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LTE

Local Truncation Error

Informal Definition of LTE

The local truncation error at a specified step measures the amount by
which the exact solution to the differential equation fails to satisfy the
difference equation being used for the approximation at that step.
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@ We really want to know how well the approximations generated by
the methods satisfy the differential equation, not the other way
around.
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LTE

Local Truncation Error

Informal Definition of LTE

The local truncation error at a specified step measures the amount by
which the exact solution to the differential equation fails to satisfy the
difference equation being used for the approximation at that step.

@ We really want to know how well the approximations generated by
the methods satisfy the differential equation, not the other way
around.

@ However, we don’t know the exact solution so we cannot generally
determine this, and the local truncation will serve quite well to
determine not only the local error of a method but the actual
approximation error.

o
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LTE

Local Truncation Error

IVP y'=f(t,y), a<t<b, y(a) =« J

Definition of LTE

The difference method

Wp = &
Wii1 =Ww; + he(ti,w;), foreachi=0,1,...,N—1,
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LTE

Local Truncation Error

IVP y'=f(t,y), a<t<b, y(a) =« J

Definition of LTE
The difference method

Wp = &
Wii1 =Ww; + he(ti,w;), foreachi=0,1,...,N—1,
has local truncation error

i+1 — (Yi +ho(ti, y; i+1 —Yi
na(h) = Uit (yI (i, ¥i)) :y+1h Yo oy,

foreachi =0,1,...,N — 1, where y; and y;,; denote the solution at t;
and tj;, respectively.
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LTE

Local Truncation Error

Example: LTE in Euler's Method

Euler's method has local truncation error at the ith step

7i+1(h) = yl+1h Y —f(t,y;), foreachi=0,1,...,N—1
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Euler's method has local truncation error at the ith step

7i+1(h) = yl+1h Y —f(t,y;), foreachi=0,1,...,N—1

@ This error is a local error because it measures the accuracy of the
method at a specific step, assuming that the method was exact at
the previous step.
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LTE

Local Truncation Error

Example: LTE in Euler's Method

Euler's method has local truncation error at the ith step

7i+1(h) = yl+1h Y —f(t,y;), foreachi=0,1,...,N—1

@ This error is a local error because it measures the accuracy of the
method at a specific step, assuming that the method was exact at
the previous step.

@ As such, it depends on the differential equation, the step size, and
the particular step in the approximation.

o
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LTE

Local Truncation Error

LTE in Euler's Method (Cont’d)
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LTE

Local Truncation Error

LTE in Euler's Method (Cont’d)

Earlier, we have seen that, for Euler's method:

2

Y(tie1) = Y(t) + R, y(8) + 2" (6)
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LTE in Euler's Method (Cont’d)

Earlier, we have seen that, for Euler's method:

2
Y(tea) = Y(6) + (.Y (6) + 5y (&)
so that the LTE is
7ri+1(h) = 5y"(&), for some & in (t,ti11)
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LTE

Local Truncation Error

LTE in Euler's Method (Cont’d)

Earlier, we have seen that, for Euler's method:
h2
y(tiva) =y (t) + hf(ty(6)) + = y" (&)

so that the LTE is

7ri+1(h) = 5y"(&), for some & in (t,ti11)

When y”(t) is known to be bounded by a constant M on [a, b], this
implies
h
maa(h)] < 5M
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LTE

Local Truncation Error

LTE in Euler's Method (Cont’d)

Earlier, we have seen that, for Euler's method:
h2
y(tiva) =y (t) + hf(ty(6)) + = y" (&)

so that the LTE is

7ri+1(h) = 5y"(&), for some & in (t,ti11)

When y”(t) is known to be bounded by a constant M on [a, b], this
implies
h
maa(h)] < 5M

so the local truncation error in Euler's method is O(h).

o
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Taylor Methods

Using Taylor's Theorem

Motivation

@ One way to select difference-equation methods for solving
ordinary differential equations is in such a manner that their local
truncation errors are O(hP) for as large a value of p as possible,
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Taylor Methods

Using Taylor's Theorem

@ One way to select difference-equation methods for solving
ordinary differential equations is in such a manner that their local
truncation errors are O(hP) for as large a value of p as possible,

@ while keeping the number and complexity of calculations of the
methods within a reasonable bound.

@ Euler's method was derived by using Taylor's Theorem with n = 1
to approximate the solution of the differential equation.

