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Features of a Newton-Cotes Formula
The Newton-Cotes formulas were derived by integrating
interpolating polynomials.

The error term in the interpolating polynomial of degree n involves
the (n + 1)st derivative of the function being approximated, . . .

so a Newton-Cotes formula is exact when approximating the
integral of any polynomial of degree less than or equal to n.
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Features of a Newton-Cotes Formula (Cont’d)
All the Newton-Cotes formulas use values of the function at
equally-spaced points.

This restriction is convenient when the formulas are combined to
form the composite rules which we considered earlier, . . .

but it can significantly decrease the accuracy of the approximation.
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Consider, for example, the Trapezoidal rule applied to determine the
integrals of the functions whose graphs are as shown.

y

x

yy

xa 5 x1 a 5 x1 a 5 x1x2 5 b x2 5 b x2 5 bx

y 5 f (x)
y 5 f (x)

y 5 f (x)

It approximates the integral of the function by integrating the linear
function that joins the endpoints of the graph of the function.
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Gaussian Integration: Optimal integration points

But this is not likely the best line for approximating the integral. Lines
such as those shown below would likely give much better
approximations in most cases.

yyy

x x xa x1 bx2 a x1 bx2 a x1 bx2

y 5 f (x)

y 5 f (x)
y 5 f (x)

Gaussian quadrature chooses the points for evaluation in an optimal,
rather than equally-spaced, way.
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Choice of Integration Nodes

The nodes x1, x2, . . . , xn in the interval [a, b] and coefficients
c1, c2, . . . , cn, are chosen to minimize the expected error obtained
in the approximation

∫ b

a
f (x) dx ≈

n
∑

i=1

ci f (xi ).
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c1, c2, . . . , cn, are chosen to minimize the expected error obtained
in the approximation

∫ b

a
f (x) dx ≈

n
∑

i=1

ci f (xi ).

To measure this accuracy, we assume that the best choice of
these values produces the exact result for the largest class of
polynomials, . . .

that is, the choice that gives the greatest degree of precision.
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The coefficients c1, c2, . . . , cn in the approximation formula are
arbitrary, and the nodes x1, x2, . . . , xn are restricted only by the
fact that they must lie in [a, b], the interval of integration.

This gives us 2n parameters to choose.

Numerical Analysis (Chapter 4) Gaussian Quadrature R L Burden & J D Faires 9 / 40



Introduction Legendre Polynomials Arbitrary Intervals

Gaussian Quadrature: Introduction

∫ b

a
f (x) dx ≈

n
∑

i=1

ci f (xi ).

Choice of Integration Nodes (Cont’d)

Numerical Analysis (Chapter 4) Gaussian Quadrature R L Burden & J D Faires 10 / 40



Introduction Legendre Polynomials Arbitrary Intervals

Gaussian Quadrature: Introduction

∫ b

a
f (x) dx ≈

n
∑

i=1

ci f (xi ).

Choice of Integration Nodes (Cont’d)
If the coefficients of a polynomial are considered parameters, the
class of polynomials of degree at most 2n − 1 also contains 2n
parameters.

Numerical Analysis (Chapter 4) Gaussian Quadrature R L Burden & J D Faires 10 / 40



Introduction Legendre Polynomials Arbitrary Intervals

Gaussian Quadrature: Introduction

∫ b

a
f (x) dx ≈

n
∑

i=1

ci f (xi ).

Choice of Integration Nodes (Cont’d)
If the coefficients of a polynomial are considered parameters, the
class of polynomials of degree at most 2n − 1 also contains 2n
parameters.

This, then, is the largest class of polynomials for which it is
reasonable to expect a formula to be exact.

Numerical Analysis (Chapter 4) Gaussian Quadrature R L Burden & J D Faires 10 / 40



Introduction Legendre Polynomials Arbitrary Intervals

Gaussian Quadrature: Introduction

∫ b

a
f (x) dx ≈

n
∑

i=1

ci f (xi ).

