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Elementary Theory of IVPs: Lipschitz Condition

We begin by presenting some definitions and results from the theory of
ordinary differential equations before considering methods for
approximating the solutions to initial-value problems.
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Elementary Theory of IVPs: Lipschitz Condition

We begin by presenting some definitions and results from the theory of
ordinary differential equations before considering methods for
approximating the solutions to initial-value problems.

Definition: Lipschitz Condition
A function f (t , y) is said to satisfy a Lipschitz condition in the variable y
on a set D ⊂ IR2 if a constant L > 0 exists with

|f (t , y1) − f (t , y2, )| ≤ L |y1 − y2|

whenever (t , y1) and (t , y2) are in D. The constant L is called a
Lipschitz constant for f .
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Elementary Theory of IVPs: Lipschitz Condition

Example
Show that f (t , y) = t |y | satisfies a Lipschitz condition on the interval
D = { (t , y) | 1 ≤ t ≤ 2 and − 3 ≤ y ≤ 4 }.
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Example
Show that f (t , y) = t |y | satisfies a Lipschitz condition on the interval
D = { (t , y) | 1 ≤ t ≤ 2 and − 3 ≤ y ≤ 4 }.

Solution
For each pair of points (t , y1) and (t , y2) in D we have

|f (t , y1) − f (t , y2)| = |t |y1| − t |y2|| = |t | ||y1| − |y2|| ≤ 2|y1 − y2|

Numerical Analysis (Chapter 5) Elementary Theory of Initial-Value Problems R L Burden & J D Faires 5 / 25



Lipschitz Condition Unique Solution Well-Posed Problems Example

Elementary Theory of IVPs: Lipschitz Condition

Example
Show that f (t , y) = t |y | satisfies a Lipschitz condition on the interval
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Solution
For each pair of points (t , y1) and (t , y2) in D we have

|f (t , y1) − f (t , y2)| = |t |y1| − t |y2|| = |t | ||y1| − |y2|| ≤ 2|y1 − y2|

Thus f satisfies a Lipschitz condition on D in the variable y with
Lipschitz constant 2.
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Elementary Theory of IVPs: Lipschitz Condition

Example
Show that f (t , y) = t |y | satisfies a Lipschitz condition on the interval
D = { (t , y) | 1 ≤ t ≤ 2 and − 3 ≤ y ≤ 4 }.

Solution
For each pair of points (t , y1) and (t , y2) in D we have

|f (t , y1) − f (t , y2)| = |t |y1| − t |y2|| = |t | ||y1| − |y2|| ≤ 2|y1 − y2|

Thus f satisfies a Lipschitz condition on D in the variable y with
Lipschitz constant 2. The smallest value possible for the Lipschitz
constant for this problem is L = 2, because, for example,

|f (2, 1) − f (2, 0)| = |2 − 0| = 2|1 − 0|
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Elementary Theory of IVPs: Convex Set

Definition: Convex Set

A set D ⊂ IR2 is said to be convex if whenever (t1, y1) and (t2, y2)
belong to D, then

((1 − λ)t1 + λt2, (1 − λ)y1 + λy2)

also belongs to D for every λ in [0, 1].

(t1, y1)

(t1, y1)(t2, y2)

(t2, y2)

Convex Not convex
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Elementary Theory of IVPs: Convex Set

Comment on the Definition
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Elementary Theory of IVPs: Convex Set

Comment on the Definition
In geometric terms, the definition states that a set is convex
provided that whenever two points belong to the set, the entire
straight-line segment between the points also belongs to the set.
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Elementary Theory of IVPs: Convex Set

Comment on the Definition
In geometric terms, the definition states that a set is convex
provided that whenever two points belong to the set, the entire
straight-line segment between the points also belongs to the set.

The sets we consider in this section are generally of the form

D = { (t , y) | a ≤ t ≤ b and −∞ < y < ∞}

for some constants a and b.
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Elementary Theory of IVPs: Convex Set

Comment on the Definition
In geometric terms, the definition states that a set is convex
provided that whenever two points belong to the set, the entire
straight-line segment between the points also belongs to the set.

The sets we consider in this section are generally of the form

D = { (t , y) | a ≤ t ≤ b and −∞ < y < ∞}

for some constants a and b.

It is easy to verify that these sets are convex.
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Theory of IVPs: Lipschitz Condition & Convexity

Theorem: Sufficient Conditions

Suppose f (t , y) is defined on a convex set D ⊂ IR2. If a constant L > 0
exists with

∣

∣

∣

∣

∂f
∂y

(t , y)

∣

∣

∣

∣

≤ L, for all (t , y) ∈ D

then f satisfies a Lipschitz condition on D in the variable y with
Lipschitz constant L.
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Theory of IVPs: Lipschitz Condition & Convexity

Theorem: Sufficient Conditions

Suppose f (t , y) is defined on a convex set D ⊂ IR2. If a constant L > 0
exists with

∣

∣

∣

∣

∂f
∂y

(t , y)

∣

∣

∣

∣

≤ L, for all (t , y) ∈ D

then f satisfies a Lipschitz condition on D in the variable y with
Lipschitz constant L.

As the next result will show, this theorem is often of significant interest
to determine whether the function involved in an initial-value problem
satisfies a Lipschitz condition in its second variable, and the above
condition is generally easier to apply than the definition.
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Elementary Theory of IVPs

Theorem: Existence & Uniqueness
Suppose that D = { (t , y) | a ≤ t ≤ b and −∞ < y < ∞} and that
f (t , y) is continuous on D. If f satisfies a Lipschitz condition on D in the
variable y , then the initial-value problem

y ′(t) = f (t , y), a ≤ t ≤ b, y(a) = α,

has a unique solution y(t) for a ≤ t ≤ b.
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Elementary Theory of IVPs

Theorem: Existence & Uniqueness
Suppose that D = { (t , y) | a ≤ t ≤ b and −∞ < y < ∞} and that
f (t , y) is continuous on D. If f satisfies a Lipschitz condition on D in the
variable y , then the initial-value problem

y ′(t) = f (t , y), a ≤ t ≤ b, y(a) = α,

has a unique solution y(t) for a ≤ t ≤ b.

Note: This is a version of the fundamental existence and uniqueness
theorem for first-order ordinary differential equations. The proof of the
theorem, in approximately this form, can be found in Birkhoff, G. and
G. Rota, Ordinary differential equations, (4th edition), John Wiley &
Sons, New York, 1989.
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Elementary Theory of IVPs

Example: Applying the Existence & Uniqueness Theorem
Use the Existence & Uniqueness Theorem to show that there is a
unique solution to the initial-value problem

y ′ = 1 + t sin(ty), 0 ≤ t ≤ 2, y(0) = 0
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Elementary Theory of IVPs

Example: Applying the Existence & Uniqueness Theorem
Use the Existence & Uniqueness Theorem to show that there is a
unique solution to the initial-value problem

y ′ = 1 + t sin(ty), 0 ≤ t ≤ 2, y(0) = 0

Solution (1/2)
Holding t constant and applying the Mean Value Theorem See Theorem

to the function
f (t , y) = 1 + t sin(ty)

we find that when y1 < y2, a number ξ in (y1, y2) exists with

f (t , y2) − f (t , y1)

y2 − y1
=

∂

∂y
f (t , ξ) = t2 cos(ξt)

Numerical Analysis (Chapter 5) Elementary Theory of Initial-Value Problems R L Burden & J D Faires 11 / 25



Lipschitz Condition Unique Solution Well-Posed Problems Example

Elementary Theory of IVPs

f (t , y2) − f (t , y1)

y2 − y1
=

∂

∂y
f (t , ξ) = t2 cos(ξt)

Solution (2/2)
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Elementary Theory of IVPs

f (t , y2) − f (t , y1)

y2 − y1
=

∂

∂y
f (t , ξ) = t2 cos(ξt)

Solution (2/2)
Thus

|f (t , y2) − f (t , y1)| = |y2 − y1||t
2 cos(ξt)| ≤ 4|y2 − y1|

and f satisfies a Lipschitz condition in the variable y with Lipschitz
constant L = 4.
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Elementary Theory of IVPs

f (t , y2) − f (t , y1)

y2 − y1
=

∂

∂y
f (t , ξ) = t2 cos(ξt)

Solution (2/2)
Thus

|f (t , y2) − f (t , y1)| = |y2 − y1||t
2 cos(ξt)| ≤ 4|y2 − y1|

and f satisfies a Lipschitz condition in the variable y with Lipschitz
constant L = 4.

Additionally, f (t , y) is continuous when 0 ≤ t ≤ 2 and
−∞ < y < ∞, so the Existence & Uniqueness Theorem implies
that a unique solution exists to this initial-value problem.
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Elementary Theory of IVPs: Well-Posed problems

Question
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Elementary Theory of IVPs: Well-Posed problems

Question

How do we determine whether a particular problem has the property
that small changes, or perturbations, in the statement of the problem
introduce correspondingly small changes in the solution?
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Elementary Theory of IVPs: Well-Posed problems

Question

How do we determine whether a particular problem has the property
that small changes, or perturbations, in the statement of the problem
introduce correspondingly small changes in the solution?

We first need to give a workable definition to express this concept.
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Elementary Theory of IVPs: Well-Posed Problems

Definition: Well-Posed Problem
The initial-value problem

dy
dt

= f (t , y), a ≤ t ≤ b, y(a) = α

is said to be a well-posed problem if the following 2 conditions are
satisfied:
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Elementary Theory of IVPs: Well-Posed Problems

Definition: Well-Posed Problem (Continued)
A unique solution, y(t), to the problem exists, and
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Elementary Theory of IVPs: Well-Posed Problems

Definition: Well-Posed Problem (Continued)
A unique solution, y(t), to the problem exists, and

There exist constants ε0 > 0 and k > 0 such that for any ε, with
ε0 > ε > 0, whenever δ(t) is continuous with |δ(t)| < ε for all t in
[a, b], and when |δ0| < ε, the initial-value problem

dz
dt

= f (t , z) + δ(t), a ≤ t ≤ b, z(a) = α + δ0

has a unique solution z(t) that satisfies

|z(t) − y(t)| < kε for all t in [a, b].
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Elementary Theory of IVPs: Well-Posed Problems

Definition: Well-Posed Problem (Continued)
A unique solution, y(t), to the problem exists, and

There exist constants ε0 > 0 and k > 0 such that for any ε, with
ε0 > ε > 0, whenever δ(t) is continuous with |δ(t)| < ε for all t in
[a, b], and when |δ0| < ε, the initial-value problem

dz
dt

= f (t , z) + δ(t), a ≤ t ≤ b, z(a) = α + δ0

has a unique solution z(t) that satisfies

|z(t) − y(t)| < kε for all t in [a, b].

Note: The problem in z, as specified above, is called a perturbed
problem associated with the original problem for y .
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Elementary Theory of IVPs: Well-Posed Problems

Conditions to ensure that an initial-value problem is well-posed.
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Elementary Theory of IVPs: Well-Posed Problems

Conditions to ensure that an initial-value problem is well-posed.

Theorem: Well-Posed Problem
Suppose D = { (t , y) | a ≤ t ≤ b and −∞ < y < ∞}. If f is continuous
and satisfies a Lipschitz condition in the variable y on the set D, then
the initial-value problem

dy
dt

= f (t , y), a ≤ t ≤ b, y(a) = α

is well-posed.

The proof of this theorem can be found in Birkhoff, G. and G. Rota,
Ordinary differential equations, (4th edition), John Wiley & Sons, New
York, 1989.
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Elementary Theory of IVPs: Well-Posed Problems

Example: Applying the Theorem on Well-Posed Problems
Show that the initial-value problem

dy
dt

= y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5

is well posed on D = { (t , y) | 0 ≤ t ≤ 2 and −∞ < y < ∞}.
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Elementary Theory of IVPs: Well-Posed Problems
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Elementary Theory of IVPs: Well-Posed Problems

Solution (1/3)
Because

∣

∣

∣

∣

∂(y − t2 + 1)

∂y

∣

∣

∣

∣

= |1| = 1

the Lipschitz Condition theorem implies that f (t , y) = y − t2 + 1
satisfies a Lipschitz condition in y on D with Lipschitz constant 1.
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Elementary Theory of IVPs: Well-Posed Problems

Solution (1/3)
Because

∣

∣

∣

∣

∂(y − t2 + 1)

∂y

∣

∣

∣

∣

= |1| = 1

the Lipschitz Condition theorem implies that f (t , y) = y − t2 + 1
satisfies a Lipschitz condition in y on D with Lipschitz constant 1.

Since f is continuous on D, the Theorem on Well-Posed Problems
implies that the problem is well-posed.
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Elementary Theory of IVPs: Well-Posed Problems

Solution (2/3)
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Elementary Theory of IVPs: Well-Posed Problems

Solution (2/3)
As an illustration, consider the solution to the perturbed problem

dz
dt

= z − t2 + 1 + δ, 0 ≤ t ≤ 2, z(0) = 0.5 + δ0

where δ and δ0 are constants.
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Elementary Theory of IVPs: Well-Posed Problems

Solution (2/3)
As an illustration, consider the solution to the perturbed problem

dz
dt

= z − t2 + 1 + δ, 0 ≤ t ≤ 2, z(0) = 0.5 + δ0

where δ and δ0 are constants.

The solutions to the original problem and this perturbed problem
are

y(t) = (t + 1)2 − 0.5et

and z(t) = (t + 1)2 + (δ + δ0 − 0.5)et − δ

respectively.
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Elementary Theory of IVPs: Well-Posed Problems

y(t) = (t + 1)2 − 0.5et

z(t) = (t + 1)2 + (δ + δ0 − 0.5)et − δ

Solution (3/3)
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Elementary Theory of IVPs: Well-Posed Problems

y(t) = (t + 1)2 − 0.5et

z(t) = (t + 1)2 + (δ + δ0 − 0.5)et − δ

Solution (3/3)
Suppose that ε is a positive number. If |δ| < ε and |δ0| < ε, then

|y(t) − z(t)| = |(δ + δ0)e
t − δ| ≤ |δ + δ0|e

2 + |δ| ≤ (2e2 + 1)ε

for all t .
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Elementary Theory of IVPs: Well-Posed Problems

y(t) = (t + 1)2 − 0.5et

z(t) = (t + 1)2 + (δ + δ0 − 0.5)et − δ

Solution (3/3)
Suppose that ε is a positive number. If |δ| < ε and |δ0| < ε, then

|y(t) − z(t)| = |(δ + δ0)e
t − δ| ≤ |δ + δ0|e

2 + |δ| ≤ (2e2 + 1)ε

for all t .

This implies that the original problem is well-posed with
k(ε) = 2e2 + 1 for all ε > 0.
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Mean Value Theorem

If f ∈ C[a, b] and f is differentiable on (a, b), then a number c exists
such that

f ′(c) =
f (b) − f (a)

b − a

y

xa bc

Slope f 9(c)

Parallel lines

Slope
b 2 a

f (b) 2 f (a)

y 5 f (x)

Return to Existence & Uniqueness Example
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