z‘*(I-P)*Z\n */

JJ = (U‘*Z-fu‘*fz)/ms; /*also U‘*(I-P)*Z\ms */

g = -JJ + slogy; /*First derivative of the loglik function*/

if i=1 then

do;

/*Second Derivative (or the Hessian) of the loglik function (H)*/

/*Part in parentheses easier to write as V‘(I-P)Z-U‘(I-P)*U */

H = ((V‘*Z-V‘*F*fz) - (U‘*U-fu‘*fu))/ms + 2/n*JJ##2;

step = -g/H; /*step for mle*/

end;

else step = -(const-n/2*log(ms)+lam*slogy)/g; /*step for CI estimate*/

lam = lam + step; /*Update estimate*/

end;

if i = 1 then mlelam=lam;

else if i = 2 then lci=lam;

else uci=lam;

/*Save Loglikelihood for later use*/

lglik = -n/2*(log(2*pi) + 1 + log(ms)) + (lam-1)*slogy;

if i = 1 then loglik = lglik;

else ciloglik = lglik;

end;

/*Print out the estimates for the mle and the CI of lambda*/

output = mlelam // lci // uci;

row = { "ML Estimate" "Lower Bound" "Upper Bound" };

print output[rowname=row format=10.5];

clevel=ConLevel*100;

dum1 = ’Bounds are based on an approximate ’;

dum2 = char(clevel,2);

Box-Cox MLE computation 23

dum3 = ’% Confidence Interval ’;

_ = concat(dum1,concat(dum2,dum3));

print _;

print ’Using the theoretical result that -2[loglik(lambda0) - loglik(mle)]’;

print ’is distributed approximately as a one degree of freedom chi-squared’;

print ’random variable when the null hypotheses (lambda=lambda0) is true. ’;

/*The following statements form the data for a graph of the Log-likelihood */

/*function along with the (ConLevel*100)% Conifidence Interval */

spread = (uci-lci)/6; /* approximate spread */

maxci=max(abs(lci),abs(uci));

lbs = -maxci-3*spread; /* Lowerbound for plot */

ubs = maxci+spread; /* Upperbound for plot */

ss = spread/10; /* Stepsize for plot */

/*Generation of the data is here in the do loop*/

do lam = lbs to ubs by ss;

if abs(lam) < small then

Z = logy;

else

Z = (y##lam-1)/lam;

ms = (Z‘*Z-Z‘*F*F‘*Z)/n; /*ms=Z‘(I-H)Z\n*/

lglik = -n/2*(log(2*pi) + 1 + log(ms)) + (lam-1)*slogy;

dummy = dummy // (lam || lglik || 1);

end;

/*The next four lines form the data for plotting the confidence interval*/

/*and the mle */

miny = min(dummy[,2]);

dummy = dummy // (lci || ciloglik || 2) // (lci || miny || 2);

dummy = dummy // (uci || ciloglik || 3) // (uci || miny || 3);

dummy = dummy // (mlelam || loglik || 4) // (mlelam || miny || 4);

create plotdata from dummy [colname = { Lambda LogLikel graph }];

append from dummy;

close plotdata;

/*This is the main SAS code for doing the Plot of the */

/*Log Likelihood Function*/

/* goptions device=psepsf gsfname=temp gsflen=132 hsize=6in vsize=6in

gsfmode=replace; */

symbol1 color=black interpol=join width=2 value=none height=3;

symbol2 color=green interpol=join width=2 value=none line=4 height=3;

symbol3 color=red interpol=join width=2 value=none line=8 height=3;

symbol4 color=red interpol=join width=2 value=none line=10 height=3;

axis1 label=(font=greek ’l’);

Box-Cox MLE computation 24

axis2 label=(font=centx ’ln L’ font=greek ’(l)’);

legend across=1 position=(top inside left) label=none cborder=black

value=(font=zapf height=.5 tick=1 ’Loglikelihood’ tick=2 ’Lower bound’

tick=3 ’Upper bound’ tick=4 ’MLE of ’ font=greek ’l’) mode=protect

shape=symbol(3,1);

proc gplot data=plotdata;

plot LogLikel*Lambda=graph /legend=legend1 haxis=axis1 vaxis=axis2;

title font=zapf ’Loglikelihood plot with confidence interval’;

/*===*/

title2 font=swiss ’Subtitle’;

/*===*/

run;

quit;

Box-Cox MLE computation 25

A.2 MATLAB Code

The MATLAB function below requires the design matrix, the response variable, and
the confidence level. A fourth input argument can be given to change the initial guess
for λ. If left out, λ = 1 will be used. The function returns λ̂, the upper and lower
endpoints of the confidence interval, ln L(λ̂), plus the transformed estimates of the
response, β, and σ2. The MATLAB command