Choice of Integration Nodes (Cont’d)
If the coefficients of a polynomial are considered parameters, the
class of polynomials of degree at most 2n − 1 also contains 2n
parameters.

This, then, is the largest class of polynomials for which it is
reasonable to expect a formula to be exact.

With the proper choice of the values and constants, exactness on
this set can be obtained.
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Gaussian Quadrature: Illustration (n = 2)

Example: Formula when n = 2 on [−1, 1]

Suppose we want to determine c1, c2, x1, and x2 so that the integration
formula

∫ 1

−1
f (x) dx ≈ c1f (x1) + c2f (x2)

gives the exact result whenever f (x) is a polynomial of degree
2(2) − 1 = 3 or less, that is, when

f (x) = a0 + a1x + a2x2 + a3x3,

for some collection of constants, a0, a1, a2, and a3.
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Gaussian Quadrature: Illustration (n = 2)

Finding the Formula Coefficients (1/3)
Because

∫

(a0 + a1x + a2x2 + a3x3) dx

= a0

∫

1 dx + a1

∫

x dx + a2

∫

x2 dx + a3

∫

x3 dx

this is equivalent to showing that the formula gives exact results when
f (x) is 1, x , x2, and x3.
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Finding the Formula Coefficients (2/3)
Hence, we need c1, c2, x1, and x2, so that

c1 · 1 + c2 · 1 =

∫ 1

−1
1 dx = 2
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∫ 1

−1
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c1 · x1 + c2 · x2 =

∫ 1

−1
x dx = 0

c1 · x2
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∫ 1
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x2 dx =
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c1 · 1 + c2 · 1 =

∫ 1

−1
1 dx = 2

c1 · x1 + c2 · x2 =

∫ 1

−1
x dx = 0

c1 · x2
1 + c2 · x2

2 =

∫ 1

−1
x2 dx =

2
3

c1 · x3
1 + c2 · x3

2 =

∫ 1

−1
x3 dx = 0
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Gaussian Quadrature: Illustration (n = 2)

Finding the Formula Coefficients (3/3)
A little algebra shows that this system of equations has the unique
solution

c1 = 1, c2 = 1, x1 = −
√

3
3

and x2 =

√
3

3
,
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A little algebra shows that this system of equations has the unique
solution

c1 = 1, c2 = 1, x1 = −
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3
3

and x2 =
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which gives the approximation formula

∫ 1

−1
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−
√

3
3
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3
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Finding the Formula Coefficients (3/3)
A little algebra shows that this system of equations has the unique
solution

c1 = 1, c2 = 1, x1 = −
√

3
3

and x2 =

√
3

3
,

which gives the approximation formula

∫ 1

−1
f (x) dx ≈ f

(

−
√

3
3

)

+ f

(√
3

3

)

This formula has degree of precision 3, that is, it produces the exact
result for every polynomial of degree 3 or less.
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Gaussian Quadrature: Legendre Polynomials

An Alternative Method of Derivation
We will consider an approach which generates more easily the
nodes and coefficients for formulas that give exact results for
higher-degree polynomials.

This will be achieved using a particular set of orthogonal
polynomials (functions with the property that a particular definite
integral of the product of any two of them is 0).
This set is the is the Legendre polynomials, a collection
{P0(x), P1(x), . . . , Pn(x), . . . , } with properties:
(1) For each n, Pn(x) is a monic polynomial of degree n.

(2)
∫ 1

−1
P(x)Pn(x) dx = 0 whenever P(x) is a polynomial of degree

less than n.
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Gaussian Quadrature: Legendre Polynomials
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P0(x) = 1, P1(x) = x , P2(x) = x2 − 1
3

P3(x) = x3 − 3
5

x and P4(x) = x4 − 6
7

x2 +
3

35
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P0(x) = 1, P1(x) = x , P2(x) = x2 − 1
3

P3(x) = x3 − 3
5

x and P4(x) = x4 − 6
7

x2 +
3

35

The roots of these polynomials are distinct, lie in the interval
(−1, 1), have a symmetry with respect to the origin, and, most
importantly,

they are the correct choice for determining the parameters that
give us the nodes and coefficients for our quadrature method.

