Solutions of Equations in One Variable

Fixed-Point Iteration I

Numerical Analysis (9th Edition) R L Burden & J D Faires

> Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

<ロト <四ト <注入 <注下 <注下 <

크

2 Motivating the Algorithm: An Example

< 6 b

2 Motivating the Algorithm: An Example

A >

2 Motivating the Algorithm: An Example

- Fixed-Point Formulation I
- 4 Fixed-Point Formulation II

- 2 Motivating the Algorithm: An Example
- Bixed-Point Formulation I
- Fixed-Point Formulation II

< 6 b

Prime Objective

 In what follows, it is important not to lose sight of our prime objective:

э

< ロ > < 同 > < 回 > < 回 >

Prime Objective

- In what follows, it is important not to lose sight of our prime objective:
- Given a function f(x) where $a \le x \le b$, find values p such that

f(p) = 0

э

< ロ > < 同 > < 回 > < 回 >

Prime Objective

- In what follows, it is important not to lose sight of our prime objective:
- Given a function f(x) where $a \le x \le b$, find values p such that

$$f(p) = 0$$

Given such a function, f(x), we now construct an auxiliary function g(x) such that

$$p = g(p)$$

whenever f(p) = 0 (this construction is not unique).

э

Prime Objective

- In what follows, it is important not to lose sight of our prime objective:
- Given a function f(x) where $a \le x \le b$, find values p such that

$$f(p) = 0$$

Given such a function, f(x), we now construct an auxiliary function g(x) such that

$$p = g(p)$$

whenever f(p) = 0 (this construction is not unique).

 The problem of finding p such that p = g(p) is known as the fixed point problem.

э

A Fixed Point

If *g* is defined on [a, b] and g(p) = p for some $p \in [a, b]$, then the function *g* is said to have the fixed point *p* in [a, b].

A Fixed Point

If *g* is defined on [a, b] and g(p) = p for some $p \in [a, b]$, then the function *g* is said to have the fixed point *p* in [a, b].

Note

Numerical Analysis (Chapter 2)

A Fixed Point

If *g* is defined on [a, b] and g(p) = p for some $p \in [a, b]$, then the function *g* is said to have the fixed point *p* in [a, b].

Note

• The fixed-point problem turns out to be quite simple both theoretically and geometrically.

A Fixed Point

If *g* is defined on [a, b] and g(p) = p for some $p \in [a, b]$, then the function *g* is said to have the fixed point *p* in [a, b].

Note

- The fixed-point problem turns out to be quite simple both theoretically and geometrically.
- The function g(x) will have a fixed point in the interval [a, b] whenever the graph of g(x) intersects the line y = x.

The Equation $f(x) = x - \cos(x) = 0$

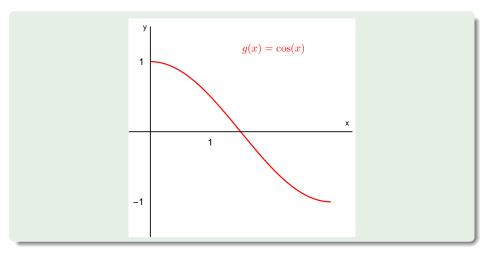
If we write this equation in the form:

 $x = \cos(x)$

then $g(x) = \cos(x)$.

Formulation I

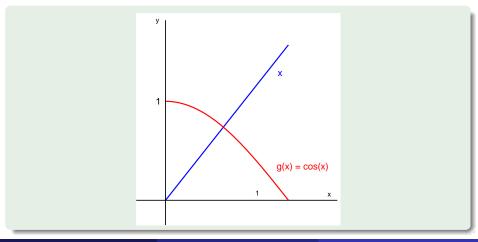
Single Nonlinear Equation $f(x) = x - \cos(x) = 0$



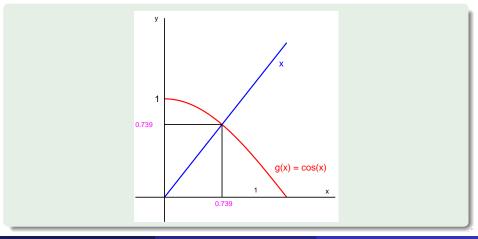
Numerical Analysis (Chapter 2)

A (10) > A (10) > A (10)

$$x = \cos(x)$$



$$p = \cos(p)$$
 $p \approx 0.739$



Formulation I

Existence of a Fixed Point

If $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$ then the function g has a fixed point in [a, b].

Numerical Analysis (Chapter 2)

Formulation I

Existence of a Fixed Point

If $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$ then the function g has a fixed point in [a, b].

Proof

• If g(a) = a or g(b) = b, the existence of a fixed point is obvious.

