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Data Approximation Neville’s Method Example 1 Example 2 Neville’s Algorithm

Interpolating Accuracy without underlying f (x)

Context

A frequent use of interpolating polynomials involves the
interpolation of tabulated data.
In this case, an explicit representation of the polynomial might not
be needed, only the values of the polynomial at specified points.
In this situation the function underlying the data might not be
known so the explicit form of the error cannot be used.
The following example illustrates a practical application of
interpolation in such a situation.
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Interpolating Accuracy without underlying f (x)

Example: Tabulated Data
The following table

x 1.0 1.3 1.6 1.9 2.2
f (x) 0.7651977 0.6200860 0.4554022 0.2818186 0.1103623

lists values of a function f at various points. The approximations to
f (1.5) obtained by various Lagrange polynomials that use this data will
be compared to try and determine the accuracy of the approximation.
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Interpolating Accuracy without underlying f (x)

x 1.0 1.3 1.6 1.9 2.2
f (x) 0.7651977 0.6200860 0.4554022 0.2818186 0.1103623

Solution (1/7)

The most appropriate linear polynomial uses x0 = 1.3 and x1 = 1.6
because 1.5 is between 1.3 and 1.6. The value of the interpolating
polynomial at 1.5 is

P1(1.5) =
(1.5− 1.6)

(1.3− 1.6)
f (1.3) +

(1.5− 1.3)

(1.6− 1.3)
f (1.6)

=
(1.5− 1.6)

(1.3− 1.6)
(0.6200860) +

(1.5− 1.3)

(1.6− 1.3)
(0.4554022)

= 0.5102968
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Interpolating Accuracy without underlying f (x)

Solution (2/7)

Two polynomials of degree 2 can reasonably be used, one with
x0 = 1.3, x1 = 1.6 and x2 = 1.9, which gives

P2(1.5) =
(1.5− 1.6)(1.5− 1.9)

(1.3− 1.6)(1.3− 1.9)
(0.6200860)

+
(1.5− 1.3)(1.5− 1.9)

(1.6− 1.3)(1.6− 1.9)
(0.4554022)

+
(1.5− 1.3)(1.5− 1.6)

(1.9− 1.3)(1.9− 1.6)
(0.2818186) = 0.5112857

and one with x0 = 1.0, x1 = 1.3, and x2 = 1.6, which gives
P̂2(1.5) = 0.5124715.
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Interpolating Accuracy without underlying f (x)

x 1.0 1.3 1.6 1.9 2.2
f (x) 0.7651977 0.6200860 0.4554022 0.2818186 0.1103623

Solution (3/7)

In the third-degree case, there are also two reasonable choices for
the polynomial. One with x0 = 1.3, x1 = 1.6, x2 = 1.9 and
x3 = 2.2, which gives P3(1.5) = 0.5118302.

The second third-degree approximation is obtained with x0 = 1.0,
x1 = 1.3, x2 = 1.6 and x3 = 1.9, which gives
P̂3(1.5) = 0.5118127.
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Interpolating Accuracy without underlying f (x)

x 1.0 1.3 1.6 1.9 2.2
f (x) 0.7651977 0.6200860 0.4554022 0.2818186 0.1103623

Solution (4/7)
The fourth-degree Lagrange polynomial uses all the entries in the
table.

With x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2, the
approximation is P4(1.5) = 0.5118200.
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Interpolating Accuracy without underlying f (x)

P3(1.5) P̂3(1.5) P4(1.5)
0.5118302 0.5118127 0.5118200

Solution (5/7)

Because P3(1.5), P̂3(1.5), and P4(1.5) all agree to within 2× 10−5

units, we expect this degree of accuracy for these approximations.
We also expect P4(1.5) to be the most accurate approximation,
since it uses more of the given data.
The function we are approximating is actually the Bessel function
of the first kind of order zero, whose value at 1.5 is known to be
0.5118277.
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Interpolating Accuracy without underlying f (x)

Solution (6/7)
Therefore, the true accuracies of the approximations are as follows:

|P1(1.5)− f (1.5)| ≈ 1.53× 10−3

|P2(1.5)− f (1.5)| ≈ 5.42× 10−4

|P̂2(1.5)− f (1.5)| ≈ 6.44× 10−4

|P3(1.5)− f (1.5)| ≈ 2.5× 10−6

|P̂3(1.5)− f (1.5)| ≈ 1.50× 10−5

|P4(1.5)− f (1.5)| ≈ 7.7× 10−6
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Interpolating Accuracy without underlying f (x)

