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Numerical Integration Techniques 
Trapezoid Rule 
Simpson’s Rule(s)
Romberg Integration 
Gaussian Quadrature 

Gauss-Lobatto Quadrature 
Gauss-Kronrod Quadrature

MATLAB Comparison
trapz()
simps()
quad()
romberg()
quadl()
quadgk()
integral()

Working with Singularities



The Integral – The Basics

Indefinite Integral: 

Definite Integral: 
On the closed interval from a to b, or [a,b] 

Integral - Area Under the Curve

The Fundamental Theorem of Calculus: 
If f(x) is a continuous, real-valued function defined on the closed interval [a,b], and F(x) is 
defined for all x in [a,b], then F(x) is differentiable on (a,b)

What you already know



The Interpolation Polynomial
The simple approach to Numerical Integration

Let pn(x) be the polynomial to interpolate f(x) at x0,x1,…,xn where

Then use this interpolation polynomial to compute f(x) by using 

Where a = x0 and b = xn. 

Then taking the form 

the function In(f) takes the exact value of  the
integral for polynomials of degree n or less

Represented as a linear system  




The Interpolation Polynomial - Applied
The first example 

If we let [a,b] = [0,1], 
xk = kh where h = 1/n

For n = 1
then X0 = 0 and x1 = 1, 

Has solution C0 = C1 = ½, and plugging this back into the equation for the polynomial,

Or more generally:  



The Trapezoid Rule
A technique for approximating the definite integral

The trapezoid rule approximates the area 
under the curve as a trapezoid with upper 
corners  on the curve, and determines the 
value for the interval using the area of the 
trapezoid formed. 

(only ONE trapezoid, for now) 

Q = trapz(Y) returns the approximate integral of Y using the 
trapezoid method (by default, with unit spacing)



The Interpolation Polynomial - Applied
The second example 

If we continue to let [a,b] = [0,1], 
xk = kh where h = 1/n

For n = 2
then X0 = 0, x1 = ½ and x2 = 1, 

Has solution C0 = C2 = 1/6, and C1 = 2/3 and plugging this into the polynomial,

Or more generally:  



Simpson’s rule approximates the area under 
the curve using quadratic interpolation 
[ Parabolic arcs rather than straight lines ]

Simpson’s Rule
A better technique for approximating the definite integral

Simpson 3/8 Rule (n = 3) 

Simpson’s 3/8 rule approximates the area under the curve using 
cubic interpolation rather than quadratic interpolation 



Newton-Cotes  & Error Formulas

Recap: Interpolation Formula is used to approximate 
integrals in numerical analysis 

n = 1 – Trapeziod rule 
n = 2 – Simpson’s rule 
n = 3 – Simpson’s 3/8 Rule 

n = 4, 5, 6,…   Newton – Cotes Formula of order n
(Guaranteed exact for degree n or less) 

Error Formulas: 

Trapezoid Rule 

Simpson’s Rule 

x0, x1, … , xn
are evenly spaced 

For unevenly spaced points, 
Gaussian Quadrature is 
necessary.  



Composite Formulas 

As n increases, the different Newton-Coates 
formulas help us to approximate the value 
of the integral of more complex curves, 
represented by higher order polynomials. 

“Composite” = 
Break the integral up into “smaller” integrals 
and sum the parts… 

In general, the more “parts”, the better the 
approximation. 

A MUCH better technique for approximating the definite integral



Composite Trapezoid Rule 

For notation simplicity using 
spacing h = xk+1 – xk = (b-a)

Therefore, to halve the interval size, midpoints:L xk+1/2 = [xk + xk+1]/2

Q = trapz(X,Y) returns the approximate integral of Y using the 
trapezoid method with spacing X



Adaptive Simpson’s Rule 

“Composite” = 
Break the integral up into “smaller” integrals 
and sum the parts… 

“Adaptive” = 
Recursively splitting the integral in half and 
checking the error term compared to some 
desired maximum value

