Interpolation & Polynomial Approximation

Hermite Interpolation II

Numerical Analysis (9th Edition) R L Burden & J D Faires

> Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

< 17 ▶

2 Example: Computing $H_5(1.5)$ Using Divided Differences

2 Example: Computing $H_5(1.5)$ Using Divided Differences

4 A N

→ ∃ →

Outline

Hermite Polynomials Using Divided Differences

2 Example: Computing *H*₅(1.5) Using Divided Differences

3 The Hermite Interpolation Algorithm

Introduction

There is an alternative method for generating Hermite approximations that has as its basis the Newton interpolatory divided-difference formula at x_0, x_1, \ldots, x_n , that is,

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0) \cdots (x - x_{k-1})$$

Numerical Analysis (Chapter 3)

< ロ > < 同 > < 回 > < 回 >

Introduction

There is an alternative method for generating Hermite approximations that has as its basis the Newton interpolatory divided-difference formula at x_0, x_1, \ldots, x_n , that is,

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0) \cdots (x - x_{k-1}).$$

The alternative method uses the connection between the *n*th divided difference and the *n*th derivative of f. • See Theorem

Numerical Analysis (Chapter 3)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Construction

Suppose that the distinct numbers x₀, x₁,..., x_n are given together with the values of f and f' at these numbers. Define a new sequence z₀, z₁,..., z_{2n+1} by

$$z_{2i} = z_{2i+1} = x_i$$
, for each $i = 0, 1, \dots, n$,

and construct the divided difference table • See Original Table in a form that uses $z_0, z_1, \ldots, z_{2n+1}$.

イロト イ押ト イヨト イヨト

Construction

Suppose that the distinct numbers x₀, x₁,..., x_n are given together with the values of f and f' at these numbers. Define a new sequence z₀, z₁,..., z_{2n+1} by

$$z_{2i} = z_{2i+1} = x_i$$
, for each $i = 0, 1, \dots, n$,

and construct the divided difference table \bullet See Original Table in a form that uses $z_0, z_1, \ldots, z_{2n+1}$.

• Since $z_{2i} = z_{2i+1} = x_i$ for each *i*, we cannot define $f[z_{2i}, z_{2i+1}]$ by the divided difference formula. However, we will assume, based on the divided-difference theorem • See Theorem that the reasonable substitution in this situation is $f[z_{2i}, z_{2i+1}] = f'(z_{2i}) = f'(x_i)$.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Construction (Cont'd)

• Under this assumption, we can use the entries

$$f'(x_0), f'(x_1), \ldots, f'(x_n)$$

in place of the undefined first divided differences

$$f[z_0, z_1], f[z_2, z_3], \dots, f[z_{2n}, z_{2n+1}]$$

Construction (Cont'd)

• Under this assumption, we can use the entries

$$f'(x_0), f'(x_1), \ldots, f'(x_n)$$

in place of the undefined first divided differences

$$f[z_0, z_1], f[z_2, z_3], \ldots, f[z_{2n}, z_{2n+1}]$$

• The remaining divided differences are produced as usual, and the appropriate divided differences are employed in Newton's interpolatory divided-difference formula.

Construction (Cont'd)

• Under this assumption, we can use the entries

$$f'(x_0), f'(x_1), \ldots, f'(x_n)$$

in place of the undefined first divided differences

$$f[z_0, z_1], f[z_2, z_3], \ldots, f[z_{2n}, z_{2n+1}]$$

- The remaining divided differences are produced as usual, and the appropriate divided differences are employed in Newton's interpolatory divided-difference formula.
- The following table shows the entries that are used for the first three divided-difference columns when determining the Hermite polynomial H₅(x) for x₀, x₁, and x₂.

		First divided	Second divided
		r iist uivided	Second divided
z	f(z)	differences	differences
$z_0 = x_0$	$f[z_0] = f(x_0)$		
		$f[z_0, z_1] = f'(x_0)$	f[] f[]
$z_1 = x_0$	$f[z_1] = f(x_0)$		$f[z_0, z_1, z_2] = \frac{f[z_1, z_2] - f[z_0, z_1]}{z_0 - z_0}$
		$f[z_1, z_2] = \frac{f[z_2] - f[z_1]}{z_2 - z_1}$	$z_2 - z_0$
$z_2 = x_1$	$f[z_2] = f(x_1)$	~2 ~1	$f[z_1, z_2, z_3] = \frac{f[z_2, z_3] - f[z_1, z_2]}{z_2 - z_1}$
		$f[z_2, z_3] = f'(x_1)$	$f[z_2, z_4] - f[z_2, z_3]$
$z_3 = x_1$	$f[z_3] = f(x_1)$		$f[z_2, z_3, z_4] = \frac{f[z_3, z_4] - f[z_2, z_3]}{z_4 - z_2}$
		$f[z_3, z_4] = \frac{f[z_4] - f[z_3]}{z_4 - z_3}$	
$z_4 = x_2$	$f[z_4] = f(x_2)$		$f[z_3, z_4, z_5] = \frac{f[z_4, z_5] - f[z_3, z_4]}{z_5 - z_3}$
	f[] f()	$f[z_4, z_5] = f'(x_2)$	0 0
$z_5 = x_2$	$J[z_5] = J(x_2)$		