Concluding Remarks (7/7)

Although P3(1.5) is the most accurate approximation, if we had no
knowledge of the actual value of f (1.5), we would accept P4(1.5)
as the best approximation since it includes the most data about
the function.
The theoretical Lagrange error term Theorem cannot be applied
here because we have no knowledge of the fourth derivative of f .
Unfortunately, this is generally the case.
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Introduction to Neville’s Method

Motivation

A practical difficulty with Lagrange interpolation is that the error
term is difficult to apply, so the degree of the polynomial needed
for the desired accuracy is generally not known until computations
have been performed.
A common practice is to compute the results given from various
polynomials until appropriate agreement is obtained.
However, the work done in calculating the approximation by the
second polynomial does not lessen the work needed to calculate
the third approximation; nor is the fourth approximation easier to
obtain once the third approximation is known, and so on.
We will now derive these approximating polynomials in a manner
that uses the previous calculations to greater advantage.

Numerical Analysis (Chapter 3) Data Approximation & Neville’s Method R L Burden & J D Faires 14 / 46



Data Approximation Neville’s Method Example 1 Example 2 Neville’s Algorithm

Introduction to Neville’s Method

Motivation
A practical difficulty with Lagrange interpolation is that the error
term is difficult to apply, so the degree of the polynomial needed
for the desired accuracy is generally not known until computations
have been performed.

A common practice is to compute the results given from various
polynomials until appropriate agreement is obtained.
However, the work done in calculating the approximation by the
second polynomial does not lessen the work needed to calculate
the third approximation; nor is the fourth approximation easier to
obtain once the third approximation is known, and so on.
We will now derive these approximating polynomials in a manner
that uses the previous calculations to greater advantage.
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Introduction to Neville’s Method

Definition: Lagrange Polynomial Pm1,m2,...,mk (x)

Let f be a function defined at x0, x1, x2, . . . , xn, and suppose that
m1, m2, . . ., mk are k distinct integers, with 0 ≤ mi ≤ n for each i .

The Lagrange polynomial that agrees with f (x) at the k points
xm1 , xm2 , . . . , xmk is denoted by

Pm1,m2,...,mk (x)
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Introduction to Neville’s Method

Example: P1,2,4(x)

Suppose that x0 = 1, x1 = 2, x2 = 3, x3 = 4, x4 = 6, and
f (x) = ex .
Determine the interpolating polynomial denoted P1,2,4(x), and use
this polynomial to approximate f (5).
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Introduction to Neville’s Method

P1,2,4(x) Solution (1/2)
This is the Lagrange polynomial that agrees with f (x) at x1 = 2,
x2 = 3, and x4 = 6.

Hence

P1,2,4(x) =
(x − 3)(x − 6)

(2− 3)(2− 6)
e2 +

(x − 2)(x − 6)

(3− 2)(3− 6)
e3 +

(x − 2)(x − 3)

(6− 2)(6− 3)
e6.
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Introduction to Neville’s Method

P1,2,4(x) Solution (2/2)
So

f (5) ≈ P(5) =
(5− 3)(5− 6)

(2− 3)(2− 6)
e2 +

(5− 2)(5− 6)

(3− 2)(3− 6)
e3 +

(5− 2)(5− 3)

(6− 2)(6− 3)
e6

=− 1
2

e2 + e3 +
1
2

e6 ≈ 218.105.
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Recursive Lagrange Polynomial Approximations

Theorem
Let f be defined at x0, x1, . . . , xk , and let xj and xi be two distinct
numbers in this set.

Then

P(x) =
(x − xj)P0,1,...,j−1,j+1,...,k (x)− (x − xi)P0,1,...,i−1,i+1,...,k (x)

(xi − xj)

is the k th Lagrange polynomial that interpolates f at the k + 1 points
x0, x1, . . . , xk .
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Recursive Lagrange Polynomial Approximations

For ease of notation, let

Q ≡ P0,1,...,i−1,i+1,...,k and Q̂ ≡ P0,1,...,j−1,j+1,...,k

Since Q(x) and Q̂(x) are polynomials of degree k − 1 or less, P(x) is
of degree at most k .