Formulation I

Existence of a Fixed Point

If $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$ then the function g has a fixed point in [a, b].

Proof

- If g(a) = a or g(b) = b, the existence of a fixed point is obvious.
- Suppose not; then it must be true that g(a) > a and g(b) < b.

Existence of a Fixed Point

If $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$ then the function g has a fixed point in [a, b].

Proof

- If g(a) = a or g(b) = b, the existence of a fixed point is obvious.
- Suppose not; then it must be true that g(a) > a and g(b) < b.
- Define h(x) = g(x) x; *h* is continuous on [*a*, *b*] and, moreover,

$$h(a) = g(a) - a > 0,$$
 $h(b) = g(b) - b < 0.$

Existence of a Fixed Point

If $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$ then the function g has a fixed point in [a, b].

Proof

- If g(a) = a or g(b) = b, the existence of a fixed point is obvious.
- Suppose not; then it must be true that g(a) > a and g(b) < b.
- Define h(x) = g(x) x; *h* is continuous on [*a*, *b*] and, moreover,

$$h(a) = g(a) - a > 0,$$
 $h(b) = g(b) - b < 0.$

• The Intermediate Value Theorem \bigcirc implies that there exists $p \in (a, b)$ for which h(p) = 0.

Existence of a Fixed Point

If $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$ then the function g has a fixed point in [a, b].

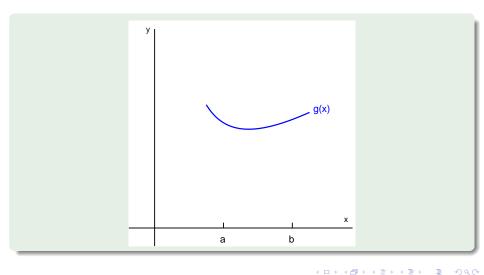
Proof

- If g(a) = a or g(b) = b, the existence of a fixed point is obvious.
- Suppose not; then it must be true that g(a) > a and g(b) < b.
- Define h(x) = g(x) x; *h* is continuous on [*a*, *b*] and, moreover,

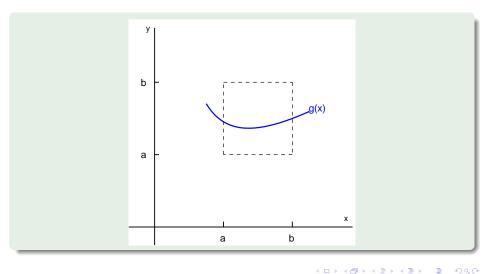
$$h(a) = g(a) - a > 0,$$
 $h(b) = g(b) - b < 0.$

- The Intermediate Value Theorem implies that there exists $p \in (a, b)$ for which h(p) = 0.
- Thus g(p) p = 0 and p is a fixed point of g.

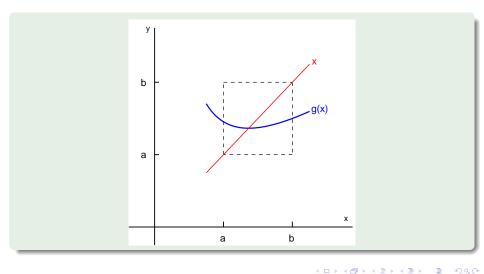
g(x) is Defined on [a, b]



$g(x) \in [a, b]$ for all $x \in [a, b]$



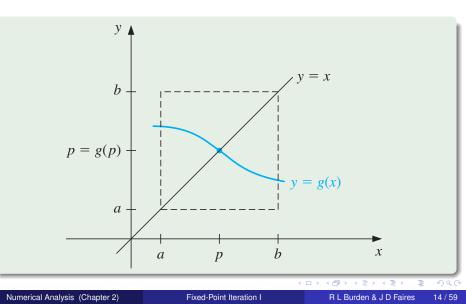
g(x) has a Fixed Point in [a, b]



Formulation

Formulation I

g(x) has a Fixed Point in [a, b]



Numerical Analysis (Chapter 2)

Э.

イロト イヨト イヨト イヨト

• Consider the function $g(x) = 3^{-x}$ on $0 \le x \le 1$.

Numerical Analysis (Chapter 2)

3

イロト イヨト イヨト イヨト

• Consider the function $g(x) = 3^{-x}$ on $0 \le x \le 1$. g(x) is continuous and since

$$g'(x) = -3^{-x} \log 3 < 0$$
 on [0, 1]

g(x) is decreasing on [0, 1].

