Numerical Differentiation & Integration

Numerical Differentiation III

Numerical Analysis (9th Edition) R L Burden & J D Faires

> Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

(日) (四) (분) (분) (분) 분

・ 同 ト ・ ヨ ト ・ ヨ

A ►

→ ∃ → < ∃</p>

< 🗇 🕨

Concept of Total Error

→ ∃ → < ∃</p>

4 A N

Concept of Total Error

 It is particularly important to pay attention to round-off error when approximating derivatives.

→ ∃ → < ∃</p>

- T

Concept of Total Error

- It is particularly important to pay attention to round-off error when approximating derivatives.
- To illustrate the situation, let us examine the three-point midpoint formula:

$$f'(x_0) = \frac{1}{2h}[f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6}f^{(3)}(\xi_1),$$

more closely.

→ B → < B</p>

4 A N

Concept of Total Error

- It is particularly important to pay attention to round-off error when approximating derivatives.
- To illustrate the situation, let us examine the three-point midpoint formula:

$$f'(x_0) = \frac{1}{2h}[f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6}f^{(3)}(\xi_1),$$

more closely.

Suppose that in evaluating *f*(*x*₀ + *h*) and *f*(*x*₀ − *h*) we encounter round-off errors *e*(*x*₀ + *h*) and *e*(*x*₀ − *h*).

イロン イロン イヨン イヨン

$$f'(x_0) = \frac{1}{2h}[f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6}f^{(3)}(\xi_1)$$

Concept of Total Error (Cont'd)

• Then our computations actually use the values $\tilde{f}(x_0 + h)$ and $\tilde{f}(x_0 - h)$,

$$f'(x_0) = \frac{1}{2h}[f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6}f^{(3)}(\xi_1)$$

Concept of Total Error (Cont'd)

• Then our computations actually use the values $\tilde{f}(x_0 + h)$ and $\tilde{f}(x_0 - h)$, which are related to the true values $f(x_0 + h)$ and $f(x_0 - h)$ by

$$f(x_0+h) = \tilde{f}(x_0+h) + e(x_0+h)$$
 and $f(x_0-h) = \tilde{f}(x_0-h) + e(x_0-h)$

$$f'(x_0) = \frac{1}{2h}[f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6}f^{(3)}(\xi_1)$$

Concept of Total Error (Cont'd)

• Then our computations actually use the values $\tilde{f}(x_0 + h)$ and $\tilde{f}(x_0 - h)$, which are related to the true values $f(x_0 + h)$ and $f(x_0 - h)$ by

$$f(x_0+h) = \tilde{f}(x_0+h) + e(x_0+h)$$
 and $f(x_0-h) = \tilde{f}(x_0-h) + e(x_0-h)$

The total error in the approximation,

$$f'(x_0) - \frac{\tilde{f}(x_0+h) - \tilde{f}(x_0-h)}{2h} = \frac{e(x_0+h) - e(x_0-h)}{2h} - \frac{h^2}{6}f^{(3)}(\xi_1)$$

is due both to round-off error, the first part, and to truncation error.

$$f'(x_0) - \frac{\tilde{f}(x_0+h) - \tilde{f}(x_0-h)}{2h} = \frac{e(x_0+h) - e(x_0-h)}{2h} - \frac{h^2}{6}f^{(3)}(\xi_1)$$

Concept of Total Error (Cont'd)

If we assume that the round-off errors $e(x_0 \pm h)$ are bounded by some number $\varepsilon > 0$

.