Proof (1/2)

First note that Q̂(xi) = f (xi), implies that

P(xi) =
(xi − xj)Q̂(xi)− (xi − xi)Q(xi)

xi − xj
=

(xi − xj)

(xi − xj)
f (xi) = f (xi).

Similarly, since Q(xj) = f (xj), we have P(xj) = f (xj).
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Recursive Lagrange Polynomial Approximations

Proof (2/2)
In addition, if 0 ≤ r ≤ k and r is neither i nor j , then
Q(xr ) = Q̂(xr ) = f (xr ).

So

P(xr ) =
(xr − xj)Q̂(xr )− (xr − xi)Q(xr )

xi − xj
=

(xi − xj)

(xi − xj)
f (xr ) = f (xr )

But, by definition, P0,1,...,k (x) is the unique polynomial of degree at
most k that agrees with f at x0, x1, . . . , xk . Thus, P ≡ P0,1,...,k .
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Recursive Lagrange Polynomial Approximations

Comment on the Theorem
This result implies that the interpolating polynomials can be
generated recursively.

For example, we have

P0,1 =
1

x1 − x0
[(x − x0)P1 + (x − x1)P0]

P1,2 =
1

x2 − x1
[(x − x1)P2 + (x − x2)P1]

P0,1,2 =
1

x2 − x0
[(x − x0)P1,2 + (x − x2)P0,1]

and so on.
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Neville’s Method: Recursive Generation

The following table illustrates how the interpolating polynomials can be
generated recursively, where each row is completed before the
succeeding rows are begun.

x0 P0
x1 P1 P0,1
x2 P2 P1,2 P0,1,2
x3 P3 P2,3 P1,2,3 P0,1,2,3
x4 P4 P3,4 P2,3,4 P1,2,3,4 P0,1,2,3,4

The procedure that uses the result of the theorem Theorem to
recursively generate interpolating polynomial approximations is called
Neville’s method.
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Neville’s Method: Recursive Generation

Avoiding Cumbersome Notation

The P notation used in the table is cumbersome because of the
number of subscripts used to represent the entries.
Note, however, that as an array is being constructed, only two
subscripts are needed.
Proceeding down the table corresponds to using consecutive
points xi with larger i , and proceeding to the right corresponds to
increasing the degree of the interpolating polynomial.
Since the points appear consecutively in each entry, we need to
describe only a starting point and the number of additional points
used in constructing the approximation.
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Neville’s Method: Recursive Generation

To avoid the multiple subscripts, we let Qi,j(x), for 0 ≤ j ≤ i , denote the
interpolating polynomial of degree j on the (j + 1) numbers
xi−j , xi−j+1, . . . , xi−1, xi ; that is,

Qi,j = Pi−j,i−j+1,...,i−1,i .

Using this notation provides the following Q notation array.

x0 P0 = Q0,0
x1 P1 = Q1,0 P0,1 = Q1,1
x2 P2 = Q2,0 P1,2 = Q2,1 P0,1,2 = Q2,2
x3 P3 = Q3,0 P2,3 = Q3,1 P1,2,3 = Q3,2 P0,1,2,3 = Q3,3
x4 P4 = Q4,0 P3,4 = Q4,1 P2,3,4 = Q4,2 P1,2,3,4 = Q4,3 P0,1,2,3,4 = Q4,4
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Outline

1 Interpolation with access to function values only

2 Introduction to Neville’s Method

3 Applying Neville’s Method to Tabulated Data

4 Applying Neville’s Method to Tabulated Data with 4-digit Rounding
Arithmetic

5 Neville’s Iterated Interpolation Algorithm
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Neville’s Method: Recursive Generation Example

Example: Using the ‘Q’ Notation
Values of various interpolating polynomials at x = 1.5 were obtained in
an earlier example using the following data:

x 1.0 1.3 1.6 1.9 2.2
f (x) 0.7651977 0.6200860 0.4554022 0.2818186 0.1103623

Apply Neville’s method to the data by constructing a recursive table in
the Q-notation array format.
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Neville’s Method: Recursive Generation Example

Solution (1/6)
Let x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2, then
Q0,0 = f (1.0), Q1,0 = f (1.3), Q2,0 = f (1.6), Q3,0 = f (1.9), and
Q4,0 = f (2.2).

These are the five polynomials of degree zero (constants) that
approximate f (1.5), and are the same as data given in the
example table.