Numerical Analysis (Chapter 3)

The remaining entries are generated in the same manner as that for the Newton's divided difference table.

★ ∃ >

The remaining entries are generated in the same manner as that for the Newton's divided difference table.

Hermite Polynomial: Divided-Difference Form

The Hermite polynomial is then given by

$$H_{2n+1}(x) = f[z_0] + \sum_{k=1}^{2n+1} f[z_0, \dots, z_k](x-z_0)(x-z_1) \cdots (x-z_{k-1})$$

A proof of this fact can be found in [Pow], p. 56.

Outline

Hermite Polynomials Using Divided Differences

2 Example: Computing $H_5(1.5)$ Using Divided Differences

Example: Computing $H_5(1.5)$ Using Divided Differences

Use the divided difference method to construct the Hermite polynomial that agrees with the data listed in the following table to find an approximation to f(1.5).

k	X _k	$f(x_k)$	$f'(x_k)$
0	1.3	0.6200860	-0.5220232
1	1.6	0.4554022	-0.5698959
2	1.9	0.2818186	-0.5811571

Example: Computing $H_5(1.5)$ Using Divided Differences

Use the divided difference method to construct the Hermite polynomial that agrees with the data listed in the following table to find an approximation to f(1.5).

k	X _k	$f(x_k)$	$f'(x_k)$
0	1.3	0.6200860	-0.5220232
1	1.6	0.4554022	-0.5698959
2	1.9	0.2818186	-0.5811571

Note: The underlined entries in the first three columns of the following table are the data given from the earlier example. The remaining entries are generated by the standard divided-difference formula.

Numerical Analysis (Chapter 3)

Hermite Interpolation II

10/22

Solution (1/3)
------------	------

1.3	0.6200860					
		-0.5220232				
1.3	0.6200860		-0.0897427			
		-0.5489460		0.0663657		
1.6	0.4554022		-0.0698330		0.0026663	
		-0.5698959		0.0679655		-0.0027738
1.6	0.4554022		-0.0290537		0.0010020	
		-0.5786120		0.0685667		
1.9	0.2818186		-0.0084837			
		-0.5811571				
1.9	0.2818186					

Solution (2/3)

For example, for the second entry in the third column we use the second 1.3 entry in the second column and the first 1.6 entry in that column to obtain

 $\frac{0.4554022 - 0.6200860}{1.6 - 1.3} = -0.5489460.$

Solution (2/3)

For example, for the second entry in the third column we use the second 1.3 entry in the second column and the first 1.6 entry in that column to obtain

$$\frac{0.4554022 - 0.6200860}{1.6 - 1.3} = -0.5489460.$$

For the first entry in the fourth column we use the first 1.3 entry in the third column and the first 1.6 entry in that column to obtain

$$\frac{-0.5489460 - (-0.5220232)}{1.6 - 1.3} = -0.0897427.$$

< ロ > < 同 > < 回 > < 回 >

Solution (3/3)

The value of the Hermite polynomial at 1.5 is

$$= f[1.3] + f'(1.3)(1.5 - 1.3) + f[1.3, 1.3, 1.6](1.5 - 1.3)^2$$

 $+ f[1.3, 1.3, 1.6, 1.6](1.5 - 1.3)^2(1.5 - 1.6)$

 $+ f[1.3, 1.3, 1.6, 1.6, 1.9](1.5 - 1.3)^2(1.5 - 1.6)^2$

$$+ f[1.3, 1.3, 1.6, 1.6, 1.9, 1.9](1.5 - 1.3)^2(1.5 - 1.6)^2(1.5 - 1.9)$$

$$= 0.6200860 + (-0.5220232)(0.2) + (-0.0897427)(0.2)^2$$

 $+\, 0.0663657(0.2)^2(-0.1) + 0.0026663(0.2)^2(-0.1)^2$

 $+ (-0.0027738)(0.2)^2(-0.1)^2(-0.4)$

= 0.5118277

Outline

2 Example: Computing $H_5(1.5)$ Using Divided Differences

3 The Hermite Interpolation Algorithm

The Hermite Interpolation Algorithm (1/2)

To obtain the coefficients of the Hermite interpolating polynomial H(x) on the (n + 1) distinct numbers x_0, \ldots, x_n for the function f:

The Hermite Interpolation Algorithm (1/2)

To obtain the coefficients of the Hermite interpolating polynomial H(x) on the (n + 1) distinct numbers x_0, \ldots, x_n for the function f:

INPUT numbers x_0, x_1, \ldots, x_n ; values $f(x_0), \ldots, f(x_n)$ and $f'(x_0), \ldots, f'(x_n)$

The Hermite Interpolation Algorithm (1/2)

To obtain the coefficients of the Hermite interpolating polynomial H(x) on the (n + 1) distinct numbers x_0, \ldots, x_n for the function f:

INPUT numbers
$$x_0, x_1, \ldots, x_n$$
; values $f(x_0), \ldots, f(x_n)$ and $f'(x_0), \ldots, f'(x_n)$

OUTPUT the numbers $Q_{0,0}, Q_{1,1}, \dots, Q_{2n+1,2n+1}$ where $H(x) = Q_{0,0} + Q_{1,1}(x - x_0) + Q_{2,2}(x - x_0)^2 + Q_{3,3}(x - x_0)^2(x - x_1) + Q_{4,4}(x - x_0)^2(x - x_1)^2 + \cdots + Q_{2n+1,2n+1}(x - x_0)^2(x - x_1)^2 \cdots (x - x_{n-1})^2(x - x_n)$

Numerical Analysis (Chapter 3)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Hermite Interpolation Algorithm (2/2)

Numerical Analysis (Chapter 3)

Questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Reference Material

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorem

- Suppose that $f \in C^n[a, b]$ and x_0, x_1, \ldots, x_n are distinct numbers in [a, b].
- Then a number ξ exists in (a, b) with

$$f[x_0, x_1, \ldots, x_n] = \frac{f^{(n)}(\xi)}{n!}$$

See Prrof

- ▶ Return to Hermite Polynomials & Divided Differences Introduction
- ▶ Return to Hermite Polynomials & Divided Differences Construction

Let $g(x) = f(x) - P_n(x)$. Since $f(x_i) = P_n(x_i)$ for each i = 0, 1, ..., n, the function g has n + 1 distinct zeros in [a, b]. The Generalized Rolle's Theorem Theorem implies that a number ξ in (a, b) exists with $g^{(n)}(\xi) = 0$, so

$$0 = f^{(n)}(\xi) - P_n^{(n)}(\xi).$$

Since $P_n(x)$ is a polynomial of degree *n* whose leading coefficient is $f[x_0, x_1, \ldots, x_n]$,

$$\boldsymbol{P}_n^{(n)}(\boldsymbol{x}) = n! f[\boldsymbol{x}_0, \boldsymbol{x}_1, \dots, \boldsymbol{x}_n],$$

for all values of x. As a consequence,

$$f[x_0, x_1, \ldots, x_n] = \frac{f^{(n)}(\xi)}{n!}.$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Return to Theorem Statement

Suppose $f \in C[a, b]$ is *n* times differentiable on (a, b). If

f(x)=0

at the n + 1 distinct numbers $a \le x_0 < x_1 < \ldots < x_n \le b$, then a number c in (x_0, x_n) , and hence in (a, b), exists with

 $f^{(n)}(c)=0$

Return to Dividede Difference Proof

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Generating the Divided Difference Table

		First	Second	Third
x	f(x)	divided differences	divided differences	divided differences
x_0	$f[x_0]$			
	ef 1	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	$f[x_1, x_2] - f[x_0, x_1]$	
x_1	$f[x_1]$	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_0, x_1, x_2] = \frac{x_1 + x_2 + x_3}{x_2 - x_0}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_2 - x_0}$
x_2	$f[x_2]$	$f[x_3] - f[x_2]$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	$f[x_1, x_2, x_3, x_4] - f[x_1, x_2, x_3]$
x_3	$f[x_3]$	$f[x_2, x_3] = \frac{1}{x_3 - x_2}$	$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2}$	$f[x_1, x_2, x_3, x_4] = \frac{x_4 - x_1}{x_4 - x_1}$
x_4	$f[x_4]$	$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3}$	$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{f[x_5] - f[x_5] - f[x_5]}$	$f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4]}{x_5 - x_2}$
<i>m</i> -	f[m-]	$f[x_4, x_5] = \frac{f[x_5] - f[x_4]}{x_5 - x_4}$	$x_5 - x_3$	
x_5	$f[x_5]$			

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Return to Hermite Polynomials II