Interpolation & Polynomial Approximation

Data Approximation & Neville's Method

Numerical Analysis (9th Edition) R L Burden & J D Faires

> Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

<ロト <回ト < 国ト < 国ト = 国

Data Approximation	Neville's Method	Example 1	Example 2	Neville's Algorithm
Outline				

Interpolation with access to function values only

- Interpolation with access to function values only
- 2 Introduction to Neville's Method

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Interpolation with access to function values only
- 2 Introduction to Neville's Method
- 3 Applying Neville's Method to Tabulated Data

(4) (5) (4) (5)

< 17 ▶

- Interpolation with access to function values only
- 2 Introduction to Neville's Method
- 3 Applying Neville's Method to Tabulated Data
- 4 Applying Neville's Method to Tabulated Data with 4-digit Rounding Arithmetic

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Interpolation with access to function values only
- 2 Introduction to Neville's Method
- 3 Applying Neville's Method to Tabulated Data
- Applying Neville's Method to Tabulated Data with 4-digit Rounding Arithmetic
- 5 Neville's Iterated Interpolation Algorithm

< 6 b

Data Approximation	Neville's Method	Example 1	Example 2	Neville's Algorithm
Outline				

- Interpolation with access to function values only
- 2 Introduction to Neville's Method
- 3 Applying Neville's Method to Tabulated Data
- Applying Neville's Method to Tabulated Data with 4-digit Rounding Arithmetic
- 5 Neville's Iterated Interpolation Algorithm

A (1) > A (1) > A

Context

Numerical Analysis (Chapter 3)

Data Approximation & Neville's Method

R L Burden & J D Faires 4 / 46

Context

• A frequent use of interpolating polynomials involves the interpolation of tabulated data.

A (10) > A (10) > A (10)

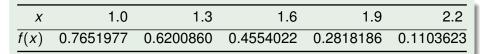
Context

- A frequent use of interpolating polynomials involves the interpolation of tabulated data.
- In this case, an explicit representation of the polynomial might not be needed, only the values of the polynomial at specified points.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Context

- A frequent use of interpolating polynomials involves the interpolation of tabulated data.
- In this case, an explicit representation of the polynomial might not be needed, only the values of the polynomial at specified points.
- In this situation the function underlying the data might not be known so the explicit form of the error cannot be used.


Context

- A frequent use of interpolating polynomials involves the interpolation of tabulated data.
- In this case, an explicit representation of the polynomial might not be needed, only the values of the polynomial at specified points.
- In this situation the function underlying the data might not be known so the explicit form of the error cannot be used.
- The following example illustrates a practical application of interpolation in such a situation.

< ロ > < 同 > < 回 > < 回 >

Example: Tabulated Data							
The following table							
X	1.0	1.3	1.6	1.9	2.2		
f(x)	0.7651977	0.6200860	0.4554022	0.2818186	0.1103623		

lists values of a function f at various points. The approximations to f(1.5) obtained by various Lagrange polynomials that use this data will be compared to try and determine the accuracy of the approximation.

Solution (1/7)

Numerical Analysis (Chapter 3)

Data Approximation & Neville's Method

x	1.0	1.3	1.6	1.9	2.2
$\overline{f(x)}$	0.7651977	0.6200860	0.4554022	0.2818186	0.1103623

Solution (1/7)

The most appropriate linear polynomial uses $x_0 = 1.3$ and $x_1 = 1.6$ because 1.5 is between 1.3 and 1.6.

x	1.0	1.3	1.6	1.9	2.2
$\overline{f(x)}$	0.7651977	0.6200860	0.4554022	0.2818186	0.1103623

Solution (1/7)

The most appropriate linear polynomial uses $x_0 = 1.3$ and $x_1 = 1.6$ because 1.5 is between 1.3 and 1.6. The value of the interpolating polynomial at 1.5 is

$$P_1(1.5) = \frac{(1.5-1.6)}{(1.3-1.6)}f(1.3) + \frac{(1.5-1.3)}{(1.6-1.3)}f(1.6)$$

x	1.0	1.3	1.6	1.9	2.2
f(x)	0.7651977	0.6200860	0.4554022	0.2818186	0.1103623

Solution (1/7)

The most appropriate linear polynomial uses $x_0 = 1.3$ and $x_1 = 1.6$ because 1.5 is between 1.3 and 1.6. The value of the interpolating polynomial at 1.5 is

$$P_{1}(1.5) = \frac{(1.5-1.6)}{(1.3-1.6)}f(1.3) + \frac{(1.5-1.3)}{(1.6-1.3)}f(1.6)$$

= $\frac{(1.5-1.6)}{(1.3-1.6)}(0.6200860) + \frac{(1.5-1.3)}{(1.6-1.3)}(0.4554022)$

x	1.0	1.3	1.6	1.9	2.2
$\overline{f(x)}$	0.7651977	0.6200860	0.4554022	0.2818186	0.1103623

Solution (1/7)

The most appropriate linear polynomial uses $x_0 = 1.3$ and $x_1 = 1.6$ because 1.5 is between 1.3 and 1.6. The value of the interpolating polynomial at 1.5 is

$$P_{1}(1.5) = \frac{(1.5-1.6)}{(1.3-1.6)}f(1.3) + \frac{(1.5-1.3)}{(1.6-1.3)}f(1.6)$$