Numerical Analysis (Chapter 3) Data Approximation & Neville’s Method R L Burden & J D Faires 28 / 46



Data Approximation Neville’s Method Example 1 Example 2 Neville’s Algorithm

Neville’s Method: Recursive Generation Example

Solution (1/6)
Let x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2, then
Q0,0 = f (1.0), Q1,0 = f (1.3), Q2,0 = f (1.6), Q3,0 = f (1.9), and
Q4,0 = f (2.2).
These are the five polynomials of degree zero (constants) that
approximate f (1.5), and are the same as data given in the
example table.

Numerical Analysis (Chapter 3) Data Approximation & Neville’s Method R L Burden & J D Faires 28 / 46



Data Approximation Neville’s Method Example 1 Example 2 Neville’s Algorithm

Neville’s Method: Recursive Generation Example

Solution (2/6)
Calculating the first-degree approximation Q1,1(1.5) gives

Q1,1(1.5) =
(x − x0)Q1,0 − (x − x1)Q0,0

x1 − x0

=
(1.5− 1.0)Q1,0 − (1.5− 1.3)Q0,0

1.3− 1.0

=
0.5(0.6200860)− 0.2(0.7651977)

0.3
= 0.5233449
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Neville’s Method: Recursive Generation Example

Solution (3/6)
Similarly,

Q2,1(1.5) =
(1.5− 1.3)(0.4554022)− (1.5− 1.6)(0.6200860)

1.6− 1.3
= 0.5102968

Q3,1(1.5) = 0.5132634 and Q4,1(1.5) = 0.5104270

The best linear approximation is expected to be Q2,1 because 1.5 is
between x1 = 1.3 and x2 = 1.6.
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Neville’s Method: Recursive Generation Example

Solution (4/6)
In a similar manner, approximations using higher-degree polynomials
are given by

Q2,2(1.5) =
(1.5− 1.0)(0.5102968)− (1.5− 1.6)(0.5233449)

1.6− 1.0
= 0.5124715

Q3,2(1.5) = 0.5112857

Q4,2(1.5) = 0.5137361
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Neville’s Method: Recursive Generation Example

The higher-degree approximations are generated in a similar manner
and are shown in the following table.

Solution (5/6)

1.0 0.7651977
1.3 0.6200860 0.5233449
1.6 0.4554022 0.5102968 0.5124715
1.9 0.2818186 0.5132634 0.5112857 0.5118127
2.2 0.1103623 0.5104270 0.5137361 0.5118302 0.5118200

Numerical Analysis (Chapter 3) Data Approximation & Neville’s Method R L Burden & J D Faires 32 / 46



Data Approximation Neville’s Method Example 1 Example 2 Neville’s Algorithm

Neville’s Method: Recursive Generation Example

Solution (6/6)
If the latest approximation, Q4,4, was not sufficiently accurate,
another node, x5, could be selected, and another row added:

x5 Q5,0 Q5,1 Q5,2 Q5,3 Q5,4 Q5,5.

Then Q4,4, Q5,4, and Q5,5 could be compared to determine further
accuracy.
The function in this example is the Bessel function of the first kind
of order zero, whose value at 2.5 is −0.0483838, and the next row
of approximations to f (1.5) is

2.5 −0.0483838 0.4807699 0.5301984 0.5119070 0.5118430 · · ·

The final new entry, 0.5118277, is correct to all 7 decimal places.
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Outline

1 Interpolation with access to function values only

2 Introduction to Neville’s Method

3 Applying Neville’s Method to Tabulated Data

4 Applying Neville’s Method to Tabulated Data with 4-digit Rounding
Arithmetic

5 Neville’s Iterated Interpolation Algorithm
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Neville’s Method: 4-Digit Rounding Arithmetic

Example: 4-Digit Values of ln x
The following table lists the values of f (x) = ln x accurate to the places
given.

i xi ln xi

0 2.0 0.6931
1 2.2 0.7885
2 2.3 0.8329

Use Neville’s method and 4-digit rounding arithmetic to approximate
f (2.1) = ln 2.1 by completing the Neville table.
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Neville’s Method: 4-Digit Rounding Arithmetic

Solution (1/2)
Because x − x0 = 0.1, x − x1 = −0.1, x − x2 = −0.2, and we are given
Q0,0 = 0.6931, Q1,0 = 0.7885, and Q2,0 = 0.8329, we have

Q1,1 =
1

0.2
[(0.1)0.7885− (−0.1)0.6931] =

0.1482
0.2

= 0.7410

and

Q2,1 =
1

0.1
[(−0.1)0.8329− (−0.2)0.7885] =

0.07441
0.1

= 0.7441.