Q = quad(fun,a,b,tol) returns the approximate integral of the 
function fun using “recursive adaptive composite Simpson’s Rule” 
to within an error of tol (larger tolerance values means fewer 
evaluations and faster computation but  a less accurate result



The composite trapezoid rule for spacing h was

And with half the interval size, 
need the function evaluated at the midpoints

To(h) is needed in order to determine To(h/2) …
It follows that in order to compute To(h/2k) we need To(h). To(h/2), … , To(h/2k)

Following the same process to determine the composite Simpson’s rule has the result

Similarly, To(h/4 ) and To(h/2)  are needed to form T1(h/2), and so forth… 

Then again in the same way, T1(h) and T1(h/2)  can be used to determine T2(h)… 

[ This technique of using multiple low order approximations to obtain a 
higher order approximation is called Richardson Extrapolation. ] 

Romberg Integration 
Combining everything up until this point… 



Such that finally, the general form

Which can be used with the table 

in order to form the flow of the algorithm.

The rows The columns            The diagonals 
ALL converge to the exact 
value of the integral 

Stopping Criterion for some tolerance ϵ

Romberg Integration 
Richardson Extrapolation + Trapezoid Rule  =  Romberg Integration



Gaussian Quadrature 
A slightly different technique for approximating the definite integral

“Quadrature” is a numerical analysis technique where a definite 
integral is approximated using a weighted sum of function values at 
specified points within the domain of integration 

The n-point Gaussian Quadrature rule 
yields exact results for polynomials of degree (2n-1) or less as long as a “suitable choice” 
of points xi and weights wi are used for i = 1,2,…,n

The domain is conventionally used as the closed interval [-1,1]

How is this different? 
These “specified points” DO NOT have to be evenly spaced (as they did for Trapezoid, 
Simpson’s, and Romberg) 



Gaussian Quadrature 
… using a “suitable choice” of points xi and weights wi

Gaussian Quadrature will produce accurate results if the function f(x) is well 
approximated by a polynomial function within the domain … 

[This method is not well suited for functions with singularities…]

If f(x) can be written as 
f(x) = w(x)g(x) 

where g(x) can be well approximated using a polynomial and w(x) is known, then 
alternative points and weights that depend on the weighing function give better 
results 

and the evaluation points xi are the roots (zeros) the specific polynomial used to 
approximate the function, a polynomial belonging to a family of orthogonal 
polynomials called the orthogonal polynomial sequence 



Gaussian Quadrature 
Weighing Functions

Quadrature Type Weighing Function w(x) Orthogonal Polynomials

Gauss-Legendre 
Quadrature 1 Legendre Polynomials

Gauss-Jacobi Quadrature Jacobi Polynomials 

Chebyshev-Gauss 
Quadrature

Chebyshev Polynomials
(first kind) 

Chebyshev-Gauss 
Quadrature

Chebyshev Polynomials
(second kind) 

Gauss-Laguerre
Quadrature Laguerre Polynomials 

Gauss-Laguerre
Quadrature 

Generalized Laguerre 
Polynomials

Gauss-Hermite 
Quadrature Hermite Polynomials



The Lobatto Quadrature of the function f(x) on the interval [-1,1] is 

with weights 

and remainder 

Gauss – Lobatto Quadrature 
An Extension of Gaussian Quadrate

How is Gauss-Lobatto different than Gaussian Quadrature?
- The integration points INCLUDE the endpoints of the 
integration interval
- Accurate for polynomials up to degree 2n-3

q = quadl(fun,a,b) approximates the integral of the 
function fun from a to b, to within an error of 10-6 using adaptive 
Lobatto quadrature. (Limits a and b must be finite.)



Gauss – Kronrod Quadrature 

Remember: 
Gaussian Quadrature of order n is accurate for polynomials up to degree 2n-1

Gauss-Kronrod Rules: 

The interval [a,b] is subdivided such 
that the new evaluation points of
these subintervals never coincide 
with the original evaluation points 
except at zero and odd numbers

Another Extension of Gaussian Quadrate

Adding n+1 points to an n-point 
Quadrature, in this manner makes the 

resulting rule of order 3n+1. This 
allows for computation of much 

higher-order estimates using function 
values of lower-order estimates

q = quadgk(fun,a,b) approximates the integral of the 
function fun from a to b using high-order adaptive quadrature with 
default error tolerances. (Limits a and b can be infinite or complex.)



MATLAB Comparison - Code



Integral Value Error Time Elapsed
(seconds)

MATLAB 
Function

Trapezoid Rule 3 0.14159 0.02266 trapz()

Simpson’s Rule 3.1333 0.0082593 0.030717 simps() *

Adaptive Composite 
Simpson Quadrature 3.14159525048309 2.5969e-06 0.023679 quad()

Romberg Integration 
(with tolerance 0.1) 3.141592502458707 1.5113e-07 0.001437 romberg() *

Romberg Integration 
(with tolerance 1e-14) 3.141592653589793 0 0.014495 romberg() *

Gauss-Lobatto 
Quadrature 3.141592707032192 5.3442e-08 0.02867 quadl()

Gauss-Kronrod 
Quadrature 3.141592653589793 0 0.067964 quadgk()

MATLAB’s Integral 
Function 3.141592653589793 0 0.089876 integral()

π = 3.1415926535897932384626…                                 Zero to double precision

MATLAB Comparison - Results



Which function should I use to perform numerical integration?

- quad() is more efficient for low accuracy with non-smooth scalar-valued functions

- quadl() is more efficient for higher accuracy with smooth scalar-valued functions

- quadv() & integral() perform vectorized quadrature for a vector-valued function

- quadgk() is the most efficient for high accuracy if the function is oscillatory

- quadgk() & integral() supports infinite limits of integration 

- quadgk() & integral() can handle moderate singularities at the endpoints

- integral() automatically supports mixed relative (digits) and absolute (when I = 0) 
error control 

- integral() uses a higher order method than quadl() so it is usually more accurate  
on smooth problems 

- integral() is more reliable than quad() because it starts with a much finer initial 
mesh than quad() and is more conservative in error control

Differences in MATLAB Functions



Handling Singularities in MATLAB
- quadgk() & integral() can handle moderate singularities at the endpoints
- quad() is more efficient for low accuracy with non-smooth scalar-valued functions

“If there is a singularity within the domain of the function, the sum of 
the intervals over multiple subintervals can be used with the 
singularities at endpoints”

The Dirac-Delta Function

Without Split With Split

quad() a = 1e-20 * a = 1e-21

quadgk() a = 1e-4 a = 1e-7

integral() a = 1e-4 a = 1e-7

*



Using MATLAB to evaluate Pocklington’s Integral Equation

Using piecewise triangular sub-domain functions 

And point-matching (or collocation) weighing functions

The kernel of Pocklington’s I.E. has a singularity at the middle segment of the dipole

Pocklington’s Integral Equation
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Pocklington’s I.E. 

•FEKO 

•Singularity on the 
center segment

•Splitting the integral 
does not help 

•Comparison of 
impedances  (center 

segment)

•MATLAB



http://www.mathstat.dal.ca/~tkolokol/classes/1500/romberg.pdf

http://en.wikipedia.org/wiki/Integral#Fundamental_theorem_of_calculus_2

http://en.wikipedia.org/wiki/Polynomial_interpolation

http://en.wikipedia.org/wiki/Simpson%27s_rule

http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas

http://www.cse.psu.edu/~barlow/cse451/classnotes.html

Advanced Mathematics and Mechanics Applications Using MATLAB, Third Edition
By David Halpern, Howard B. Wilson, Louis H. Turcotte

Advanced Engineering Mathematics with MATLAB, Third Edition
By Dean G. Duffy

http://en.wikipedia.org/wiki/Trapezoidal_rule

http://www.mathworks.com/matlabcentral/fileexchange/25754-simpsons-rule-for-numerical-
integration/content/simps.m

http://www.mathworks.com/help/matlab/

http://ezekiel.vancouver.wsu.edu/~cs330/lectures/integration/simpsons.pdf
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