= $\frac{(1.5-1.6)}{(1.3-1.6)}(0.6200860) + \frac{(1.5-1.3)}{(1.6-1.3)}(0.4554022)$
= 0.5102968

Numerical Analysis (Chapter 3)

Solution (2/7)

Numerical Analysis (Chapter 3)

Data Approximation & Neville's Method

R L Burden & J D Faires 7 / 46

э

イロト イヨト イヨト イヨト

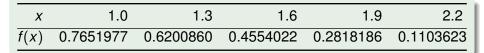
Solution (2/7)

Two polynomials of degree 2 can reasonably be used, one with $x_0 = 1.3$, $x_1 = 1.6$ and $x_2 = 1.9$, which gives

$$P_2(1.5) = \frac{(1.5 - 1.6)(1.5 - 1.9)}{(1.3 - 1.6)(1.3 - 1.9)}(0.6200860)$$

Solution (2/7)

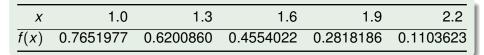
Two polynomials of degree 2 can reasonably be used, one with $x_0 = 1.3$, $x_1 = 1.6$ and $x_2 = 1.9$, which gives


$$P_{2}(1.5) = \frac{(1.5 - 1.6)(1.5 - 1.9)}{(1.3 - 1.6)(1.3 - 1.9)}(0.6200860) \\ + \frac{(1.5 - 1.3)(1.5 - 1.9)}{(1.6 - 1.3)(1.6 - 1.9)}(0.4554022)$$

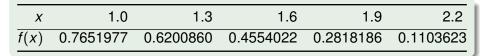
Solution (2/7)

Two polynomials of degree 2 can reasonably be used, one with $x_0 = 1.3$, $x_1 = 1.6$ and $x_2 = 1.9$, which gives

$$P_{2}(1.5) = \frac{(1.5 - 1.6)(1.5 - 1.9)}{(1.3 - 1.6)(1.3 - 1.9)}(0.6200860) \\ + \frac{(1.5 - 1.3)(1.5 - 1.9)}{(1.6 - 1.3)(1.6 - 1.9)}(0.4554022) \\ + \frac{(1.5 - 1.3)(1.5 - 1.6)}{(1.9 - 1.3)(1.9 - 1.6)}(0.2818186) = 0.5112857$$


and one with $x_0 = 1.0$, $x_1 = 1.3$, and $x_2 = 1.6$, which gives $\hat{P}_2(1.5) = 0.5124715$.

Solution (3/7)


Numerical Analysis (Chapter 3)

Interpolating Accuracy without underlying f(x)

Solution (3/7)

 In the third-degree case, there are also two reasonable choices for the polynomial.

Solution (3/7)

• In the third-degree case, there are also two reasonable choices for the polynomial. One with $x_0 = 1.3$, $x_1 = 1.6$, $x_2 = 1.9$ and $x_3 = 2.2$, which gives $P_3(1.5) = 0.5118302$.

Solution (3/7)

- In the third-degree case, there are also two reasonable choices for the polynomial. One with $x_0 = 1.3$, $x_1 = 1.6$, $x_2 = 1.9$ and $x_3 = 2.2$, which gives $P_3(1.5) = 0.5118302$.
- The second third-degree approximation is obtained with $x_0 = 1.0$, $x_1 = 1.3$, $x_2 = 1.6$ and $x_3 = 1.9$, which gives $\hat{P}_3(1.5) = 0.5118127$.

< ロ > < 同 > < 回 > < 回 >

x	1.0	1.3	1.6	1.9	2.2
$\overline{f(x)}$	0.7651977	0.6200860	0.4554022	0.2818186	0.1103623

Solution (4/7)

• The fourth-degree Lagrange polynomial uses all the entries in the table.

x	1.0	1.3	1.6	1.9	2.2
$\overline{f(x)}$	0.7651977	0.6200860	0.4554022	0.2818186	0.1103623

Solution (4/7)

- The fourth-degree Lagrange polynomial uses all the entries in the table.
- With $x_0 = 1.0$, $x_1 = 1.3$, $x_2 = 1.6$, $x_3 = 1.9$, and $x_4 = 2.2$, the approximation is $P_4(1.5) = 0.5118200$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\begin{array}{ccc} P_3(1.5) & \hat{P}_3(1.5) & P_4(1.5) \\ 0.5118302 & 0.5118127 & 0.5118200 \end{array}$$

Solution (5/7)

Numerical Analysis (Chapter 3)

Data Approximation & Neville's Method

R L Burden & J D Faires 10 / 46

$$\begin{array}{ccc} P_3(1.5) & \hat{P}_3(1.5) & P_4(1.5) \\ 0.5118302 & 0.5118127 & 0.5118200 \end{array}$$

Solution (5/7)

• Because $P_3(1.5)$, $\hat{P}_3(1.5)$, and $P_4(1.5)$ all agree to within 2×10^{-5} units, we expect this degree of accuracy for these approximations.

$$\begin{array}{ccc} P_3(1.5) & \hat{P}_3(1.5) & P_4(1.5) \\ 0.5118302 & 0.5118127 & 0.5118200 \end{array}$$

Solution (5/7)