The final approximation we can obtain from this data is

Q2,1 =
1

0.3
[(0.1)0.7441− (−0.2)0.7410] =

0.2276
0.3

= 0.7420.
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Neville’s Method: 4-Digit Rounding Arithmetic

Solution (2/2)
The calculations are summarized in the following table:

i xi x − xi Qi0 Qi1 Qi2

0 2.0 0.1 0.6931
1 2.2 −0.1 0.7885 0.7410
2 2.3 −0.2 0.8329 0.7441 0.7420
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Accuracy of 4-Digit Approximations

Absolute Error versus Error Bound (1/2)
In the preceding example, we have f (2.1) = ln 2.1 = 0.7419 to four
decimal places, so the absolute error is

|f (2.1)− P2(2.1)| = |0.7419− 0.7420| = 10−4

However, f ′(x) = 1/x , f ′′(x) = −1/x2, and f ′′′(x) = 2/x3, so the
Lagrange error formula Theorem gives the error bound

|f (2.1)− P2(2.1)| =

∣∣∣∣ f ′′′(ξ(2.1))

3!
(x − x0)(x − x1)(x − x2)

∣∣∣∣
=

∣∣∣∣∣ 1

3 (ξ(2.1))3 (0.1)(−0.1)(−0.2)

∣∣∣∣∣
≤ 0.002

3(2)3 = 8.3× 10−5
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Data Approximation Neville’s Method Example 1 Example 2 Neville’s Algorithm

Accuracy of 4-Digit Approximations

Absolute Error versus Error Bound
Notice that the actual error, 10−4, exceeds the error bound,
8.3× 10−5.

This apparent contradiction is a consequence of finite-digit
computations.
We used four-digit rounding arithmetic, whereas the Lagrange
error formula assumes infinite-digit arithmetic.
This caused our actual errors to exceed the theoretical error
estimate.
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Neville’s Iterated Interpolation Algorithm

To evaluate the interpolating polynomial P on the n + 1 distinct
numbers x0, . . . , xn at the number x for the function f :

INPUT numbers x , x0, x1, . . . , xn; values f (x0), f (x1), . . . , f (xn) as
the first column Q0,0, Q1,0, . . . , Qn,0 of Q

OUTPUT the table Q with P(x) = Qn,n
Step 1 For i = 1, 2, . . . , n

for j = 1, 2, . . . , i

set Qi,j =
(x − xi−j)Qi,j−1 − (x − xi)Qi−1,j−1

xi − xi−j
Step 2 OUTPUT (Q)

STOP
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Neville’s Iterated Interpolation Algorithm

Additional Nodes & Stopping Criteria
The algorithm can be modified to allow for the addition of new
interpolating nodes. For example, the inequality∣∣Qi,i −Qi−1,i−1

∣∣ < ε

can be used as a stopping criterion, where ε is a prescribed error
tolerance.

If the inequality is true, Qi,i is a reasonable approximation to f (x).

If the inequality is false, a new interpolation point, xi+1, is added.
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Questions?



Reference Material



The Lagrange Polynomial: Theoretical Error Bound

Suppose x0, x1, . . . , xn are distinct numbers in the interval [a, b] and
f ∈ Cn+1[a, b]. Then, for each x in [a, b], a number ξ(x) (generally
unknown) between x0, x1, . . . , xn, and hence in (a, b), exists with

f (x) = P(x) +
f (n+1)(ξ(x))

(n + 1)!
(x − x0)(x − x1) · · · (x − xn)

where P(x) is the interpolating polynomial given by

P(x) = f (x0)Ln,0(x) + · · ·+ f (xn)Ln,n(x) =
n∑

k=0

f (xk )Ln,k (x)

Return to Data Approximation Example

Return to Error Calculations for Tabulated Data Example



Recursive Lagrange Polynomial Approximations

Theorem
Let f be defined at x0, x1, . . . , xk , and let xj and xi be two distinct
numbers in this set. Then

P(x) =
(x − xj)P0,1,...,j−1,j+1,...,k (x)− (x − xi)P0,1,...,i−1,i+1,...,k (x)

(xi − xj)

is the k th Lagrange polynomial that interpolates f at the k + 1 points
x0, x1, . . . , xk .

Return to Neville’s Method
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