The nodes x1, x2, . . . , xn needed to produce an integral approximation
formula that gives exact results for any polynomial of degree less than
2n are the roots of the nth-degree Legendre polynomial.
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Gaussian Quadrature: Legendre Polynomials

Theorem
Suppose that x1, x2, . . . , xn are the roots of the nth Legendre
polynomial Pn(x) and that for each i = 1, 2, . . . , n, the numbers ci are
defined by

ci =

∫ 1

−1

n
∏

j=1
j 6=i

x − xj

xi − xj
dx
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Theorem
Suppose that x1, x2, . . . , xn are the roots of the nth Legendre
polynomial Pn(x) and that for each i = 1, 2, . . . , n, the numbers ci are
defined by

ci =

∫ 1

−1

n
∏

j=1
j 6=i

x − xj

xi − xj
dx

If P(x) is any polynomial of degree less than 2n, then

∫ 1

−1
P(x) dx =

n
∑

i=1

ciP(xi )
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Gaussian Quadrature: Legendre Polynomials

Proof (1/5)
Let us first consider the situation for a polynomial P(x) of degree
less than n.

Re-write P(x) in terms of (n − 1)st Lagrange coefficient
polynomials with nodes at the roots of the nth Legendre
polynomial Pn(x).

The error term for this representation involves the nth derivative of
P(x).

Since P(x) is of degree less than n, the nth derivative of P(x) is 0,
and this representation of is exact. So
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Gaussian Quadrature: Legendre Polynomials
Proof (2/5)
Therefore

P(x) =
n
∑

i=1

P(xi)Li(x) =
n
∑

i=1

n
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n
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Gaussian Quadrature: Legendre Polynomials
Proof (2/5)
Therefore
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and
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−1
P(x) dx =

∫ 1
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n
∑

i=1

n
∏

j=1
j 6=i

x − xj

xi − xj
P(xi )









dx

=
n
∑

i=1









∫ 1

−1

n
∏

j=1
j 6=i

x − xj

xi − xj
dx









P(xi) =
n
∑

i=1

ciP(xi )

Hence the result is true for polynomials of degree less than n.
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Gaussian Quadrature: Legendre Polynomials

Proof (3/5)
Now consider a polynomial P(x) of degree at least n but less than
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Proof (3/5)
Now consider a polynomial P(x) of degree at least n but less than
2n.

Divide P(x) by the nth Legendre polynomial Pn(x).

This gives two polynomials Q(x) and R(x), each of degree less
than n, with

P(x) = Q(x)Pn(x) + R(x)
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Proof (3/5)
Now consider a polynomial P(x) of degree at least n but less than
2n.

Divide P(x) by the nth Legendre polynomial Pn(x).

This gives two polynomials Q(x) and R(x), each of degree less
than n, with

P(x) = Q(x)Pn(x) + R(x)

Note that xi is a root of Pn(x) for each i = 1, 2, . . . , n, so we have

P(xi ) = Q(xi )Pn(xi) + R(xi) = R(xi)
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Gaussian Quadrature: Legendre Polynomials

Proof (3/5)
Now consider a polynomial P(x) of degree at least n but less than
2n.

Divide P(x) by the nth Legendre polynomial Pn(x).

This gives two polynomials Q(x) and R(x), each of degree less
than n, with

P(x) = Q(x)Pn(x) + R(x)

Note that xi is a root of Pn(x) for each i = 1, 2, . . . , n, so we have

P(xi ) = Q(xi )Pn(xi) + R(xi) = R(xi)

We now invoke the unique power of the Legendre polynomials.
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Gaussian Quadrature: Legendre Polynomials

Proof (4/5)
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Gaussian Quadrature: Legendre Polynomials

Proof (4/5)
First, the degree of the polynomial Q(x) is less than n, so (by the
Legendre orthogonality property),