< ロ > < 同 > < 回 > < 回 >

• Consider the function $g(x) = 3^{-x}$ on $0 \le x \le 1$. g(x) is continuous and since

$$g'(x) = -3^{-x} \log 3 < 0$$
 on [0, 1]

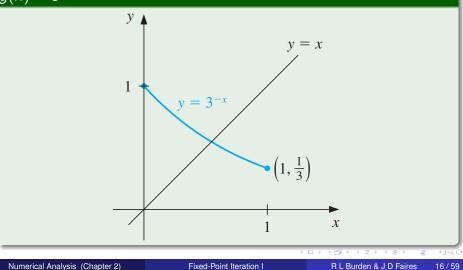
g(x) is decreasing on [0, 1].

Hence

$$g(1) = \frac{1}{3} \le g(x) \le 1 = g(0)$$

i.e. $g(x) \in [0, 1]$ for all $x \in [0, 1]$ and therefore, by the preceding result, g(x) must have a fixed point in [0, 1].

イロト イヨト イヨト イヨト



Formulation I

Formulation I

Functional (Fixed-Point) Iteration

An Important Observation

Numerical Analysis (Chapter 2)

An Important Observation

 It is fairly obvious that, on any given interval I = [a, b], g(x) may have many fixed points (or none at all).

→ ∃ →

A D b 4 A b

An Important Observation

- It is fairly obvious that, on any given interval I = [a, b], g(x) may have many fixed points (or none at all).
- In order to ensure that g(x) has a unique fixed point in I, we must make an additional assumption that g(x) does not vary too rapidly.

A D M A A A M M

An Important Observation

- It is fairly obvious that, on any given interval I = [a, b], g(x) may have many fixed points (or none at all).
- In order to ensure that g(x) has a unique fixed point in I, we must make an additional assumption that g(x) does not vary too rapidly.
- Thus we have to establish a uniqueness result.

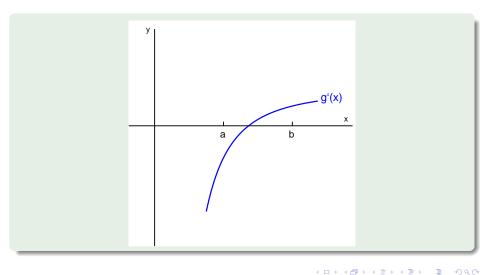
Uniqueness Result

Let $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$. Further if g'(x) exists on (a, b) and

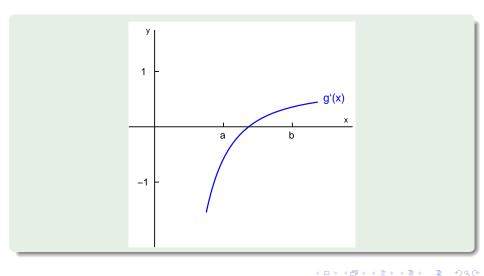
$$|g'(x)| \leq k < 1, \quad \forall \ x \in [a, b],$$

then the function g has a unique fixed point p in [a, b].

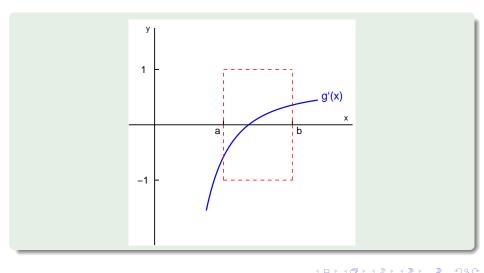
g'(x) is Defined on [a, b]



$-1 \leq g'(x) \leq 1$ for all $x \in [a, b]$



Unique Fixed Point: $|g'(x)| \le 1$ for all $x \in [a, b]$



Proof of Uniqueness Result

Proof of Uniqueness Result

Assuming the hypothesis of the theorem, suppose that *p* and *q* are both fixed points in [*a*, *b*] with *p* ≠ *q*.

イロン イボン イヨン イヨン

Proof of Uniqueness Result

- Assuming the hypothesis of the theorem, suppose that *p* and *q* are both fixed points in [*a*, *b*] with *p* ≠ *q*.
- By the Mean Value Theorem MVT Illustration, a number ξ exists between p and q and hence in [a, b] with

$$|p-q| = |g(p)-g(q)|$$

Proof of Uniqueness Result

- Assuming the hypothesis of the theorem, suppose that *p* and *q* are both fixed points in [*a*, *b*] with *p* ≠ *q*.
- By the Mean Value Theorem MVT Illustration, a number ξ exists between p and q and hence in [a, b] with

$$|p-q|=|g(p)-g(q)|= \left|g'(\xi)
ight||p-q|$$

Proof of Uniqueness Result

- Assuming the hypothesis of the theorem, suppose that *p* and *q* are both fixed points in [*a*, *b*] with *p* ≠ *q*.
- By the Mean Value Theorem MVT Illustration, a number ξ exists between p and q and hence in [a, b] with

$$egin{array}{lll} |p-q| = |g(p)-g(q)| &= & ig|g'(\xi)ig|\,|p-q| \ &\leq & k\,|p-q| \end{array}$$

Proof of Uniqueness Result

- Assuming the hypothesis of the theorem, suppose that *p* and *q* are both fixed points in [*a*, *b*] with *p* ≠ *q*.
- By the Mean Value Theorem MVT Illustration, a number ξ exists between p and q and hence in [a, b] with

which is a contradiction.