- Because $P_3(1.5)$, $\hat{P}_3(1.5)$, and $P_4(1.5)$ all agree to within 2×10^{-5} units, we expect this degree of accuracy for these approximations.
- We also expect P₄(1.5) to be the most accurate approximation, since it uses more of the given data.

$$\begin{array}{ccc} P_3(1.5) & \hat{P}_3(1.5) & P_4(1.5) \\ 0.5118302 & 0.5118127 & 0.5118200 \end{array}$$

Solution (5/7)

- Because $P_3(1.5)$, $\hat{P}_3(1.5)$, and $P_4(1.5)$ all agree to within 2×10^{-5} units, we expect this degree of accuracy for these approximations.
- We also expect P₄(1.5) to be the most accurate approximation, since it uses more of the given data.
- The function we are approximating is actually the Bessel function of the first kind of order zero, whose value at 1.5 is known to be 0.5118277.

Solution (6/7)

Therefore, the true accuracies of the approximations are as follows:

$$\begin{split} |P_1(1.5) - f(1.5)| &\approx 1.53 \times 10^{-3} \\ |P_2(1.5) - f(1.5)| &\approx 5.42 \times 10^{-4} \\ |\hat{P}_2(1.5) - f(1.5)| &\approx 6.44 \times 10^{-4} \\ |P_3(1.5) - f(1.5)| &\approx 2.5 \times 10^{-6} \\ |\hat{P}_3(1.5) - f(1.5)| &\approx 1.50 \times 10^{-5} \\ |P_4(1.5) - f(1.5)| &\approx 7.7 \times 10^{-6} \end{split}$$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Concluding Remarks (7/7)

Concluding Remarks (7/7)

• Although $P_3(1.5)$ is the most accurate approximation, if we had no knowledge of the actual value of f(1.5), we would accept $P_4(1.5)$ as the best approximation since it includes the most data about the function.

<ロト <四ト <注入 <注下 <注下 <

Concluding Remarks (7/7)

- Although $P_3(1.5)$ is the most accurate approximation, if we had no knowledge of the actual value of f(1.5), we would accept $P_4(1.5)$ as the best approximation since it includes the most data about the function.
- The theoretical Lagrange error term Theorem cannot be applied here because we have no knowledge of the fourth derivative of *f*.

<ロト <四ト <注入 <注下 <注下 <

Concluding Remarks (7/7)

- Although $P_3(1.5)$ is the most accurate approximation, if we had no knowledge of the actual value of f(1.5), we would accept $P_4(1.5)$ as the best approximation since it includes the most data about the function.
- The theoretical Lagrange error term Theorem cannot be applied here because we have no knowledge of the fourth derivative of *f*.

<ロト <四ト <注入 <注下 <注下 <

• Unfortunately, this is generally the case.

Interpolation with access to function values onl

Introduction to Neville's Method

- 3 Applying Neville's Method to Tabulated Data
- Applying Neville's Method to Tabulated Data with 4-digit Rounding Arithmetic
- 5 Neville's Iterated Interpolation Algorithm

Motivation

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Motivation

 A practical difficulty with Lagrange interpolation is that the error term is difficult to apply, so the degree of the polynomial needed for the desired accuracy is generally not known until computations have been performed.

イロト イヨト イヨト イヨト

Motivation

- A practical difficulty with Lagrange interpolation is that the error term is difficult to apply, so the degree of the polynomial needed for the desired accuracy is generally not known until computations have been performed.
- A common practice is to compute the results given from various polynomials until appropriate agreement is obtained.

< ロ > < 同 > < 回 > < 回 >

Motivation

- A practical difficulty with Lagrange interpolation is that the error term is difficult to apply, so the degree of the polynomial needed for the desired accuracy is generally not known until computations have been performed.
- A common practice is to compute the results given from various polynomials until appropriate agreement is obtained.
- However, the work done in calculating the approximation by the second polynomial does not lessen the work needed to calculate the third approximation; nor is the fourth approximation easier to obtain once the third approximation is known, and so on.

Motivation

- A practical difficulty with Lagrange interpolation is that the error term is difficult to apply, so the degree of the polynomial needed for the desired accuracy is generally not known until computations have been performed.
- A common practice is to compute the results given from various polynomials until appropriate agreement is obtained.
- However, the work done in calculating the approximation by the second polynomial does not lessen the work needed to calculate the third approximation; nor is the fourth approximation easier to obtain once the third approximation is known, and so on.
- We will now derive these approximating polynomials in a manner that uses the previous calculations to greater advantage.

Definition: Lagrange Polynomial $P_{m_1,m_2,...,m_k}(x)$

Let *f* be a function defined at x₀, x₁, x₂,..., x_n, and suppose that m₁, m₂, ..., m_k are *k* distinct integers, with 0 ≤ m_i ≤ n for each *i*.

Definition: Lagrange Polynomial $P_{m_1,m_2,...,m_k}(x)$

- Let *f* be a function defined at x₀, x₁, x₂,..., x_n, and suppose that m₁, m₂, ..., m_k are *k* distinct integers, with 0 ≤ m_i ≤ n for each *i*.
- The Lagrange polynomial that agrees with f(x) at the k points $x_{m_1}, x_{m_2}, \ldots, x_{m_k}$ is denoted by

$$P_{m_1,m_2,\ldots,m_k}(x)$$

Numerical Analysis (Chapter 3)

R L Burden & J D Faires

15/46

Example: $P_{1,2,4}(x)$

- Suppose that $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$, $x_4 = 6$, and $f(x) = e^x$.
- Determine the interpolating polynomial denoted P_{1,2,4}(x), and use this polynomial to approximate f(5).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$P_{1,2,4}(x)$ Solution (1/2)

This is the Lagrange polynomial that agrees with f(x) at $x_1 = 2$, $x_2 = 3$, and $x_4 = 6$.