∫ 1

−1
Q(x)Pn(x) dx = 0
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Gaussian Quadrature: Legendre Polynomials

Proof (4/5)
First, the degree of the polynomial Q(x) is less than n, so (by the
Legendre orthogonality property),

∫ 1

−1
Q(x)Pn(x) dx = 0

Then, since R(x) is a polynomial of degree less than n, the opening
argument implies that

∫ 1

−1
R(x) dx =

n
∑

i=1

ciR(xi)
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Gaussian Quadrature: Legendre Polynomials

Proof (5/5)
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Introduction Legendre Polynomials Arbitrary Intervals

Gaussian Quadrature: Legendre Polynomials

Proof (5/5)
Putting these facts together verifies that the formula is exact for the
polynomial P(x):
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Gaussian Quadrature: Legendre Polynomials

Proof (5/5)
Putting these facts together verifies that the formula is exact for the
polynomial P(x):

∫ 1

−1
P(x) dx =

∫ 1

−1
[Q(x)Pn(x) + R(x)] dx
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Gaussian Quadrature: Legendre Polynomials

Proof (5/5)
Putting these facts together verifies that the formula is exact for the
polynomial P(x):

∫ 1

−1
P(x) dx =

∫ 1

−1
[Q(x)Pn(x) + R(x)] dx

=

∫ 1

−1
R(x) dx
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Gaussian Quadrature: Legendre Polynomials

Proof (5/5)
Putting these facts together verifies that the formula is exact for the
polynomial P(x):

∫ 1

−1
P(x) dx =

∫ 1

−1
[Q(x)Pn(x) + R(x)] dx

=

∫ 1

−1
R(x) dx

=
n
∑

i=1

ciR(xi)
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Gaussian Quadrature: Legendre Polynomials

Proof (5/5)
Putting these facts together verifies that the formula is exact for the
polynomial P(x):

∫ 1

−1
P(x) dx =

∫ 1

−1
[Q(x)Pn(x) + R(x)] dx

=

∫ 1

−1
R(x) dx

=
n
∑

i=1

ciR(xi)

=
n
∑

i=1

ciP(xi)

Numerical Analysis (Chapter 4) Gaussian Quadrature R L Burden & J D Faires 23 / 40



Introduction Legendre Polynomials Arbitrary Intervals

Gaussian Quadrature: Roots & Coefficients

The constants ci needed for the quadrature rule can be generated
from the equation given in the theorem:

ci =

∫ 1

−1

n
∏

j=1
j 6=i

x − xj

xi − xj
dx

but both these constants and the roots of the Legendre polynomials
are extensively tabulated.

The following table lists these values for n = 2, 3, 4, and 5.

Numerical Analysis (Chapter 4) Gaussian Quadrature R L Burden & J D Faires 24 / 40



Introduction Legendre Polynomials Arbitrary Intervals

Gaussian Quadrature Rules: Roots & Coefficients

n Roots rn,i Coefficients cn,i

2 0.5773502692 1.0000000000
−0.5773502692 1.0000000000

3 0.7745966692 0.5555555556
0.0000000000 0.8888888889

−0.7745966692 0.5555555556
4 0.8611363116 0.3478548451

0.3399810436 0.6521451549
−0.3399810436 0.6521451549
−0.8611363116 0.3478548451

5 0.9061798459 0.2369268850
0.5384693101 0.4786286705
0.0000000000 0.5688888889

−0.5384693101 0.4786286705
−0.9061798459 0.2369268850
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Gaussian Quadrature: Legendre Polynomials

Example (n = 2)

Approximate
∫ 1

−1
ex cos x dx using Gaussian quadrature with n = 3.

Solution
The entries in the table of roots and coefficients See Table
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Gaussian Quadrature: Legendre Polynomials

Example (n = 2)

Approximate
∫ 1

−1
ex cos x dx using Gaussian quadrature with n = 3.

Solution
The entries in the table of roots and coefficients See Table give us

∫ 1

−1
ex cos x dx ≈ 0.5e0.774596692 cos 0.774596692 + 0.8 cos 0

+ 0.5e−0.774596692 cos(−0.774596692)

= 1.9333904.
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Gaussian Quadrature: Legendre Polynomials

Example (n = 2)

Approximate
∫ 1

−1
ex cos x dx using Gaussian quadrature with n = 3.

Solution
The entries in the table of roots and coefficients See Table give us

∫ 1

−1
ex cos x dx ≈ 0.5e0.774596692 cos 0.774596692 + 0.8 cos 0

+ 0.5e−0.774596692 cos(−0.774596692)

= 1.9333904.

Integration by parts can be used to show that the true value of the
integral is 1.9334214, so the absolute error is less than 3.2 × 10−5.
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Outline

1 Gaussian Quadrature & Optimal Nodes

2 Using Legendre Polynomials to Derive Gaussian Quadrature Formulae

3 Gaussian Quadrature on Arbitrary Intervals
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Gaussian Quadrature on Arbitrary Intervals

Transform the Interval of Integration to [−1, 1]

An integral
∫ b

a f (x) dx over an arbitrary [a, b] can be transformed into
an integral over [−1, 1] by using the change of variables See Diagram :

t =
2x − a − b

b − a
⇐⇒ x =

1
2

[(b − a)t + a + b]
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Gaussian Quadrature on Arbitrary Intervals

Transform the Interval of Integration to [−1, 1]

An integral
∫ b

a f (x) dx over an arbitrary [a, b] can be transformed into
an integral over [−1, 1] by using the change of variables See Diagram :

t =
2x − a − b

b − a
⇐⇒ x =

1
2

[(b − a)t + a + b]

This permits Gaussian quadrature to be applied to any interval [a, b],
because

∫ b

a
f (x) dx =

∫ 1

−1
f
(

(b − a)t + (b + a)

2

)

(b − a)

2
dt
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Gaussian Quadrature on Arbitrary Intervals

Example: Comparing Formulae
Consider the integral

∫ 3

1
x6 − x2 sin(2x) dx = 317.3442466.
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Gaussian Quadrature on Arbitrary Intervals

Example: Comparing Formulae
Consider the integral

∫ 3

1
x6 − x2 sin(2x) dx = 317.3442466.

(a) Compare the results for the closed Newton-Cotes formula with
n = 1, the open Newton-Cotes formula with n = 1, and Gaussian
Quadrature when n = 2.
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Gaussian Quadrature on Arbitrary Intervals

Example: Comparing Formulae
Consider the integral

∫ 3

1
x6 − x2 sin(2x) dx = 317.3442466.

(a) Compare the results for the closed Newton-Cotes formula with
n = 1, the open Newton-Cotes formula with n = 1, and Gaussian
Quadrature when n = 2.

(b) Compare the results for the closed Newton-Cotes formula with
n = 2, the open Newton-Cotes formula with n = 2, and Gaussian
Quadrature when n = 3.
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Solution: Part (a): Newton-Cotes Formulae (n = 1)
Each of the formulas in this part requires 2 evaluations of the function
f (x) = x6 − x2 sin(2x). The Newton-Cotes approximations See Formulae

are:

Closed n = 1 :
2)

2
[f (1) + f (3)] = 731.6054420

Open n = 1 :
3(2/3)

2
[f (5/3) + f (7/3)] = 188.7856682
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Gaussian Quadrature on Arbitrary Intervals

Solution: Part (a): Gaussian Quadrature (n = 2)
Gaussian quadrature applied to this problem requires that the integral
first be transformed into a problem whose interval of integration is
[−1, 1]. Using the transformation gives

∫ 3

1
x6 − x2 sin(2x) dx =

∫ 1

−1
(t + 2)6 − (t + 2)2 sin(2(t + 2)) dt .
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Gaussian Quadrature on Arbitrary Intervals

Solution: Part (a): Gaussian Quadrature (n = 2)
Gaussian quadrature applied to this problem requires that the integral
first be transformed into a problem whose interval of integration is
[−1, 1]. Using the transformation gives

∫ 3

1
x6 − x2 sin(2x) dx =

∫ 1

−1
(t + 2)6 − (t + 2)2 sin(2(t + 2)) dt .