@ Can we extend this technique of derivation to larger values of n in
order to find methods for improving the convergence properties of
difference methods?
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Taylor Methods

Higher-Order Taylor Methods

The solution y(t) to the initial-value problem
y'=f(ty), ast<b, y(a)=q,

has (n + 1) continuous derivatives.
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Taylor Methods

Higher-Order Taylor Methods

Assumption
The solution y(t) to the initial-value problem

yI:f(t’y)a ac<t Sba Y(a):a,

has (n + 1) continuous derivatives.

A\

Taylor Expansion about t;

If we expand the solution, y(t), in terms of its nth Taylor polynomial
about t; and evaluate at tj.;, we obtain

t — v(t hv/(t h2 "t h" (n) t hn+1 (n+1) (¢
y(tiv1) =y(t)+ Y(u)‘i‘?y (u)‘f‘""f‘my (u)‘i‘my (&)

for some & in (tj, ti11).

o
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Taylor Methods

Higher-Order Taylor Methods

Derivation (Cont’d)

o
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Taylor Methods

Higher-Order Taylor Methods

Derivation (Cont’d)
Successive differentiation of the solution, y(t), gives

y'(t) =f(t,y(), y'(t)=fty®), ... y©) =t Dty()

o
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Taylor Methods

Higher-Order Taylor Methods

Derivation (Cont’d)
Successive differentiation of the solution, y(t), gives

y'(t) =f(t,y(), y'(t)=fty®), ... y©) =t Dty()

Substituting these results into

2

, h " hn @) hn+1
y(tiy1) = y(t)+hy (ti)+§y (ti)+"'+my (t)+

(n+1
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Taylor Methods

Higher-Order Taylor Methods

Derivation (Cont’d)
Successive differentiation of the solution, y(t), gives

y'(t) =f(t,y(), y'(t)=fty®), ... y©) =t Dty()

Substituting these results into

2 n n+1
Y1) = Y)Y () + Y0+ ¥ ) + gy ()
gives
2
Yltn) = y()+ AR (6)) + o1y () + -
W -0 v o e (e (e
+m (Iay(l))+(n+l)! (&, y(&))

o
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Taylor Methods

Higher-Order Taylor Methods

Derivation (Cont'd)
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Taylor Methods

Higher-Order Taylor Methods

Derivation (Cont'd)
The difference-equation method corresponding to

2
y(tip) = y(t)+hf(t,y(t))+ =f'(t,yt)) +
n n+1
+ %f“‘—”(ti,y(ti)) + ey 6)

is obtained by deleting the remainder term involving &;.
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Taylor Methods

Higher-Order Taylor Methods

Taylor's Method of order n

Wog = «
Wi, = W +hT™(,w), foreach i=0,1,...,N—1

where

n—1
T(n)(ti,Wi) =f(t,w) + gfl(thwi) F oo F hTf(nfl)(ti,Wi)

Note: Euler's method is Taylor's method of order one. )
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Example

Higher-Order Taylor Methods

Example: Orders 2 & 4 Methods

Apply Taylor's method of orders

@ 2 and
Q4

with N = 10 to the initial-value problem

y=y—-t?+1, 0<t<2, y(0)=05
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Example

Higher-Order Taylor Methods

Order 2 Method (1/4)

For the method of order 2 we need the first derivative of
f(t,y(t)) = y(t) — t? + 1 with respect to the variable t.

o
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Example

Higher-Order Taylor Methods

Order 2 Method (1/4)

For the method of order 2 we need the first derivative of
f(t,y(t)) = y(t) — t2 + 1 with respect to the variable t. Because
y' =y —t? 4+ 1 we have

d
f/(t,y(t)):a(y—t2+1):y’—2t:y—t2+1—2t

o
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Example

Higher-Order Taylor Methods

Order 2 Method (1/4)

For the method of order 2 we need the first derivative of
f(t,y(t)) = y(t) — t2 + 1 with respect to the variable t. Because
y' =y —t? 4+ 1 we have

d
f/(t,y(t)):a(y—t2+1):y’—2t:y—t2+1—2t

SO
T(Z)(ti,Wi) = f(ti,Wi) + gf’(ti,Wi)

o
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Example

Higher-Order Taylor Methods

Order 2 Method (1/4)

For the method of order 2 we need the first derivative of
f(t,y(t)) = y(t) — t2 + 1 with respect to the variable t. Because
y' =y —t? 4+ 1 we have

Fty(t) = Sy~ +1) =y ~2t=y £ +1-2
SO

T(Z)(ti,Wi) = f(ti,Wi) =+ gf’(ti,Wi)

h

o
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Example

Higher-Order Taylor Methods

Order 2 Method (1/4)

For the method of order 2 we need the first derivative of
f(t,y(t)) = y(t) — t2 + 1 with respect to the variable t. Because
y' =y —t? 4+ 1 we have

Fty(t) = Sy~ +1) =y ~2t=y £ +1-2
SO

T(Z)(ti,Wi) = f(ti,Wi) =+ gf’(ti,Wi)

h

= <1+g> (Wi —t? +1) — ht;

o
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Example

Higher-Order Taylor Methods

Order 2 Method (2/4)

Because N = 10 we have h = 0.2, and t; = 0.2i for each
i=1,2,...,10.
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Example

Higher-Order Taylor Methods

Order 2 Method (2/4)

Because N = 10 we have h = 0.2, and t; = 0.2i for each
i=1,2,...,10. Thus, the second-order method becomes

wg = 05
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Example

Higher-Order Taylor Methods

Order 2 Method (2/4)

Because N = 10 we have h = 0.2, and t; = 0.2i for each
i=1,2,...,10. Thus, the second-order method becomes

wg = 05
h
Wi = wi+hK1+§) (Witi2+1)hti]
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Example

Higher-Order Taylor Methods

Order 2 Method (2/4)

Because N = 10 we have h = 0.2, and t; = 0.2i for each
i=1,2,...,10. Thus, the second-order method becomes

wg = 05
Wis1 = Wwi+h Kl g) (W, — i 1) — hti]
= w;+0.2 K )(w. 0.04i2+1)0.04i]
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Example

Higher-Order Taylor Methods

Order 2 Method (2/4)

Because N = 10 we have h = 0.2, and t; = 0.2i for each
i=1,2,...,10. Thus, the second-order method becomes

wg = 05

Wis1 = W +h Kl+g) (wi —ti2+1) hti]

0.2 . .
= w;+0.2 Kl + 7) (w; — 0.04i% +1) — 0.04|]

= 1.22w; — 0.0088i% — 0.008i + 0.22
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Example

Higher-Order Taylor Methods

Order 2 Method (3/4)
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Example

Higher-Order Taylor Methods

Order 2 Method (3/4)
The first two steps give the approximations

y(0.2) ~w; = 1.22(0.5) — 0.0088(0)? — 0.008(0) + 0.22
= 0.83

Numerical Analysis (Chapter 5) Higher-Order Taylor Methods R L Burden & J D Faires 18/33



Example

Higher-Order Taylor Methods

Order 2 Method (3/4)
The first two steps give the approximations

y(0.2) ~w; = 1.22(0.5) — 0.0088(0)? — 0.008(0) + 0.22
= 0.83

y(0.4) ~w, = 1.22(0.83)— 0.0088(0.2)> — 0.008(0.2) + 0.22
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Example

Higher-Order Taylor Methods

Order 2 Method (3/4)
The first two steps give the approximations

y(0.2) ~w; = 1.22(0.5) — 0.0088(0)? — 0.008(0) + 0.22
= 0.83

y(0.4) ~w, = 1.22(0.83)— 0.0088(0.2)> — 0.008(0.2) + 0.22
= 1.2158

All the approximations and their errors are shown in the following table.
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Example

Higher-Order Taylor Methods

Order 2 Method (4/4): Summary of Numerical Results

Taylor
Order 2 Error
t Wi ly (ti) — w;l

0.0 0.500000 O

0.2 0.830000 0.000701
0.4 1.215800 0.001712
0.6 1.652076 0.003135
0.8 2.132333 0.005103

1.6 4.306146 0.022663
1.8 4.846299 0.031122
2.0 5.347684 0.042212

o
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Example

Higher-Order Taylor Methods

Order 4 Method (1/7)

For the method of order 4

we need the first 3 derivatives of
f(t,y(t)) with respect to t.
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Example

Higher-Order Taylor Methods

Order 4 Method (1/7)

For the method of order 4 we need the first 3 derivatives of
f(t,y(t)) with respect to t. Again usingy’ =y — t? + 1 we have

f(t,y(t)) = y—t2+1—2t
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Example

Higher-Order Taylor Methods

Order 4 Method (1/7)

For the method of order 4 we need the first 3 derivatives of
f(t,y(t)) with respect to t. Again usingy’ =y — t? + 1 we have

f(t,y(t)) = y—t2+1—2t
Ly®) = Sy —+1-20
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Example
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Example

Higher-Order Taylor Methods

Order 4 Method (1/7)

For the method of order 4 we need the first 3 derivatives of
f(t,y(t)) with respect to t. Again usingy’ =y — t? + 1 we have

f(t,y(t)) = y—t2+1—2t

Ly() = Sy —2+1-20) =y ~ 22
— y-t?4+1-2t-2=y-t>2-2t-1
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Example

Higher-Order Taylor Methods

Order 4 Method (1/7)

For the method of order 4 we need the first 3 derivatives of
f(t,y(t)) with respect to t. Again usingy’ =y — t? + 1 we have
f(t,y(t)) = y—t2+1—2t
f'(t,y(t)) = %(y —t241-2t)=y' -2t -2
= y—t?+1-2t-2=y—-t2-2t-1
and f”(t,y(t)) = %(y —t2-2t—1)
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Example

Higher-Order Taylor Methods

Order 4 Method (1/7)

For the method of order 4 we need the first 3 derivatives of
f(t,y(t)) with respect to t. Again usingy’ =y — t? + 1 we have

f(t,y(t)) = y—t2+1—2t
f'(t,y(t)) = %(y—t2+1—2t):y’—2t—2
= y—t?+1-2t-2=y—-t2-2t-1
and f”(t,y(t)) = %(y—tz—Zt—l):y’—Zt—Z
= y—t?-2t—1
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Example

Higher-Order Taylor Methods

Order 4 Method (2/7)

o
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Example

Higher-Order Taylor Methods

Order 4 Method (2/7)

Therefore,

(4) h / h? " h? "
T wi) =t wi) + ST wi) + 7 wi) + 5 (6, wi)

o

Numerical Analysis (Chapter 5) Higher-Order Taylor Methods R L Burden & J D Faires 21/33



Example

Higher-Order Taylor Methods

Order 4 Method (2/7)

Therefore,

h h2 h3
TO,w) = f(tiaWi)+§f/(tiaWi)+gf”(tiywi)+ﬂfm(ti,wi)
h
— Wi—ti2+1+§(wi—ti2+1—2ti)

h?2 5 h3 5
+€(W| _ti —2ti —1)+ﬂ(w| _ti —2ti —1)

o
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Example

Higher-Order Taylor Methods

Order 4 Method (2/7)

Therefore,
(4) h / h? " h? "
T, wi) = f(ti,Wi)+§f (tiaWi)+€f (ti,Wi)+ﬂf (ti, wi)
h2 ’ h3 ’
h h? hs 5 h h2
= <1+§+€+ﬂ)(witi)<1+§+E>(hti)
h2 hs
Tty % 2

o
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Example

Higher-Order Taylor Methods

Order 4 Method (3/7)
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Example

Higher-Order Taylor Methods

Order 4 Method (3/7)

Hence Taylor's method of order four is

wg = 0.5,
h h?2 hd h h?
Wip1 = Wi+h[<1+§+€+ﬂ>(wi_ti2)_<1+§+E)hti
PR
2 6 24

fori =0,1,...,N — 1.
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Example

Higher-Order Taylor Methods

Order 4 Method (4/7)

Because N =10 and h = 0.2,
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Example

Higher-Order Taylor Methods

Order 4 Method (4/7)

Because N = 10 and h = 0.2, the method becomes

0.2 0.04 0.008 5
Wit1 = W +0.2[<1+7+T+7> (wj —0.04i7)

0.2 0.04 . 0.2 0.04 0.008
B (“?*E) (0'04')+1+7_T_7]
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Example

Higher-Order Taylor Methods

Order 4 Method (4/7)
Because N = 10 and h = 0.2, the method becomes

o 0.2 0.04 0.008 _ 2

Wit1 = W +0.2[<1+7+T+7> (wj —0.04i7)

B (1 0.2 0.04

. 0.2 0.04 0.008
+?+E> (0'04')+1+7_T_7]

= 1.2214w; — 0.008856i2 — 0.00856i + 0.2186

foreachi=0,1,...,9.
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Higher-Order Taylor Methods

Order 4 Method (5/7)
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Example

Higher-Order Taylor Methods

Order 4 Method (5/7)

The first two steps give the approximations

y(0.2) ~w; = 1.2214(0.5)— 0.008856(0)% — 0.00856(0) + 0.2186
— 0.8293

Numerical Analysis (Chapter 5) Higher-Order Taylor Methods R L Burden & J D Faires 24/33



Example

Higher-Order Taylor Methods

Order 4 Method (5/7)

The first two steps give the approximations

y(0.2) ~w; = 1.2214(0.5)— 0.008856(0)% — 0.00856(0) + 0.2186

= 0.8293
y(0.4) ~w, = 1.2214(0.8293)— 0.008856(0.2)2 — 0.00856(0.2)
+0.2186
— 1.214091
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Example

Higher-Order Taylor Methods

Order 4 Method (5/7)

The first two steps give the approximations

y(0.2) ~w; = 1.2214(0.5)— 0.008856(0)% — 0.00856(0) + 0.2186

= 0.8293
y(0.4) ~w, = 1.2214(0.8293)— 0.008856(0.2)2 — 0.00856(0.2)
+0.2186
— 1.214091

All the approximations and their errors are shown in the following table.
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Example

Higher-Order Taylor Methods

Order 4 Method (6/7): Summary of Numerical Results

Taylor
Order 4 Error
t Wi ly (ti) — w;l

0.0 0.500000 O

0.2 0.829300 0.000001
0.4 1.214091 0.000003
0.6 1.648947 0.000006

1.4 3.732432 0.000032
1.6 4.283529 0.000045
1.8 4.815238 0.000062
2.0 5.305555 0.000083

o
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Higher-Order Taylor Methods
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Example

Higher-Order Taylor Methods

Order 4 Method (7/7)

@ A comparison of these results with those of Taylor's method of
order 2 shows that the 4th-order results are vastly superior.
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Example

Higher-Order Taylor Methods

Order 4 Method (7/7)

@ A comparison of these results with those of Taylor's method of
order 2 shows that the 4th-order results are vastly superior.

@ The table of results for Taylor's method of order 4 indicate that the
method is quite accurate at the nodes 0.2, 0.4, etc.
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Theorem

Outline

e Local Truncation Error in Taylor Methods (Theorem)
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Theorem

Higher-Order Taylor Methods

Theorem
If Taylor's method of order n is used to approximate the solution to

y'(t) =f(t,y(t)), a<t<b, y(a)=a,

with step size h and if y € C"*[a, b], then the local truncation error is
O(h").
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Theorem

Higher-Order Taylor Methods

Proof (1/2)
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Theorem

Higher-Order Taylor Methods

Proof (1/2)

When deriving Taylor Methods, we obtained the expression

2 n hn+l

Y(tisn) = y(t) +hy/(t) - oy (6) 4+ Dy () +

5 ) y ™ (g)

(n+1)!
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Theorem

Higher-Order Taylor Methods

Proof (1/2)

When deriving Taylor Methods, we obtained the expression

2 hn+l

h h"

! — v(t MYy () oo — My 0 (1) (e
y(tiy1) =y(t)+hy'(t)+ 2y (t)+---+ n!y (t|)+(n+1)!y (&)
and this can be rewritten in the form

h2 h" 1
Yie1 —Yi — hf(ti,yi) — 7f'(ti,)’i)*"'* mf(n_ (6, v1)
hn+1
_ wre .

for some & in (tj, ti11).

o
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Theorem

Higher-Order Taylor Methods

h*, h" (-1
Yi+1*yi*hf(ti,)’i)*7f (ti,)’i)*"'*mf (ti,vi)
hn+1
_ (n) (e !

Proof (2/2)

o
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Theorem

Higher-Order Taylor Methods

h*, h" (-1
Yi+1*yi*hf(ti,)’i)*7f (ti,)’i)*"'*mf (ti,vi)
hn+1
_ (n) (e !

Proof (2/2)
So the local truncation error is

n

(n+1)!]c

Ti+1(h) = U = y'—T(")(ti,Yi)I

o ™(&,y(&))

foreachi =0,1,...,N — 1.

o
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Theorem

Higher-Order Taylor Methods

h*, h" (-1
Yi+1*yi*hf(ti,)’i)*7f (ti,)’i)*"'*mf (ti,vi)
hn+1
_ (n) (e !

Proof (2/2)
So the local truncation error is

n

CESRCRAD)

ni+1(h) = yIHh A TO,y) =
foreachi=0,1,...,N — 1. Since y € C"*[a, b], we have
y(M+(t) = f(” ( ,y(t)) bounded on [a,b] and 7;(h) = O(h™), for each
i—1,2.. N

o
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Questions?



Reference Material



Higher-Order Taylor Methods

Taylor's Method of order n

Wog = «
Wi = w+hT™M,w), foreach i=01,...,N—1

where

n—1
TO(t,wi) = f(ti,w) + gf'(ti,Wi) Sk hTf(n_l)(thWi)
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