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Piecewise-Polynomials Spline Conditions Spline Construction

Piecewise-Polynomial Approximation

Piecewise-linear interpolation
This is the simplest piecewise-polynomial approximation and which
consists of joining a set of data points

{(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn))}

by a series of straight lines:

y 5 f (x)

x0 x1 x2 xj xj11 xj12 xn21 xn. . . . . .

y

x
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Piecewise-Polynomials Spline Conditions Spline Construction

Piecewise-Polynomial Approximation

Disadvantage of piecewise-linear interpolation

There is likely no differentiability at the endpoints of the
subintervals, which, in a geometrical context, means that the
interpolating function is not “smooth.”
Often it is clear from physical conditions that smoothness is
required, so the approximating function must be continuously
differentiable.
We will next consider approximation using piecewise polynomials
that require no specific derivative information, except perhaps at
the endpoints of the interval on which the function is being
approximated.
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Piecewise-Polynomials Spline Conditions Spline Construction

Piecewise-Polynomial Approximation

Differentiable piecewise-polynomial function

The simplest type of differentiable piecewise-polynomial function
on an entire interval [x0, xn] is the function obtained by fitting one
quadratic polynomial between each successive pair of nodes.
This is done by constructing a quadratic on

[x0, x1] agreeing with the function at x0 and x1,

and another quadratic on

[x1, x2] agreeing with the function at x1 and x2,

and so on.
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Piecewise-Polynomials Spline Conditions Spline Construction

Piecewise-Polynomial Approximation

Differentiable piecewise-polynomial function (Cont’d)
A general quadratic polynomial has 3 arbitrary constants—the
constant term, the coefficient of x , and the coefficient of x2—and
only 2 conditions are required to fit the data at the endpoints of
each subinterval.

So flexibility exists that permits the quadratics to be chosen so
that the interpolant has a continuous derivative on [x0, xn].
The difficulty arises because we generally need to specify
conditions about the derivative of the interpolant at the endpoints
x0 and xn.
There is an insufficient number of constants to ensure that the
conditions will be satisfied.
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Cubic Splines: Establishing Conditions

Most common piecewise-polynomial approximation
The most common piecewise-polynomial approximation uses
cubic polynomials between each successive pair of nodes and is
called cubic spline interpolation. Meaning of Spline

A general cubic polynomial involves 4 constants, so there is
sufficient flexibility in the cubic spline procedure to ensure that the
interpolant is not only continuously differentiable on the interval,
but also has a continuous second derivative.
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Piecewise-Polynomials Spline Conditions Spline Construction

Cubic Splines: Establishing Conditions

The construction of the cubic spline does not, however, assume that
the derivatives of the interpolant agree with those of the function it is
approximating, even at the nodes.

x0 x1 x2 xj xj11 xj12 xn21 xn. . . . . .

S(x)

xxn22

S0

S1
Sj

Sj11

Sn21

Sn22

Sj(xj11) 5 f (xj11) 5 Sj11(xj11)

Sj(xj11) 5 Sj11(xj11)9 9

0Sj (xj11) 5 Sj11(xj11)0
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Piecewise-Polynomials Spline Conditions Spline Construction

Cubic Spline Interpolant

Definition
Given a function f defined on [a, b] and a set of nodes
a = x0 < x1 < · · · < xn = b, a cubic spline interpolant S for f is a
function that satisfies the following conditions:

(a) S(x) is a cubic polynomial, denoted Sj(x), on the subinterval
[xj , xj+1] for each j = 0, 1, . . . , n − 1;

(b) Sj(xj) = f (xj) and Sj(xj+1) = f (xj+1) for each j = 0, 1, . . . , n − 1;
(c) Sj+1(xj+1) = Sj(xj+1) for each j = 0, 1, . . . , n − 2; (Implied by (b).)
(d) S′

j+1(xj+1) = S′
j (xj+1) for each j = 0, 1, . . . , n − 2;

(e) S′′
j+1(xj+1) = S′′

j (xj+1) for each j = 0, 1, . . . , n − 2;

(f) One of the following sets of boundary conditions is satisfied:
(i) S′′(x0) = S′′(xn) = 0 (natural (or free) boundary);
(ii) S′(x0) = f ′(x0) and S′(xn) = f ′(xn) (clamped boundary).
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Cubic Splines: Natural & Clamped Conditions

Natural & Clamped Boundary Conditions

Although cubic splines are defined with other boundary conditions,
the conditions given in (f) are sufficient for our purposes.
When the free boundary conditions occur, the spline is called a
natural spline, and its graph approximates the shape that a long
flexible rod would assume if forced to go through the data points
{(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn))}. See Natural Spline

In general, clamped boundary conditions lead to more accurate
approximations because they include more information about the
function.
However, for this type of boundary condition to hold, it is
necessary to have either the values of the derivative at the
endpoints or an accurate approximation to those values.
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Piecewise-Polynomials Spline Conditions Spline Construction

Cubic Splines: Establishing Conditions

Example: 3 Data Values
Construct a natural cubic spline that passes through the points (1, 2),
(2, 3), and (3, 5).