ヘロン 人間 とくほ とくほう

Proof of Uniqueness Result

- Assuming the hypothesis of the theorem, suppose that *p* and *q* are both fixed points in [*a*, *b*] with *p* ≠ *q*.
- By the Mean Value Theorem MVT Illustration, a number ξ exists between p and q and hence in [a, b] with

which is a contradiction.

• This contradiction must come from the only supposition, $p \neq q$.

22 / 59

Proof of Uniqueness Result

- Assuming the hypothesis of the theorem, suppose that *p* and *q* are both fixed points in [*a*, *b*] with *p* ≠ *q*.
- By the Mean Value Theorem MVT Illustration, a number ξ exists between p and q and hence in [a, b] with

which is a contradiction.

- This contradiction must come from the only supposition, $p \neq q$.
- Hence, p = q and the fixed point in [a, b] is unique.

Numerical Analysis (Chapter 2)

Fixed-Point Iteration I

22 / 59

Outline

2 Motivating the Algorithm: An Example

Fixed-Point Formulation I

Fixed-Point Formulation II

A Single Nonlinear Equaton

Model Problem

Consider the quadratic equation:

$$x^2 - x - 1 = 0$$

A Single Nonlinear Equaton

Model Problem

Consider the quadratic equation:

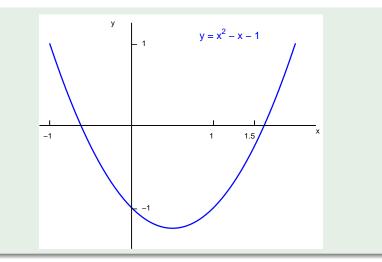
$$x^2 - x - 1 = 0$$

Positive Root

The positive root of this equations is:

$$x = \frac{1 + \sqrt{5}}{2} \approx 1.618034$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))



We can convert this equation into a fixed-point problem.

Numerical Analysis (Chapter 2)

Fixed-Point Iteration I

25 / 59

Outline

Motivating the Algorithm: An Example

< 6 k

One Possible Formulation for g(x)

Numerical Analysis (Chapter 2)

< ロ > < 同 > < 回 > < 回 >

One Possible Formulation for g(x)

Transpose the equation f(x) = 0 for variable *x*:

$$x^2 - x - 1 = 0$$

One Possible Formulation for g(x)

Transpose the equation f(x) = 0 for variable *x*:

$$x^{2} - x - 1 = 0$$

$$\Rightarrow \qquad x^{2} = x + 1$$

One Possible Formulation for g(x)

Transpose the equation f(x) = 0 for variable *x*:

$$x^{2} - x - 1 = 0$$

$$\Rightarrow \qquad x^{2} = x + 1$$

$$\Rightarrow \qquad x = \pm \sqrt{x + 1}$$

Numerical Analysis (Chapter 2)

One Possible Formulation for g(x)

Transpose the equation f(x) = 0 for variable *x*:

$$x^{2} - x - 1 = 0$$

$$\Rightarrow \qquad x^{2} = x + 1$$

$$\Rightarrow \qquad x = \pm \sqrt{x + 1}$$

$$g(x)=\sqrt{x+1}$$

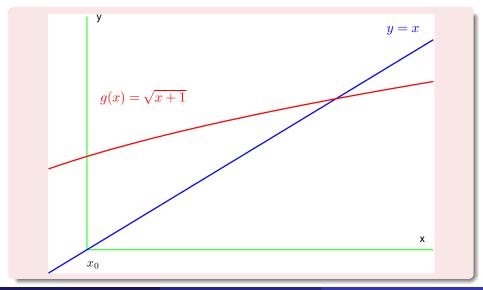
Theoretical Basis

Example

Formulation I

Formulation I

$\overline{x_{n+1}} = g(x_n) = \overline{\sqrt{x_n+1}}$ with $x_0 = 0$



Numerical Analysis (Chapter 2)

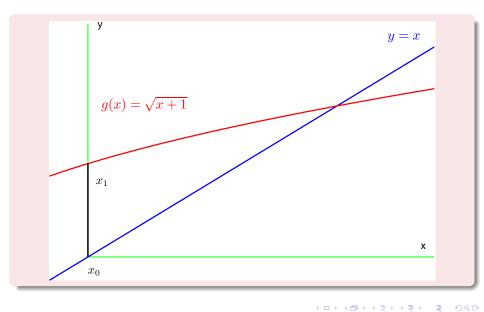
Fixed-Point Iteration I

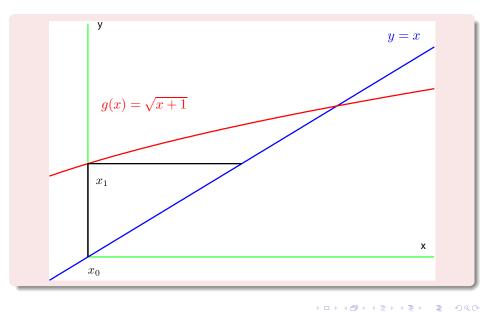
R L Burden & J D Faires 28 / 59

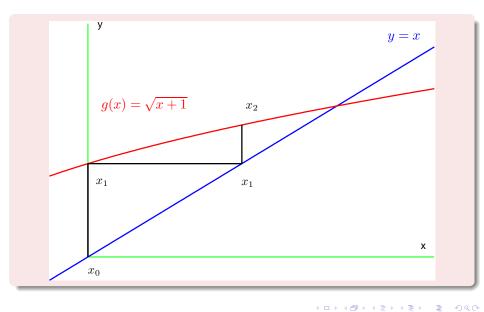
	Fixed Point:	$g(x) = \sqrt{x+1}$	x ₀ = 0
n	p _n	<i>p</i> _{n+1}	$ p_{n+1}-p_n $
1	0.000000000	1.000000000	1.000000000
2	1.000000000	1.414213562	0.414213562
3	1.414213562	1.553773974	0.139560412
4	1.553773974	1.598053182	0.044279208
5	1.598053182	1.611847754	0.013794572

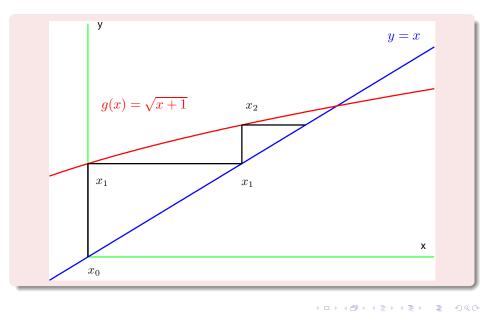
イロト イヨト イヨト イヨト

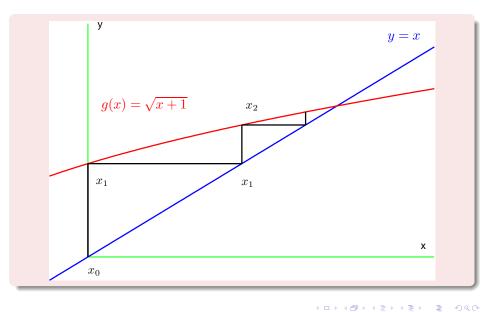
2

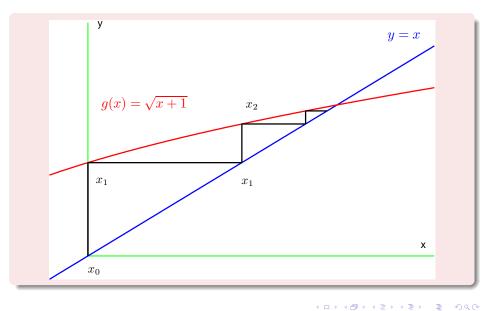


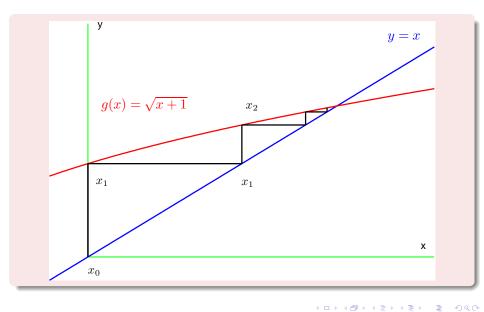


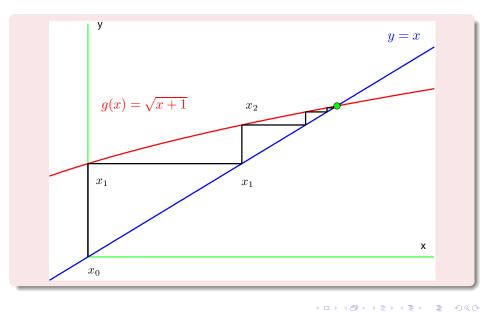












Theoretical Basis

Example

Formulation I

Formulation I

$\overline{x_{n+1}} = g(x_n) = \sqrt{x_n + 1}$ with $x_0 = 0$

Rate of Convergence

Numerical Analysis (Chapter 2)