Numerical Analysis (Chapter 3)

Data Approximation & Neville's Method

R L Burden & J D Faires

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

17/46

$P_{1,2,4}(x)$ Solution (1/2)

This is the Lagrange polynomial that agrees with f(x) at $x_1 = 2$, $x_2 = 3$, and $x_4 = 6$. Hence

$$P_{1,2,4}(x) = \frac{(x-3)(x-6)}{(2-3)(2-6)}e^2 + \frac{(x-2)(x-6)}{(3-2)(3-6)}e^3 + \frac{(x-2)(x-3)}{(6-2)(6-3)}e^6.$$

17/46

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$P_{1,2,4}(x)$ Solution (2/2)

So

$$f(5) \approx P(5) = \frac{(5-3)(5-6)}{(2-3)(2-6)}e^2 + \frac{(5-2)(5-6)}{(3-2)(3-6)}e^3 + \frac{(5-2)(5-3)}{(6-2)(6-3)}e^6$$
$$= -\frac{1}{2}e^2 + e^3 + \frac{1}{2}e^6 \approx 218.105.$$

18/46

Theorem

Let *f* be defined at x_0, x_1, \ldots, x_k , and let x_j and x_i be two distinct numbers in this set.

Theorem

Let *f* be defined at x_0, x_1, \ldots, x_k , and let x_j and x_i be two distinct numbers in this set. Then

$$P(x) = \frac{(x - x_j)P_{0,1,\dots,j-1,j+1,\dots,k}(x) - (x - x_i)P_{0,1,\dots,i-1,i+1,\dots,k}(x)}{(x_i - x_j)}$$

is the *k*th Lagrange polynomial that interpolates *f* at the k + 1 points x_0, x_1, \ldots, x_k .

19/46

$$Q \equiv P_{0,1,...,i-1,i+1,...,k}$$
 and $\hat{Q} \equiv P_{0,1,...,j-1,j+1,...,k}$

A (10) > A (10) > A (10)

For ease of notation, let

$$Q \equiv P_{0,1,...,i-1,i+1,...,k}$$
 and $\hat{Q} \equiv P_{0,1,...,j-1,j+1,...,k}$

Since Q(x) and $\hat{Q}(x)$ are polynomials of degree k - 1 or less, P(x) is of degree at most k.

For ease of notation, let

$$Q \equiv P_{0,1,...,i-1,i+1,...,k}$$
 and $\hat{Q} \equiv P_{0,1,...,j-1,j+1,...,k}$

Since Q(x) and $\hat{Q}(x)$ are polynomials of degree k - 1 or less, P(x) is of degree at most k.

Proof (1/2)

First note that $\hat{Q}(x_i) = f(x_i)$, implies that

$${\sf P}(x_i) = rac{(x_i - x_j) \hat{Q}(x_i) - (x_i - x_i) Q(x_i)}{x_i - x_j} = rac{(x_i - x_j)}{(x_i - x_j)} f(x_i) = f(x_i).$$

Numerical Analysis (Chapter 3)

For ease of notation, let

$$Q \equiv P_{0,1,...,i-1,i+1,...,k}$$
 and $\hat{Q} \equiv P_{0,1,...,j-1,j+1,...,k}$

Since Q(x) and $\hat{Q}(x)$ are polynomials of degree k - 1 or less, P(x) is of degree at most k.

Proof (1/2)

First note that $\hat{Q}(x_i) = f(x_i)$, implies that

$$\mathsf{P}(x_i) = \frac{(x_i - x_j)\hat{Q}(x_i) - (x_i - x_i)Q(x_i)}{x_i - x_j} = \frac{(x_i - x_j)}{(x_i - x_j)}f(x_i) = f(x_i).$$

Similarly, since $Q(x_j) = f(x_j)$, we have $P(x_j) = f(x_j)$.

Proof (2/2)

In addition, if $0 \le r \le k$ and *r* is neither *i* nor *j*, then $Q(x_r) = \hat{Q}(x_r) = f(x_r)$.

Proof (2/2)

In addition, if $0 \le r \le k$ and *r* is neither *i* nor *j*, then $Q(x_r) = \hat{Q}(x_r) = f(x_r)$. So

$$P(x_r) = \frac{(x_r - x_j)\hat{Q}(x_r) - (x_r - x_i)Q(x_r)}{x_i - x_j} = \frac{(x_i - x_j)}{(x_i - x_j)}f(x_r) = f(x_r)$$

21/46

< ロ > < 同 > < 回 > < 回 >

Proof (2/2)

In addition, if $0 \le r \le k$ and *r* is neither *i* nor *j*, then $Q(x_r) = \hat{Q}(x_r) = f(x_r)$. So

$$P(x_r) = \frac{(x_r - x_j)\hat{Q}(x_r) - (x_r - x_i)Q(x_r)}{x_i - x_j} = \frac{(x_i - x_j)}{(x_i - x_j)}f(x_r) = f(x_r)$$

But, by definition, $P_{0,1,...,k}(x)$ is the unique polynomial of degree at most *k* that agrees with *f* at $x_0, x_1, ..., x_k$. Thus, $P \equiv P_{0,1,...,k}$.