Gaussian quadrature with n = 2 then gives

∫ 3

1
x6 − x2 sin(2x) dx

≈ f (−0.5773502692 + 2) + f (0.5773502692 + 2)

= 306.8199344
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Gaussian Quadrature on Arbitrary Intervals

Solution: Part (b): Newton-Cotes Formulae (n = 2)
Each of the formulas in this part requires 3 function evaluations. The
Newton-Cotes approximations See Formulae are:

Closed n = 2 :
1)

3
[f (1) + 4f (2) + f (3)] = 333.2380940

Open n = 2 :
4(1/2)

3
[2f (1.5)− f (2) + 2f (2.5)] = 303.5912023
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Gaussian Quadrature on Arbitrary Intervals

Solution: Part (b): Gaussian Quadrature (n = 3)
Gaussian quadrature with n = 3, once the transformation has been done,
gives

∫ 3

1
x6 − x2 sin(2x) dx

≈ 0.5f (−0.7745966692 + 2) + 0.8f (2) + 0.5f (−0.7745966692 + 2)

= 317.2641516
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Gaussian Quadrature on Arbitrary Intervals

∫ 3

1
x6 − x2 sin(2x) dx = 317.3442466.
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Gaussian Quadrature on Arbitrary Intervals

∫ 3

1
x6 − x2 sin(2x) dx = 317.3442466.

Comparison of Results

Newton-Cotes
Closed Open Gaussian Quadrature

2-Point Rule 731.6054420 188.7856682 306.8199344

3-Point Rule 333.2380940 303.5912023 317.2641516

The Gaussian quadrature results are clearly superior in each instance.
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Gaussian Quadrature Rules: Roots & Coefficients

n Roots rn,i Coefficients cn,i

2 0.5773502692 1.0000000000
−0.5773502692 1.0000000000

3 0.7745966692 0.5555555556
0.0000000000 0.8888888889

−0.7745966692 0.5555555556
4 0.8611363116 0.3478548451

0.3399810436 0.6521451549
−0.3399810436 0.6521451549
−0.8611363116 0.3478548451

5 0.9061798459 0.2369268850
0.5384693101 0.4786286705
0.0000000000 0.5688888889

−0.5384693101 0.4786286705
−0.9061798459 0.2369268850

Return to
∫ 1
−1 ex cos(x) dx Example



Mapping Interval [a, b] onto [−1, 1]

t

x

21

1

a b

(a, 21)

(b, 1)

2x 2 a 2 b
t 5

b 2 a

Return to Gaussian Quadrature on Arbitrary Intervals (Introduction)

Return to Gaussian Quadrature on Arbitrary Intervals (Example Part (a))

Return to Gaussian Quadrature on Arbitrary Intervals (Example Part (b))



Open & Closed Newton-Cotes Formulae (n = 1)

Closed n = 1: Trapezoidal Rule:

∫ x1

x0

f (x) dx =
h
2

[f (x0) + f (x1)] −
h3

12
f ′′(ξ)

where x0 < ξ < x1.

Open n = 1:

∫ x2

x
−1

f (x) dx =
3h
2

[f (x0) + f (x1)] +
3h3

4
f ′′(ξ)

where x−1 < ξ < x2.

Return to arbitrary intervals Example (where n = 1)



Open & Closed Newton-Cotes Formulae (n = 2)

n = 0: Midpoint Rule:

∫ x1

x
−1

f (x) dx = 2hf (x0) +
h3

3
f ′′(ξ)

where x−1 < ξ < x1.

Open n = 2

∫ x3

x
−1

f (x) dx =
4h
3

[2f (x0) − f (x1) + 2f (x2)] +
14h5

45
f (4)(ξ)

where x−1 < ξ < x3.

Return to arbitrary intervals Example (where n = 1)
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