Solution (1/4)
This spline consists of two cubics: the first for the interval [1, 2],
denoted

S0(x) = a0 + b0(x − 1) + c0(x − 1)2 + d0(x − 1)3,

and the other for [2, 3], denoted

S1(x) = a1 + b1(x − 2) + c1(x − 2)2 + d1(x − 2)3.

Numerical Analysis (Chapter 3) Cubic Spline Interpolation I R L Burden & J D Faires 13 / 31
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Piecewise-Polynomials Spline Conditions Spline Construction

Cubic Splines: Example with 3 Data Values

Solution (2/4)
There are 8 constants to be determined, which requires 8 conditions.

4
conditions come from the fact that the splines must agree with the data
at the nodes. Hence

2 = f (1) = a0, 3 = f (2) = a0 + b0 + c0 + d0, 3 = f (2) = a1

and 5 = f (3) = a1 + b1 + c1 + d1

2 more come from the fact that S′
0(2) = S′

1(2) and S′′
0(2) = S′′

1(2).
These are

S′
0(2) = S′

1(2) : b0 + 2c0 + 3d0 = b1

and S′′
0(2) = S′′

1(2) : 2c0 + 6d0 = 2c1
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Cubic Splines: Example with 3 Data Values

(1) 2 = a0 (2) 3 = a0 + b0 + c0 + d0
(3) 3 = a1 (4) 5 = a1 + b1 + c1 + d1
(5) b0 + 2c0 + 3d0 = b1 (6) 2c0 + 6d0 = 2c1

Solution (3/4)
The final 2 come from the natural boundary conditions:

S′′
0(1) = 0 : 2c0 = 0 and S′′

1(3) = 0 : 2c1 + 6d1 = 0.
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(5) b0 + 2c0 + 3d0 = b1 (6) 2c0 + 6d0 = 2c1
(7) 2c0 = 0 (8) 2c1 + 6d1 = 0

Solution (4/4)
Solving this system of equations gives the spline

S(x) =

{
2 + 3

4(x − 1) + 1
4(x − 1)3, for x ∈ [1, 2]

3 + 3
2(x − 2) + 3

4(x − 2)2 − 1
4(x − 2)3, for x ∈ [2, 3]
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Piecewise-Polynomials Spline Conditions Spline Construction

Basic Approach

A spline defined on an interval that is divided into n subintervals
will require determining 4n constants.
To construct the cubic spline interpolant for a given function f , the
conditions in the Definition are applied to the cubic polynomials

Sj(x) = aj + bj(x − xj) + cj(x − xj)
2 + dj(x − xj)

3

for each j = 0, 1, . . . , n − 1. Since Sj(xj) = aj = f (xj), condition (c),
namely Sj+1(xj+1) = Sj(xj+1), can be applied to obtain

aj+1 = Sj+1(xj+1) = Sj(xj+1)

= aj + bj(xj+1 − xj) + cj(xj+1 − xj)
2 + dj(xj+1 − xj)

3

for each j = 0, 1, . . . , n − 2.
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Piecewise-Polynomials Spline Conditions Spline Construction

Cubic Splines: Construction

aj+1 = aj + bj(xj+1 − xj) + cj(xj+1 − xj)
2 + dj(xj+1 − xj)

3

Basic Approach (Cont’d)

The terms xj+1 − xj are used repeatedly in this development, so it is
convenient to introduce the simpler notation

hj = xj+1 − xj ,

for each j = 0, 1, . . . , n − 1. If we also define an = f (xn), then the
equation

aj+1 = aj + bjhj + cjh2
j + djh3

j

holds for each j = 0, 1, . . . , n − 1.
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Cubic Splines: Construction

aj+1 = aj + bjhj + cjh2
j + djh3

j

Basic Approach (Cont’d)

In a similar manner, define bn = S′(xn) and observe that

S′
j (x) = bj + 2cj(x − xj) + 3dj(x − xj)

2

implies S′
j (xj) = bj , for each j = 0, 1, . . . , n − 1. Applying condition (d),

namely S′
j+1(xj+1) = S′

j (xj+1), gives

bj+1 = bj + 2cjhj + 3djh2
j

for each j = 0, 1, . . . , n − 1.
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Cubic Splines: Construction

aj+1 = aj + bjhj + cjh2
j + djh3

j

bj+1 = bj + 2cjhj + 3djh2
j

Basic Approach (Cont’d)

Another relationship between the coefficients of Sj is obtained by
defining cn = S′′(xn)/2 and applying condition (e), namely
S′′

j+1(xj+1) = S′′
j (xj+1). Then, for each j = 0, 1, . . . , n − 1,

cj+1 = cj + 3djhj
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Piecewise-Polynomials Spline Conditions Spline Construction

Cubic Splines: Construction

aj+1 = aj + bjhj + cjh2
j + djh3

j

bj+1 = bj + 2cjhj + 3djh2
j

cj+1 = cj + 3djhj

Basic Approach (Cont’d)