[mlelam,lci,uci] = box(X,y,ConLevel)

will return only λ, and the confidence intervals. The function also plots the log likeli-
hood function.

function [mlelam,lci,uci,loglik,Zmle,Bmle,mSmle] = box(X,y,ConLevel,lam)

% Scott Hyde December 27, 1998

% Matlab program for finding the maximum likelihood estimate of the

% Box-cox transformation parameter assuming normality of the transformed data

% and homogeneity of variance

%

% Inputs

% X (the design matrix)

% y (the data vector (response variable))

% ConLevel (Specify the (Conlevel*100)% confidence level to be found

% lam (Initial guess for mle) (if not given, default is 1)

%

% Outputs

% mlelam

% lci, uci (upper and lower limits for an approximate ConLevel CI for lambda

% loglik (the associated log likelihood)

% Zmle (transformed data)

% Bmle (transformed estimates of the parameters)

% mSmle (transformed common variance)

%

[n,p] = size(y);

% User Adjustable variables

if nargin == 3,

lam = 1; %Initial guess for mle of lambda if not

end; %specified.

small = 1.e-10; %Numbers smaller than this are zero.

tol = 1.e-10; %Number of decimal places of accuracy.

%Constants used everywhere

XPX = X’*X;

Box-Cox MLE computation 26

[U,Q,V] = svd(XPX);

q=diag(Q);

r = rank(XPX);

G = U(:,1:r)*diag(q(1:r).^-.5); %Note that pinv(X’*X) = G*G’;

F=X*G; %Note that H = X*pinv(X’*X)*X’ = F*F’

logy = log(y);

slogy = sum(logy);

%---

%This loop generates both the maximum likelihood estimate of lambda

%and the approximate ConLevel*100% confidence interval for lambda

%(generated by inverting the likelihood ratio test).

%---

for i = 1:3

step = 1;

if i == 2

%const includes the parts of the deviance that are constant, which

%makes programming the solution to -2[l(lam) - l(mle(lam))] =

%chi2inv(Conlevel,1) easier. Chi2inv(Conlevel,1) is the ConLevel th

%percentile of the Chi-squared dist with 1 df.

const = -n/2*(log(2*pi)+1)-slogy-loglik+chi2inv(ConLevel,1)/2;

%Since (mlelam - lam) is approx dist as N(0,v) where v=-1/H, then

%good starting values to begin the iteration to find the confidence

%interval are mlelam +- cv*sqrt(v)

iguess = norminv((1+ConLevel)/2,0,1)*sqrt(-1/H);

end;

if i ~= 1

if i == 2

lam = mlelam - iguess; %Initial guess for lower confidence bound

else

lam = mlelam + iguess; %Initial guess for upper confidence bound

end;

end;

while abs(step) > tol,

%preliminary computations

if abs(lam) < small

Z = logy; %These specify the limit of Z, U, and V

U = logy.^2/2; %when lamda approaches zero. (Undefined

if i==1 %otherwise)

V = logy.^3/3;

Box-Cox MLE computation 27

end;

else

Z = (y.^lam-1)/lam; %When lamda is not zero, these are the

ly = lam*logy; %computations for Z, U, and V.

U = ((ly-1).*y.^lam + 1)/lam.^2;

if i==1

V = (2-(ly.^2-2*ly+2).*y.^lam)/lam.^3;

end;

end;

%F is used to save storage space. Instead of n^2 storage space needed

%only n*r is needed where r=rank(X). (r is usually substatially less

%than n)

fz = F’*Z;

fu = F’*U;

%mS is the mle of the variance of the transformed data.

mS = (Z’*Z-fz’*fz)/n; %also Z’*(I-P)*Z/n

JJ = (U’*Z-fu’*fz)/mS; %also U’*(I-P)*Z/mS

g = -JJ + slogy; %First derivative of loglik function

if i == 1

%Second Derivative (or the Hessian) of the loglik function

%Part in parentheses easier to write as V‘(I-P)Z-U‘(I-P)*U

H = ((V’*Z-V’*F*fz) - (U’*U-fu’*fu))/mS + 2/n*JJ.^2;

step = -g/H; %Step for mle

else

step = -(const-n/2*log(mS)+lam*slogy)/g; %Step for CI estimates

end;

lam = lam + step; %Update Estimate

end;

%First loop saves mlelam, second loop, the lci, and third, the uci

switch i

case 1, mlelam = lam;

case 2, lci = lam;

case 3, uci = lam;

end;

lglik = -n/2*(log(2*pi) + 1 + log(mS)) + (lam-1)*slogy;

%Save mles of beta, sigma^2 and transformed data

%Also, save loglikelihood for later use

if i == 1

Bmle = G*G’*(X’*Z); %Estimate of parameters

mSmle = mS;

Box-Cox MLE computation 28

Zmle = Z;

loglik = lglik;

else

ciloglik = lglik;

end;

end;

%---

% Graph the Loglikelihood along with the (ConLevel*100)% confidence interval

spread = (uci-lci)/6;

maxci = max(abs(uci),abs(lci));

x=(-(maxci+3*spread)):spread/2:(maxci+spread);

f=[];

[dum,p] = size(x);

% Get the data ready for plotting.

for i=1:p

if abs(x(i)) < small

Z = logy;

else

Z = (y.^x(i)-1)/x(i);

end;

ms = (Z’*Z-Z’*F*F’*Z)/n;

lglik = -n/2*(log(2*pi) + 1 + log(ms)) + (x(i)-1)*slogy;

f = [f , lglik];

end;

plot(x,f); %plot the data

ax = axis; %axis parameters

lciline = [lci ax(3) ; lci ciloglik];

uciline = [uci ax(3) ; uci ciloglik];

mleline = [mlelam ax(3) ; mlelam loglik];

line(lciline(:,1),lciline(:,2)); %plot lower ci line

line(uciline(:,1),uciline(:,2)); %plot upper ci line

line(mleline(:,1),mleline(:,2)); %plot mle line

middle = (ax(3)+ax(4))/2;

ysprd = (ax(4)-ax(3))/60;

text(lci+spread/4,middle+10*ysprd,num2str(lci)); %print lci on graph

text(uci+spread/4,middle-10*ysprd,num2str(uci)); %print uci on graph

text(mlelam+spread/4,loglik+ysprd,num2str(mlelam)); %print mle on graph

xlabel(’\lambda’);

ylabel(’Log likelihood’);

endgraph=’CI for \lambda for the Plasma data’

[titlegraph, errmg] = sprintf(’Approximate %2.5g%%’,ConLevel*100);

titlegraph = strcat(titlegraph,endgraph);

title(titlegraph);

Box-Cox MLE computation 29

Box-Cox MLE computation 30

A.3 Finding the limit of ui and vi

When λ = 0, both the expression for ui and vi are in the indeterminate form of
(

0
0

)
.

Yet, when programming, the limit of ui and vi as λ → 0 must be found to avoid
problems with roundoff error. Hence the additions to equations (5) and (13).

L’Hopital’s rule can be used to find these limits. First, lim
λ→0

ui yields

lim
λ→0

ui = lim
λ→0

(λ ln yi − 1)yλ
i + 1

λ2

= lim
λ→0

(λ ln yi − 1)yλ
i ln yi + yλ

i ln yi

2λ

= lim
λ→0

λyλ
i (ln yi)

2

2λ

= lim
λ→0

yλ
i (ln yi)

2

2

=
(ln yi)

2

2
.

Similarly,

lim
λ→0

vi = lim
λ→0

2− [2λ ln yi − (λ ln yi)
2 − 2] yλ

i

λ3

= − lim
λ→0

[2λ ln yi − (λ ln yi)
2 − 2] yλ

i ln yi + [2 ln yi + 2λ(ln yi)
2] yλ

i

3λ2

= − lim
λ→0

yλ
i λ2(ln yi)

3

3λ2

= − lim
λ→0

yλ
i (ln yi)

3

3

= −(ln yi)
3

3
.

Box-Cox MLE computation 31

A.4 Finding the form for the observed Fisher’s Total Infor-
mation matrix.

To construct the observed Fisher’s Total Information matrix,Ĵ(θ), the second partial
derivatives of `(θ | y) are needed. Recall

`(θ | y) = − 1

2σ2
(z −Xβ)′(z −Xβ)− n

2
ln(2πσ2) + (λ− 1)

n∑
i=1

ln yi

= − 1

2σ2
(z′z − z′Xβ − β′X ′z − β′X ′Xβ)− n

2
ln(2πσ2) + (λ− 1)

n∑
i=1

ln yi.

Taking the first partial derivatives yields

∂`(θ | y)

∂β
= − 1

2σ2
(−X ′z −X ′z + 2X ′Xβ)

= − 1

σ2
(−X ′z + X ′Xβ),

∂`(θ | y)

∂σ2
=

1

2σ4
(z −Xβ)′(z −Xβ)− n

2σ2
,

and

∂`(θ | y)

∂λ
= − 1

2σ2

∂(z −Xβ)′(z −Xβ)

∂λ
+

n∑
i=1

ln yi

= − 1

2σ2

∂z′

∂λ

∂ [(z′z − z′Xβ − β′X ′z − β′X ′Xβ)]

∂z
+

n∑
i=1

ln yi

= − 1

2σ2
u′(2z − 2Xβ) +

n∑
i=1

ln yi

= − 1

σ2
u′(z −Xβ) +

n∑
i=1

ln yi.