21/46

Comment on the Theorem

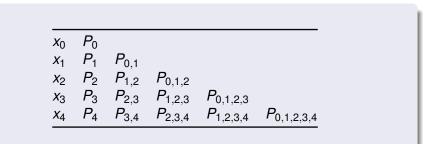
• This result implies that the interpolating polynomials can be generated recursively.

→ ∃ →

4 A N

Comment on the Theorem

- This result implies that the interpolating polynomials can be generated recursively.
- For example, we have


$$P_{0,1} = \frac{1}{x_1 - x_0} [(x - x_0)P_1 + (x - x_1)P_0]$$

$$P_{1,2} = \frac{1}{x_2 - x_1} [(x - x_1)P_2 + (x - x_2)P_1]$$

$$P_{0,1,2} = \frac{1}{x_2 - x_0} [(x - x_0)P_{1,2} + (x - x_2)P_{0,1}]$$

and so on.

The following table illustrates how the interpolating polynomials can be generated recursively, where each row is completed before the succeeding rows are begun.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

The procedure that uses the result of the theorem • Theorem to recursively generate interpolating polynomial approximations is called Neville's method.

Avoiding Cumbersome Notation

Numerical Analysis (Chapter 3)

Avoiding Cumbersome Notation

• The *P* notation used in the table is cumbersome because of the number of subscripts used to represent the entries.

→ ∃ →

4 A N

Avoiding Cumbersome Notation

- The *P* notation used in the table is cumbersome because of the number of subscripts used to represent the entries.
- Note, however, that as an array is being constructed, only two subscripts are needed.

Avoiding Cumbersome Notation

- The *P* notation used in the table is cumbersome because of the number of subscripts used to represent the entries.
- Note, however, that as an array is being constructed, only two subscripts are needed.
- Proceeding down the table corresponds to using consecutive points *x_i* with larger *i*, and proceeding to the right corresponds to increasing the degree of the interpolating polynomial.

Avoiding Cumbersome Notation

- The *P* notation used in the table is cumbersome because of the number of subscripts used to represent the entries.
- Note, however, that as an array is being constructed, only two subscripts are needed.
- Proceeding down the table corresponds to using consecutive points *x_i* with larger *i*, and proceeding to the right corresponds to increasing the degree of the interpolating polynomial.
- Since the points appear consecutively in each entry, we need to describe only a starting point and the number of additional points used in constructing the approximation.

< ロ > < 同 > < 回 > < 回 >

To avoid the multiple subscripts, we let $Q_{i,j}(x)$, for $0 \le j \le i$, denote the interpolating polynomial of degree *j* on the (j + 1) numbers $x_{i-j}, x_{i-j+1}, \ldots, x_{i-1}, x_i$; that is,

$$Q_{i,j} = P_{i-j,i-j+1,...,i-1,i}.$$

To avoid the multiple subscripts, we let $Q_{i,j}(x)$, for $0 \le j \le i$, denote the interpolating polynomial of degree *j* on the (j + 1) numbers $x_{i-j}, x_{i-j+1}, \ldots, x_{i-1}, x_i$; that is,

$$Q_{i,j} = P_{i-j,i-j+1,...,i-1,i}$$

Using this notation provides the following *Q* notation array.

< ロ > < 同 > < 回 > < 回 >

- Interpolation with access to function values only
- 2) Introduction to Neville's Method
- 3 Applying Neville's Method to Tabulated Data
- Applying Neville's Method to Tabulated Data with 4-digit Rounding Arithmetic
- 5 Neville's Iterated Interpolation Algorithm

Example: Using the 'Q' Notation

Values of various interpolating polynomials at x = 1.5 were obtained in an earlier example using the following data:

X	1.0	1.3	1.6	1.9	2.2
$\overline{f(x)}$	0.7651977	0.6200860	0.4554022	0.2818186	0.1103623

Apply Neville's method to the data by constructing a recursive table in the Q-notation array format.

27/46

Solution (1/6)

• Let $x_0 = 1.0$, $x_1 = 1.3$, $x_2 = 1.6$, $x_3 = 1.9$, and $x_4 = 2.2$, then $Q_{0,0} = f(1.0)$, $Q_{1,0} = f(1.3)$, $Q_{2,0} = f(1.6)$, $Q_{3,0} = f(1.9)$, and $Q_{4,0} = f(2.2)$.

Numerical Analysis (Chapter 3)

Data Approximation & Neville's Method

R L Burden & J D Faires

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

28 / 46

Solution (1/6)

- Let $x_0 = 1.0$, $x_1 = 1.3$, $x_2 = 1.6$, $x_3 = 1.9$, and $x_4 = 2.2$, then $Q_{0,0} = f(1.0)$, $Q_{1,0} = f(1.3)$, $Q_{2,0} = f(1.6)$, $Q_{3,0} = f(1.9)$, and $Q_{4,0} = f(2.2)$.
- These are the five polynomials of degree zero (constants) that approximate *f*(1.5), and are the same as data given in the example table.

28/46

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Solution (2/6)

Calculating the first-degree approximation $Q_{1,1}(1.5)$ gives

$$Q_{1,1}(1.5) = \frac{(x - x_0)Q_{1,0} - (x - x_1)Q_{0,0}}{x_1 - x_0}$$

= $\frac{(1.5 - 1.0)Q_{1,0} - (1.5 - 1.3)Q_{0,0}}{1.3 - 1.0}$
= $\frac{0.5(0.6200860) - 0.2(0.7651977)}{0.3}$
= 0.5233449

29/46

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Solution (3/6)

Similarly,

$$Q_{2,1}(1.5) = \frac{(1.5 - 1.3)(0.4554022) - (1.5 - 1.6)(0.6200860)}{1.6 - 1.3}$$

= 0.5102968

 $Q_{3,1}(1.5) = 0.5132634$ and $Q_{4,1}(1.5) = 0.5104270$

The best linear approximation is expected to be $Q_{2,1}$ because 1.5 is between $x_1 = 1.3$ and $x_2 = 1.6$.

Solution (3/6)

Similarly,

$$Q_{2,1}(1.5) = \frac{(1.5 - 1.3)(0.4554022) - (1.5 - 1.6)(0.6200860)}{1.6 - 1.3}$$

= 0.5102968

 $Q_{3,1}(1.5) = 0.5132634$ and $Q_{4,1}(1.5) = 0.5104270$

The best linear approximation is expected to be $Q_{2,1}$ because 1.5 is between $x_1 = 1.3$ and $x_2 = 1.6$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Solution (4/6)

In a similar manner, approximations using higher-degree polynomials are given by

$$Q_{2,2}(1.5) = \frac{(1.5 - 1.0)(0.5102968) - (1.5 - 1.6)(0.5233449)}{1.6 - 1.0}$$
$$= 0.5124715$$
$$Q_{3,2}(1.5) = 0.5112857$$

 $Q_{4,2}(1.5) = 0.5137361$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The higher-degree approximations are generated in a similar manner and are shown in the following table.

Solution (5/6)					
1.0	0.7651977				
1.3	0.6200860	0.5233449			
1.6	0.4554022	0.5102968	0.5124715		
1.9	0.2818186	0.5132634	0.5112857	0.5118127	
2.2	0.1103623	0.5104270	0.5137361	0.5118302	0.5118200

32/46

Solution (6/6)

• If the latest approximation, *Q*_{4,4}, was not sufficiently accurate, another node, *x*₅, could be selected, and another row added:

$$x_5 \quad Q_{5,0} \quad Q_{5,1} \quad Q_{5,2} \quad Q_{5,3} \quad Q_{5,4} \quad Q_{5,5}.$$

イロン イ理 とくほ とくほう

Solution (6/6)

- If the latest approximation, *Q*_{4,4}, was not sufficiently accurate, another node, *x*₅, could be selected, and another row added:
 - $x_5 \quad Q_{5,0} \quad Q_{5,1} \quad Q_{5,2} \quad Q_{5,3} \quad Q_{5,4} \quad Q_{5,5}.$

Then $Q_{4,4}$, $Q_{5,4}$, and $Q_{5,5}$ could be compared to determine further accuracy.

ヘロン 人間 とくほ とくほう

Solution (6/6)

- If the latest approximation, *Q*_{4,4}, was not sufficiently accurate, another node, *x*₅, could be selected, and another row added:
 - $x_5 \quad Q_{5,0} \quad Q_{5,1} \quad Q_{5,2} \quad Q_{5,3} \quad Q_{5,4} \quad Q_{5,5}.$

Then $Q_{4,4}$, $Q_{5,4}$, and $Q_{5,5}$ could be compared to determine further accuracy.

- The function in this example is the Bessel function of the first kind of order zero, whose value at 2.5 is -0.0483838, and the next row of approximations to f(1.5) is
- 2.5 -0.0483838 0.4807699 0.5301984 0.5119070 0.5118430

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Solution (6/6)

- If the latest approximation, $Q_{4,4}$, was not sufficiently accurate, another node, x_5 , could be selected, and another row added:
 - $x_5 \quad Q_{5,0} \quad Q_{5,1} \quad Q_{5,2} \quad Q_{5,3} \quad Q_{5,4} \quad Q_{5,5}.$

Then $Q_{4,4}$, $Q_{5,4}$, and $Q_{5,5}$ could be compared to determine further accuracy.

- The function in this example is the Bessel function of the first kind of order zero, whose value at 2.5 is -0.0483838, and the next row of approximations to f(1.5) is
- 2.5 -0.0483838 0.4807699 0.5301984 0.5119070 0.5118430

The final new entry, 0.5118277, is correct to all 7 decimal places.

- Interpolation with access to function values only
- 2 Introduction to Neville's Method
- 3 Applying Neville's Method to Tabulated Data
- Applying Neville's Method to Tabulated Data with 4-digit Rounding Arithmetic
- 5 Neville's Iterated Interpolation Algorithm

Example: 4-Digit Values of In x

The following table lists the values of $f(x) = \ln x$ accurate to the places given.

i	Xi	ln x _i
0	2.0	0.6931
1	2.2	0.7885
2	2.3	0.8329

Use Neville's method and 4-digit rounding arithmetic to approximate $f(2.1) = \ln 2.1$ by completing the Neville table.

35/46

< ロ > < 同 > < 回 > < 回 >

Solution (1/2)

Because $x - x_0 = 0.1$, $x - x_1 = -0.1$, $x - x_2 = -0.2$, and we are given $Q_{0,0} = 0.6931$, $Q_{1,0} = 0.7885$, and $Q_{2,0} = 0.8329$, we have

$$Q_{1,1} = \frac{1}{0.2} \left[(0.1)0.7885 - (-0.1)0.6931 \right] = \frac{0.1482}{0.2} = 0.7410$$

and

$$Q_{2,1} = \frac{1}{0.1} \left[(-0.1)0.8329 - (-0.2)0.7885 \right] = \frac{0.07441}{0.1} = 0.7441.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Solution (1/2)

Because $x - x_0 = 0.1$, $x - x_1 = -0.1$, $x - x_2 = -0.2$, and we are given $Q_{0,0} = 0.6931$, $Q_{1,0} = 0.7885$, and $Q_{2,0} = 0.8329$, we have

$$Q_{1,1} = \frac{1}{0.2} \left[(0.1)0.7885 - (-0.1)0.6931 \right] = \frac{0.1482}{0.2} = 0.7410$$

and

$$Q_{2,1} = \frac{1}{0.1} \left[(-0.1)0.8329 - (-0.2)0.7885 \right] = \frac{0.07441}{0.1} = 0.7441.$$

The final approximation we can obtain from this data is

$$Q_{2,1} = \frac{1}{0.3} \left[(0.1)0.7441 - (-0.2)0.7410 \right] = \frac{0.2276}{0.3} = 0.7420.$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Solution (2/2)

The calculations are summarized in the following table:

i	x _i	$X - X_i$	Q_{i0}	<i>Q</i> _{i1}	Q_{i2}
0	2.0	0.1	0.6931		
1	2.2	-0.1	0.7885	0.7410	
2	2.3	-0.2	0.8329	0.7441	0.7420

37 / 46

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

In the preceding example, we have $f(2.1) = \ln 2.1 = 0.7419$ to four decimal places, so the absolute error is

$$|f(2.1) - P_2(2.1)| = |0.7419 - 0.7420| = 10^{-4}$$

In the preceding example, we have $f(2.1) = \ln 2.1 = 0.7419$ to four decimal places, so the absolute error is

$$|f(2.1) - P_2(2.1)| = |0.7419 - 0.7420| = 10^{-4}$$

However, f'(x) = 1/x, $f''(x) = -1/x^2$, and $f'''(x) = 2/x^3$, so the Lagrange error formula Theorem gives the error bound

$$|f(2.1) - P_2(2.1)| = \left| \frac{f'''(\xi(2.1))}{3!}(x - x_0)(x - x_1)(x - x_2) \right|$$

- 2

In the preceding example, we have $f(2.1) = \ln 2.1 = 0.7419$ to four decimal places, so the absolute error is

$$|f(2.1) - P_2(2.1)| = |0.7419 - 0.7420| = 10^{-4}$$

However, f'(x) = 1/x, $f''(x) = -1/x^2$, and $f'''(x) = 2/x^3$, so the Lagrange error formula Theorem gives the error bound

$$|f(2.1) - P_2(2.1)| = \left| \frac{f'''(\xi(2.1))}{3!} (x - x_0)(x - x_1)(x - x_2) \right|$$
$$= \left| \frac{1}{3(\xi(2.1))^3} (0.1)(-0.1)(-0.2) \right|$$

In the preceding example, we have $f(2.1) = \ln 2.1 = 0.7419$ to four decimal places, so the absolute error is

$$|f(2.1) - P_2(2.1)| = |0.7419 - 0.7420| = 10^{-4}$$

However, f'(x) = 1/x, $f''(x) = -1/x^2$, and $f'''(x) = 2/x^3$, so the Lagrange error formula Theorem gives the error bound

$$|f(2.1) - P_2(2.1)| = \left| \frac{f'''(\xi(2.1))}{3!} (x - x_0)(x - x_1)(x - x_2) \right|$$
$$= \left| \frac{1}{3(\xi(2.1))^3} (0.1)(-0.1)(-0.2) \right|$$
$$\leq \frac{0.002}{3(2)^3} = 8.\overline{3} \times 10^{-5}$$

Absolute Error versus Error Bound

• Notice that the actual error, 10^{-4} , exceeds the error bound, $8.\overline{3} \times 10^{-5}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Absolute Error versus Error Bound

- Notice that the actual error, 10^{-4} , exceeds the error bound, $8.\overline{3} \times 10^{-5}$.
- This apparent contradiction is a consequence of finite-digit computations.

Numerical Analysis (Chapter 3)

R L Burden & J D Faires

39 / 46

Absolute Error versus Error Bound

- Notice that the actual error, 10^{-4} , exceeds the error bound, $8.\overline{3} \times 10^{-5}$.
- This apparent contradiction is a consequence of finite-digit computations.
- We used four-digit rounding arithmetic, whereas the Lagrange error formula assumes infinite-digit arithmetic.