Solving for dj in the third equation and substituting this value into the
other two gives, for each j = 0, 1, . . . , n − 1, the new equations

aj+1 = aj + bjhj +
h2

j

3
(2cj + cj+1)

bj+1 = bj + hj(cj + cj+1)
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Piecewise-Polynomials Spline Conditions Spline Construction

Cubic Splines: Construction

aj+1 = aj + bjhj +
1
3

h2
j (2cj + cj+1)

bj+1 = bj + hj(cj + cj+1)

Basic Approach (Cont’d)

The final relationship involving the coefficients is obtained by solving
the appropriate equation in the form of the equation for aj+1 above, first
for bj :

bj =
1
hj

(aj+1 − aj)−
hj

3
(2cj + cj+1)

and then, with a reduction of the index, for bj−1:

bj−1 =
1

hj−1
(aj − aj−1)−

hj−1

3
(2cj−1 + cj)
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Cubic Splines: Construction

bj =
1
hj

(aj+1 − aj)−
hj

3
(2cj + cj+1)

bj−1 =
1

hj−1
(aj − aj−1)−

hj−1

3
(2cj−1 + cj)

Basic Approach (Cont’d)

Substituting these values into the equation derived from

bj+1 = bj + hj(cj + cj+1)

with the index reduced by one, gives the linear system of equations

hj−1cj−1 + 2(hj−1 + hj)cj + hjcj+1 =
3
hj

(aj+1 − aj)−
3

hj−1
(aj − aj−1)

for each j = 1, 2, . . . , n − 1.
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Piecewise-Polynomials Spline Conditions Spline Construction

Cubic Splines: Construction

hj−1cj−1 + 2(hj−1 + hj)cj + hjcj+1 =
3
hj

(aj+1 − aj)−
3

hj−1
(aj − aj−1)

Basic Approach (Cont’d)

This system involves only the {cj}n
j=0 as unknowns.

The values of {hj}n−1
j=0 and {aj}n

j=0 are given, respectively, by the
spacing of the nodes {xj}n

j=0 and the values of f at the nodes.
So once the values of {cj}n

j=0 are determined, it is a simple matter
to find the remainder of the constants
{bj}n−1

j=0 from bj =
1
hj

(aj+1 − aj)−
hj

3
(2cj + cj+1) and

{dj}n−1
j=0 from cj+1 = cj + 3djhj

Then we can construct the cubic polynomials {Sj(x)}n−1
j=0 .
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So once the values of {cj}n

j=0 are determined, it is a simple matter
to find the remainder of the constants
{bj}n−1

j=0 from bj =
1
hj

(aj+1 − aj)−
hj

3
(2cj + cj+1) and

{dj}n−1
j=0 from cj+1 = cj + 3djhj

Then we can construct the cubic polynomials {Sj(x)}n−1
j=0 .
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hj−1cj−1 + 2(hj−1 + hj)cj + hjcj+1 =
3
hj

(aj+1 − aj)−
3

hj−1
(aj − aj−1)

Major Question

The major question that arises in connection with this construction
is whether the values of {cj}n

j=0 can be found using the system of
equations given above and, if so, whether these values are unique.
We will answer this question using theorems which indicate that
this is the case when either of the boundary conditions given in
part (f) of the Definition are imposed.
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Questions?



Reference Material



Spline
The root of the word “spline” is the same as that of splint.
It was originally a small strip of wood that could be used to join
two boards.
Later, the word was use to refer to a long flexible strip, generally of
metal, that could be used to draw continuous smooth curves by
forcing the strip to pass through specified points and tracing along
the curve.

Return to Cubic Spline Conditions



Natural Spline
A natural spline has no conditions imposed for the direction at its
endpoints, so the curve takes the shape of a straight line after it
passes through the interpolation points nearest its endpoints.

The name derives from the fact that this is the natural shape a
flexible strip assumes if forced to pass through specified
interpolation points with no additional constraints.

Return to Natural & Clamped Boundary Conditions



Cubic Spline Interpolant

Definition
Given a function f defined on [a, b] and a set of nodes
a = x0 < x1 < · · · < xn = b, a cubic spline interpolant S for f is a
function that satisfies the following conditions:

(a) S(x) is a cubic polynomial, denoted Sj(x), on the subinterval
[xj , xj+1] for each j = 0, 1, . . . , n − 1;

(b) Sj(xj) = f (xj) and Sj(xj+1) = f (xj+1) for each j = 0, 1, . . . , n − 1;
(c) Sj+1(xj+1) = Sj(xj+1) for each j = 0, 1, . . . , n − 2; (Implied by (b).)
(d) S′

j+1(xj+1) = S′
j (xj+1) for each j = 0, 1, . . . , n − 2;

(e) S′′
j+1(xj+1) = S′′

j (xj+1) for each j = 0, 1, . . . , n − 2;

(f) One of the following sets of boundary conditions is satisfied:
(i) S′′(x0) = S′′(xn) = 0 (natural (or free) boundary);
(ii) S′(x0) = f ′(x0) and S′(xn) = f ′(xn) (clamped boundary).

Return to Cubic Spline Construction: Basic Approach

Return to Cubic Spline Construction: Major Question
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