э

イロト イヨト イヨト イヨト

$$x_{n+1} = g(x_n) = \sqrt{x_n + 1}$$
 with $x_0 = 0$

Rate of Convergence

We require that $|g'(x)| \le k < 1$. Since

$$g(x) = \sqrt{x+1}$$
 and $g'(x) = \frac{1}{2\sqrt{x+1}} > 0$ for $x \ge 0$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$$x_{n+1} = g(x_n) = \sqrt{x_n + 1}$$
 with $x_0 = 0$

Rate of Convergence

We require that $|g'(x)| \le k < 1$. Since

$$g(x)=\sqrt{x+1}$$
 and $g'(x)=rac{1}{2\sqrt{x+1}}>0$ for $x\geq 0$

we find that

$$g'(x) = rac{1}{2\sqrt{x+1}} < 1$$
 for all $x > -rac{3}{4}$

Numerical Analysis (Chapter 2)

3

イロト イ団ト イヨト イヨト

$$x_{n+1} = g(x_n) = \sqrt{x_n + 1}$$
 with $x_0 = 0$

Rate of Convergence

We require that $|g'(x)| \le k < 1$. Since

$$g(x)=\sqrt{x+1}$$
 and $g'(x)=rac{1}{2\sqrt{x+1}}>0$ for $x\geq 0$

we find that

$$g'(x) = rac{1}{2\sqrt{x+1}} < 1$$
 for all $x > -rac{3}{4}$

Note

g'(ho)pprox 0.30902

Numerical Analysis (Chapter 2)

ъ

38 / 59

・ロト ・ 四ト ・ ヨト ・ ヨト

Fixed Point: $g(x) = \sqrt{x+1}$ $p_0 = 0$							
п	<i>p</i> _{n-1}	<i>p</i> _n	$ p_n - p_{n-1} $	<i>e_n/e_{n-1}</i>			
1	0.0000000	1.0000000	1.0000000				
2	1.0000000	1.4142136	0.4142136	0.41421			
3	1.4142136	1.5537740	0.1395604	0.33693			
4	1.5537740	1.5980532	0.0442792	0.31728			
5	1.5980532	1.6118478	0.0137946	0.31154			
÷	:	:	:	÷			
12	1.6180286	1.6180323	0.0000037	0.30902			
13	1.6180323	1.6180335	0.0000012	0.30902			
14	1.6180335	1.6180338	0.0000004	0.30902			
15	1.6180338	1.6180339	0.0000001	0.30902			

<ロン <回と < 回と < 回と < 回と

æ

Outline

2 Motivating the Algorithm: An Example

3 Fixed-Point Formulation I

< 6 k

Formulation II

Single Nonlinear Equation $f(x) = x^2 - x - 1 = 0$

A Second Formulation for g(x)

Numerical Analysis (Chapter 2)

< ロ > < 同 > < 回 > < 回 >

A Second Formulation for g(x)

Transpose the equation f(x) = 0 for variable *x*:

$$x^2-x-1 = 0$$

A Second Formulation for g(x)

Transpose the equation f(x) = 0 for variable *x*:

$$x^2 - x - 1 = 0$$

$$\Rightarrow x^2 = x + 1$$

A Second Formulation for g(x)

Transpose the equation f(x) = 0 for variable *x*:

$$x^{2} - x - 1 = 0$$

$$\Rightarrow \qquad x^{2} = x + 1$$

$$\Rightarrow \qquad x = 1 + \frac{1}{x}$$

Numerical Analysis (Chapter 2)

A Second Formulation for g(x)

Transpose the equation f(x) = 0 for variable *x*:

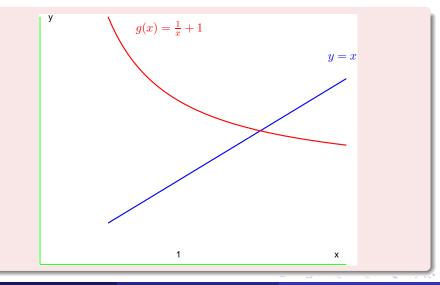
$$x^{2} - x - 1 = 0$$

$$\Rightarrow \qquad x^{2} = x + 1$$

$$\Rightarrow \qquad x = 1 + \frac{1}{x}$$

$$g(x)=1+\frac{1}{x}$$

Numerical Analysis	(Chapter 2)
--------------------	-------------

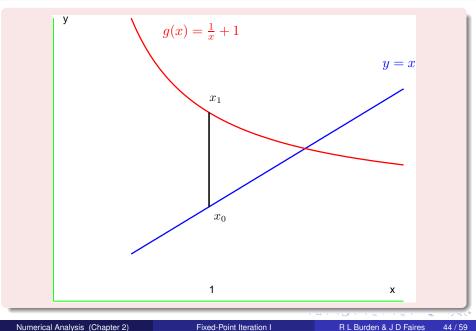


Numerical Analysis (Chapter 2)

Fixed Point: $g(x) = \frac{1}{x} + 1$ $x_0 = 1$					
n	p _n	<i>p</i> _{n+1}	$ p_{n+1}-p_n $		
1	1.000000000	2.000000000	1.000000000		
2	2.000000000	1.500000000	0.500000000		
3	1.500000000	1.666666667	0.166666667		
4	1.666666667	1.600000000	0.066666667		
5	1.60000000	1.625000000	0.025000000		

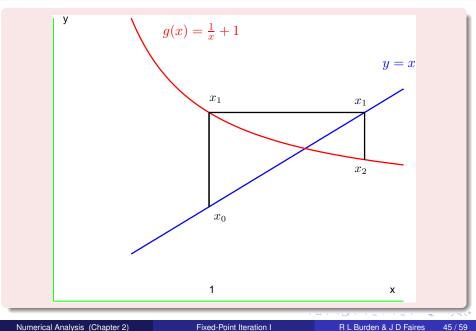
2

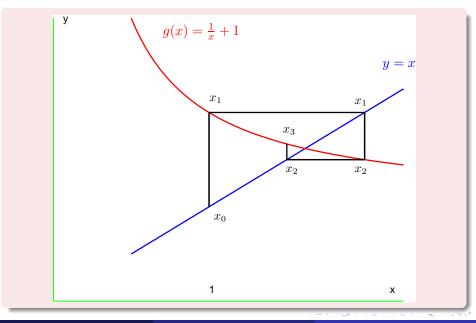
<ロ> (日) (日) (日) (日) (日)



Fixed-Point Iteration I

R L Burden & J D Faires

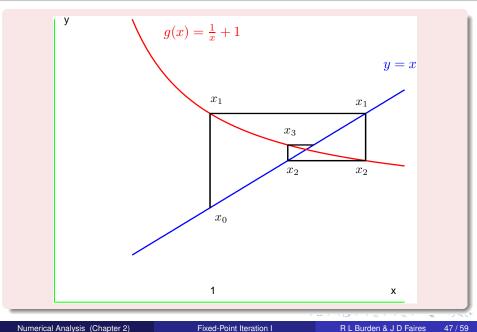


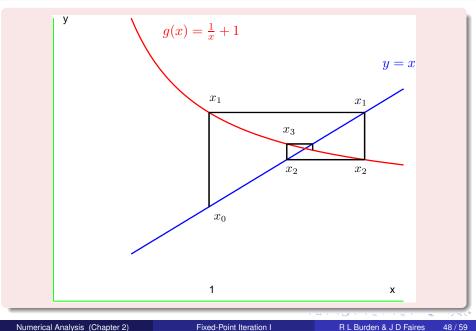


Fixed-Point Iteration I

R L Burden & J D Faires

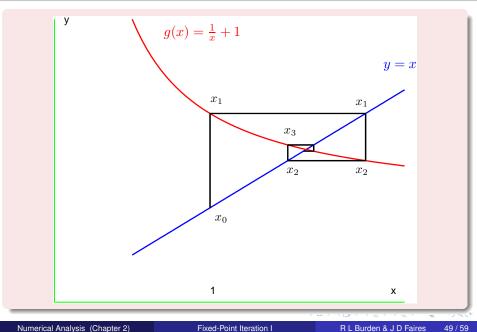
46 / 59

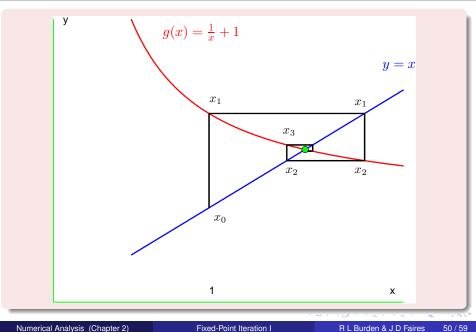




Fixed-Point Iteration I

R L Burden & J D Faires





Rate of Convergence

Numerical Analysis (Chapter 2)

æ

<ロ> <同> <同> < 同> < 同> 、

Rate of Convergence

We require that $|g'(x)| \le k < 1$. Since

$$g(x) = \frac{1}{x} + 1$$
 and $g'(x) = -\frac{1}{x^2} < 0$ for x

Numerical Analysis (Chapter 2)