Second partial derivatives are

∂2`(θ | y)

∂β′ ∂β
= −X ′X

σ2
,

∂2`(θ | y)

∂σ2 ∂β
=

1

σ4
(−Xz + X ′Xβ)

= −X ′(z −Xβ)

σ4
,

Box-Cox MLE computation 32

∂2`(θ | y)

∂λ ∂β
=

1

σ2

∂(Xz)

∂λ

=
1

σ2

∂z′

∂λ

∂(Xz)

∂z

=
u′X

σ2
=

X ′u

σ2
,

∂2`(θ | y)

∂(σ2)2
= − 1

σ6
(z −Xβ)′(z −Xβ) +

n

2σ4
,

∂2`(θ | y)

∂λ ∂σ2
=

1

2σ4

∂(z −Xβ)′(z −Xβ)

∂λ

=
1

2σ4
[2u′(z −Xβ)]

=
u′(z −Xβ)

σ4
,

and

∂2`(θ | y)

∂λ2
=

1

σ2

product rule︷ ︸︸ ︷
∂ [−u′(z −Xβ)]

∂λ

=
1

σ2

[
−∂u′

∂λ
(z −Xβ)− u′∂(z −Xβ)

∂λ

]

=
v′(z −Xβ)− u′u

σ̂2
.

Now, recall,

−Ĵ(θ) =

∂2`(θ | y)

∂β′ ∂β

∂2`(θ | y)

∂σ2 ∂β

∂2`(θ | y)

∂λ ∂β(
∂2`(θ | y)

∂σ2 ∂β

)′
∂2`(θ | y)

∂(σ2)2

∂2`(θ | y)

∂λ ∂σ2(
∂2`(θ | y)

∂λ ∂β

)′ (
∂2`(θ | y)

∂λ ∂σ2

)′
∂2`(θ | y)

∂λ2

.

Box-Cox MLE computation 33

So substituting in the second partials results in

=
1

σ2

X ′X
X ′(z −Xβ)

σ2
−X ′u

(
X ′(z −Xβ)

σ2

)′
(z −Xβ)′(z −Xβ)

σ4
− n

σ2
−u′(z −Xβ)

σ2

(−X ′u)
′

(
−u′(z −Xβ)

σ2

)′

u′u− v′(z −Xβ)

,

which is equivalent to equation (17).

Box-Cox MLE computation 34

References

[1] Batchelder, A. R. , Rogers, M. J. , & Walker, J. P. (1966). Effects of Subsoil
Management Practices on Growth of Flue-Cured Tobacco. Agronomy Journal, 58
345–347. 15

[2] Boik, R. J. & Marasinghe, M. G. (1989). Analysis of Nonadditive Multiway Clas-
sifications. Journal of the American Statistical Association, 84 1059–1064. 15,
16

[3] Box, G. E. P. & Cox, D. R. (1964). An Analysis of Transformations. Journal of
the Royal Statistical Society, 2 211–252. 1, 2, 3, 14

[4] Carroll, R. J. (1980). A Robust Method for Testing Transformations to Achieve
Approximate Normality. Journal of the Royal Statistical Society 42 71–78. 3

[5] Hoyle, M. H. (1973). Transformations–An Introduction and a Bibliography. Sta-
tistical Review, 41 203–223. 2

[6] Kennedy, W. J. & Gentle, J. E. (1980). Statistical Computing. New York: Marcel
Dekker. 6, 12

[7] Lindsey, J. K. (1996). Parametric Statistical Inference. New York: Oxford Univer-
sity Press. 9, 12

[8] Neter, J., Wasserman, W., & Kutner, M. H. (1990). Applied Linear Statistical
Models, Third Edition. Boston: R. R. Donnelly Sons & Company. 13

[9] Sakia, R. M. (1992). The Box-Cox Transformation Technique: A Review. The
Statistician, 41 169–178. 2

[10] Schott, J. R. (1997). Matrix Analysis For Statistics. New York: John Wiley &
Sons. 5, 6

[11] Sen, A. K. & Srivastava, M. S. (1990). Regression Analysis: Theory, Methods, and
Applications. New York: Springer-Verlag. 2

	Introduction
	Conventional Linear Model
	Box-Cox Family of Transformations

	Estimation of the Transformation Parameter
	Derivation of the Log Likelihood Function

	Newton-Raphson Algorithm
	Confidence Intervals for Lambda
	Asymptotic Distribution of MLE
	Inversion of LR Test

	Examples
	Programming Notes
	Appendix
	SAS Code
	MATLAB Code
	Finding the limit of u and v
	Finding the form for the observed Fisher's Total Information matrix.

	References