4 A N

$$f'(x_0) - \frac{\tilde{f}(x_0+h) - \tilde{f}(x_0-h)}{2h} = \frac{e(x_0+h) - e(x_0-h)}{2h} - \frac{h^2}{6}f^{(3)}(\xi_1)$$

Concept of Total Error (Cont'd)

If we assume that the round-off errors $e(x_0 \pm h)$ are bounded by some number $\varepsilon > 0$ and that the third derivative of *f* is bounded by a number M > 0,

$$f'(x_0) - \frac{\tilde{f}(x_0+h) - \tilde{f}(x_0-h)}{2h} = \frac{e(x_0+h) - e(x_0-h)}{2h} - \frac{h^2}{6}f^{(3)}(\xi_1)$$

Concept of Total Error (Cont'd)

If we assume that the round-off errors $e(x_0 \pm h)$ are bounded by some number $\varepsilon > 0$ and that the third derivative of *f* is bounded by a number M > 0, then

$$\left|f'(x_0) - \frac{\tilde{f}(x_0+h) - \tilde{f}(x_0-h)}{2h}\right| \leq \frac{\varepsilon}{h} + \frac{h^2}{6}M$$

$$\left|f'(x_0) - \frac{\tilde{f}(x_0+h) - \tilde{f}(x_0-h)}{2h}\right| \leq \frac{\varepsilon}{h} + \frac{h^2}{6}M$$

Concept of Total Error (Cont'd)

• To reduce the truncation error, $h^2 M/6$, we need to reduce *h*.

.

< 17 ▶

$$\left|f'(x_0) - \frac{\tilde{f}(x_0+h) - \tilde{f}(x_0-h)}{2h}\right| \leq \frac{\varepsilon}{h} + \frac{h^2}{6}M$$

Concept of Total Error (Cont'd)

- To reduce the truncation error, $h^2 M/6$, we need to reduce *h*.
- But as *h* is reduced, the round-off error ε/h grows.

< 17 ▶

$$\left|f'(x_0)-\frac{\tilde{f}(x_0+h)-\tilde{f}(x_0-h)}{2h}\right|\leq \frac{\varepsilon}{h}+\frac{h^2}{6}M$$

Concept of Total Error (Cont'd)

- To reduce the truncation error, $h^2 M/6$, we need to reduce *h*.
- But as *h* is reduced, the round-off error ε/h grows.
- In practice, then, it is seldom advantageous to let *h* be too small because, in that case, the round-off error will dominate the calculations.

___>

Example

Consider using the values in the following table

x	sin x	X	sin x
0.800	0.71736	0.901	0.78395
0.850	0.75128	0.902	0.78457
0.880	0.77074	0.905	0.78643
0.890	0.77707	0.910	0.78950
0.895	0.78021	0.920	0.79560
0.898	0.78208	0.950	0.81342
0.899	0.78270	1.000	0.84147

to approximate f'(0.900), where $f(x) = \sin x$. The true value is $\cos 0.900 = 0.62161$.

Numerical Analysis (Chapter 4)

$$\left|f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h}\right| \leq \frac{\varepsilon}{h} + \frac{h^2}{6}M$$

Solution (1/4)

The formula

$$f'(0.900) \approx rac{f(0.900+h) - f(0.900-h)}{2h}$$

with different values of h, gives the approximations in the following table.

Numerical Analysis (Chapter 4)

Solution (2/4)

Approximation		
h	to f'(0.900)	Error
0.001	0.62500	0.00339
0.002	0.62250	0.00089
0.005	0.62200	0.00039
0.010	0.62150	-0.00011
0.020	0.62150	-0.00011
0.050	0.62140	-0.00021
0.100	0.62055	-0.00106

The optimal choice for *h* appears to lie between 0.005 and 0.05.

< ロ > < 同 > < 回 > < 回 >

11/16

Solution (3/4)

We can use calculus to verify that a minimum for

$$\mathbf{e}(h) = rac{arepsilon}{h} + rac{h^2}{6}M,$$

occurs at $h = \sqrt[3]{3\varepsilon/M}$,

Solution (3/4)

We can use calculus to verify that a minimum for

$$\mathbf{e}(h)=\frac{\varepsilon}{h}+\frac{h^2}{6}M,$$

occurs at $h = \sqrt[3]{3\varepsilon/M}$, where

 $M = \max_{x \in [0.800, 1.00]} |f'''(x)| = \max_{x \in [0.800, 1.00]} |\cos x| = \cos 0.8 \approx 0.69671.$