3

(日)

Rate of Convergence

We require that $|g'(x)| \le k < 1$. Since

$$g(x) = \frac{1}{x} + 1$$
 and $g'(x) = -\frac{1}{x^2} < 0$ for x

we find that

$$g'(x) = \frac{1}{2\sqrt{x+1}} > -1$$
 for all $x > 1$

Numerical Analysis (Chapter 2)

3

Rate of Convergence

We require that $|g'(x)| \le k < 1$. Since

$$g(x) = \frac{1}{x} + 1$$
 and $g'(x) = -\frac{1}{x^2} < 0$ for x

we find that

$$g'(x) = \frac{1}{2\sqrt{x+1}} > -1$$
 for all $x > 1$

Note

$$g'(p)pprox -0.38197$$

Numerical Analysis (Chapter 2)

э

イロト イ団ト イヨト イヨト

Fixed Point: $g(x) = \frac{1}{x} + 1$ $p_0 = 1$							
n	<i>p</i> _{n-1}	p _n	$ p_n - p_{n-1} $	e_n/e_{n-1}			
1	1.0000000	2.0000000	1.0000000	—			
2	2.0000000	1.5000000	0.5000000	0.50000			
3	1.5000000	1.6666667	0.1666667	0.33333			
4	1.6666667	1.6000000	0.0666667	0.40000			
5	1.6000000	1.6250000	0.0250000	0.37500			
:	:	:	÷	:			
12	1.6180556	1.6180258	0.0000298	0.38197			
13	1.6180258	1.6180371	0.0000114	0.38196			
14	1.6180371	1.6180328	0.0000043	0.38197			
15	1.6180328	1.6180344	0.0000017	0.38197			

52 / 59

э.

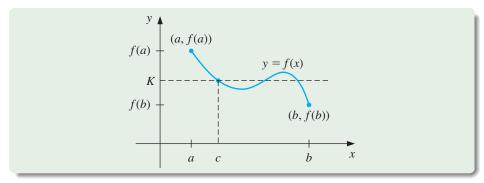
Questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Reference Material

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

If $f \in C[a, b]$ and K is any number between f(a) and f(b), then there exists a number $c \in (a, b)$ for which f(c) = K.

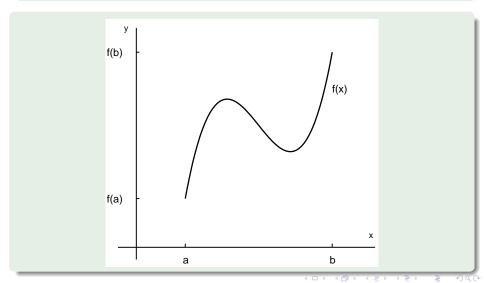


(The diagram shows one of 3 possibilities for this function and interval.)

Return to Existence Theorem

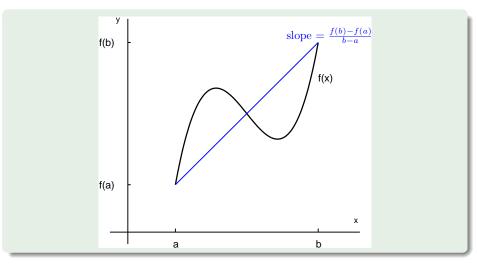
Mean Value Theorem: Illustration (1/3)

Assume that $f \in C[a, b]$ and f is differentiable on (a, b).



Mean Value Theorem: Illustration (2/3)

Measure the slope of the line joining a, f(a) and [b, f(b)].

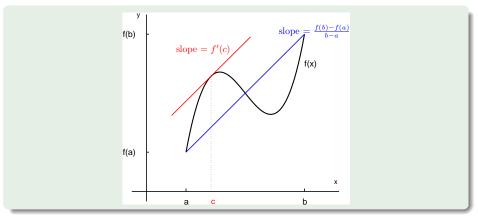


▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで

Mean Value Theorem: Illustration (3/3)

Then a number c exists such that

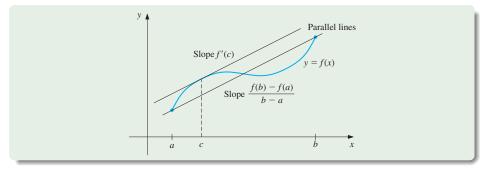
$$f'(c) = rac{f(b) - f(a)}{b - a}$$



▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

If $f \in C[a, b]$ and f is differentiable on (a, b), then a number c exists such that

$$f'(c) = rac{f(b) - f(a)}{b - a}$$



Return to Fixed-Point Uniqueness Theorem

《曰》 《聞》 《臣》 《臣》 三臣 …