< ロ > < 同 > < 回 > < 回 >

Absolute Error versus Error Bound

- Notice that the actual error, 10^{-4} , exceeds the error bound, $8.\overline{3} \times 10^{-5}$.
- This apparent contradiction is a consequence of finite-digit computations.
- We used four-digit rounding arithmetic, whereas the Lagrange error formula assumes infinite-digit arithmetic.
- This caused our actual errors to exceed the theoretical error estimate.

< ロ > < 同 > < 回 > < 回 >

39 / 46

Outline

- Neville's Iterated Interpolation Algorithm 5

To evaluate the interpolating polynomial *P* on the n + 1 distinct numbers x_0, \ldots, x_n at the number *x* for the function *f*:

イロト イポト イヨト イヨ

To evaluate the interpolating polynomial *P* on the n + 1 distinct numbers x_0, \ldots, x_n at the number *x* for the function *f*:

INPUT numbers x, x_0, x_1, \dots, x_n ; values $f(x_0), f(x_1), \dots, f(x_n)$ as the first column $Q_{0,0}, Q_{1,0}, \dots, Q_{n,0}$ of Q

A (10) > A (10) > A (10)

To evaluate the interpolating polynomial *P* on the n + 1 distinct numbers x_0, \ldots, x_n at the number *x* for the function *f*:

INPUT numbers $x, x_0, x_1, ..., x_n$; values $f(x_0), f(x_1), ..., f(x_n)$ as the first column $Q_{0,0}, Q_{1,0}, ..., Q_{n,0}$ of QOUTPUT the table Q with $P(x) = Q_{n,n}$

A (10) A (10) A (10)

To evaluate the interpolating polynomial *P* on the n + 1 distinct numbers x_0, \ldots, x_n at the number *x* for the function *f*:

INPUT numbers x, x_0, x_1, \dots, x_n ; values $f(x_0), f(x_1), \dots, f(x_n)$ as the first column $Q_{0,0}, Q_{1,0}, \dots, Q_{n,0}$ of QOUTPUT the table Q with $P(x) = Q_{n,n}$ Step 1 For $i = 1, 2, \dots, n$ for $j = 1, 2, \dots, i$ set $Q_{i,j} = \frac{(x - x_{i-j})Q_{i,j-1} - (x - x_i)Q_{i-1,j-1}}{x_i - x_{i-j}}$

< ロ > < 同 > < 回 > < 回 >

To evaluate the interpolating polynomial *P* on the n + 1 distinct numbers x_0, \ldots, x_n at the number *x* for the function *f*:

INPUT	numbers $x, x_0, x_1,, x_n$; values $f(x_0), f(x_1),, f(x_n)$ as the first column $Q_{0,0}, Q_{1,0},, Q_{n,0}$ of Q
OUTPUT	the table Q with $P(x) = Q_{n,n}$
Step 1	For $i = 1, 2,, n$
	for $j = 1, 2,, i$
	set $Q_{i,j} = rac{(x - x_{i-j})Q_{i,j-1} - (x - x_i)Q_{i-1,j-1}}{x_i - x_{i-j}}$
Step 2	OUTPUT (Q)
	STOP

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Additional Nodes & Stopping Criteria

• The algorithm can be modified to allow for the addition of new interpolating nodes. For example, the inequality

$$|Q_{i,i}-Q_{i-1,i-1}|<\varepsilon$$

can be used as a stopping criterion, where ε is a prescribed error tolerance.

Additional Nodes & Stopping Criteria

• The algorithm can be modified to allow for the addition of new interpolating nodes. For example, the inequality

$$|Q_{i,i}-Q_{i-1,i-1}|<\varepsilon$$

can be used as a stopping criterion, where ε is a prescribed error tolerance.

• If the inequality is true, $Q_{i,i}$ is a reasonable approximation to f(x).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Additional Nodes & Stopping Criteria

• The algorithm can be modified to allow for the addition of new interpolating nodes. For example, the inequality

$$\left|\boldsymbol{Q}_{i,i}-\boldsymbol{Q}_{i-1,i-1}\right|<\varepsilon$$

can be used as a stopping criterion, where ε is a prescribed error tolerance.

• If the inequality is true, $Q_{i,i}$ is a reasonable approximation to f(x).

If the inequality is false, a new interpolation point, x_{i+1}, is added.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Reference Material

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Suppose $x_0, x_1, ..., x_n$ are distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$. Then, for each x in [a, b], a number $\xi(x)$ (generally unknown) between $x_0, x_1, ..., x_n$, and hence in (a, b), exists with

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

where P(x) is the interpolating polynomial given by

$$P(x) = f(x_0)L_{n,0}(x) + \cdots + f(x_n)L_{n,n}(x) = \sum_{k=0}^n f(x_k)L_{n,k}(x)$$

Return to Data Approximation Example

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Return to Error Calculations for Tabulated Data Example

Theorem

Let *f* be defined at x_0, x_1, \ldots, x_k , and let x_j and x_i be two distinct numbers in this set. Then

$$P(x) = \frac{(x - x_j)P_{0,1,\dots,j-1,j+1,\dots,k}(x) - (x - x_i)P_{0,1,\dots,i-1,i+1,\dots,k}(x)}{(x_i - x_j)}$$

is the *k*th Lagrange polynomial that interpolates *f* at the k + 1 points x_0, x_1, \ldots, x_k .

Return to Neville's Method

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