Numerical Analysis (Chapter 4)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Solution (3/4)

We can use calculus to verify that a minimum for

$$e(h)=\frac{\varepsilon}{h}+\frac{h^2}{6}M,$$

occurs at $h = \sqrt[3]{3\varepsilon/M}$, where

 $M = \max_{x \in [0.800, 1.00]} |f'''(x)| = \max_{x \in [0.800, 1.00]} |\cos x| = \cos 0.8 \approx 0.69671.$

Because values of *f* are given to five decimal places, we will assume that the round-off error is bounded by $\varepsilon = 5 \times 10^{-6}$.

Numerical Analysis (Chapter 4)

3

< D > < (2) > < (2) > < (2) >

Solution (4/4)

Therefore, the optimal choice of h is approximately

$$h = \sqrt[3]{3\varepsilon/M} = \sqrt[3]{\frac{3(0.00005)}{0.69671}} \approx 0.028,$$

which is consistent with the results in the earlier table.

Solution (4/4)

Therefore, the optimal choice of h is approximately

$$h = \sqrt[3]{3\varepsilon/M} = \sqrt[3]{\frac{3(0.000005)}{0.69671}} \approx 0.028,$$

which is consistent with the results in the earlier table.

 In practice, we cannot compute an optimal *h* to use in approximating the derivative, since we have no knowledge of the third derivative of the function.

Solution (4/4)

Therefore, the optimal choice of h is approximately

$$h = \sqrt[3]{3\varepsilon/M} = \sqrt[3]{\frac{3(0.00005)}{0.69671}} \approx 0.028,$$

which is consistent with the results in the earlier table.

- In practice, we cannot compute an optimal *h* to use in approximating the derivative, since we have no knowledge of the third derivative of the function.
- But we must remain aware that reducing the step size will not always improve the approximation.

< ロ > < 同 > < 回 > < 回 >

Concluding Remarks (1/2)

→ ∃ → < ∃</p>

< 🗇 🕨

Concluding Remarks (1/2)

• We have considered only the round-off error problems that are presented by the three-point midpoint formula, but similar difficulties occur with all the differentiation formulas.

Concluding Remarks (1/2)

- We have considered only the round-off error problems that are presented by the three-point midpoint formula, but similar difficulties occur with all the differentiation formulas.
- The reason can be traced to the need to divide by a power of *h*.

Concluding Remarks (1/2)

- We have considered only the round-off error problems that are presented by the three-point midpoint formula, but similar difficulties occur with all the differentiation formulas.
- The reason can be traced to the need to divide by a power of h.
- Division by small numbers tends to exaggerate round-off error, and this operation should be avoided if possible.

.

4 A N

Concluding Remarks (1/2)

- We have considered only the round-off error problems that are presented by the three-point midpoint formula, but similar difficulties occur with all the differentiation formulas.
- The reason can be traced to the need to divide by a power of *h*.
- Division by small numbers tends to exaggerate round-off error, and this operation should be avoided if possible.
- In the case of numerical differentiation, we cannot avoid the problem entirely, although the higher-order methods reduce the difficulty.

Concluding Remarks (2/2)

 As approximation methods, numerical differentiation is unstable, since the small values of *h* needed to reduce truncation error also cause the round-off error to grow.

Concluding Remarks (2/2)

- As approximation methods, numerical differentiation is unstable, since the small values of *h* needed to reduce truncation error also cause the round-off error to grow.
- This is the first class of unstable methods we have encountered, and these techniques would be avoided if it were possible.

Concluding Remarks (2/2)

- As approximation methods, numerical differentiation is unstable, since the small values of *h* needed to reduce truncation error also cause the round-off error to grow.
- This is the first class of unstable methods we have encountered, and these techniques would be avoided if it were possible.
- However, in addition to being used for computational purposes, the formulas are needed for approximating the solutions of ordinary and partial-differential equations.

.

4 D b 4 A b

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで