Initial-Value Problems for ODEs

Higher-Order Taylor Methods

Numerical Analysis (9th Edition)
R L Burden & J D Faires

Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

Outline

1 The Local Truncation Error of a Method

- The Local Truncation Error of a Method
- Higher-Order Taylor Methods

- The Local Truncation Error of a Method
- 2 Higher-Order Taylor Methods
- 3 Example: Taylor Methods of Order 2 & 4

- The Local Truncation Error of a Method
- Higher-Order Taylor Methods
- Example: Taylor Methods of Order 2 & 4
- 4 Local Truncation Error in Taylor Methods (Theorem)

- The Local Truncation Error of a Method
- 2 Higher-Order Taylor Methods
- 3 Example: Taylor Methods of Order 2 & 4
- 4 Local Truncation Error in Taylor Methods (Theorem)

Local Truncation Error

Informal Definition of LTE

The local truncation error at a specified step measures the amount by which the exact solution to the differential equation fails to satisfy the difference equation being used for the approximation at that step.

Local Truncation Error

Informal Definition of LTE

The local truncation error at a specified step measures the amount by which the exact solution to the differential equation fails to satisfy the difference equation being used for the approximation at that step.

Note

 We really want to know how well the approximations generated by the methods satisfy the differential equation, not the other way around.

Local Truncation Error

Informal Definition of LTE

The local truncation error at a specified step measures the amount by which the exact solution to the differential equation fails to satisfy the difference equation being used for the approximation at that step.

Note

- We really want to know how well the approximations generated by the methods satisfy the differential equation, not the other way around.
- However, we don't know the exact solution so we cannot generally determine this, and the local truncation will serve quite well to determine not only the local error of a method but the actual approximation error.

$$y' = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha$$

Definition of LTE

The difference method

$$w_0 = \alpha$$

$$w_{i+1} = w_i + h\phi(t_i, w_i),$$
 for each $i = 0, 1, ..., N-1$,

$$y' = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha$$

Definition of LTE

The difference method

$$w_0 = \alpha$$

 $w_{i+1} = w_i + h\phi(t_i, w_i)$, for each $i = 0, 1, ..., N-1$,

has local truncation error

$$\tau_{i+1}(h) = \frac{y_{i+1} - (y_i + h\phi(t_i, y_i))}{h} = \frac{y_{i+1} - y_i}{h} - \phi(t_i, y_i),$$

for each i = 0, 1, ..., N - 1, where y_i and y_{i+1} denote the solution at t_i and t_{i+1} , respectively.

Example: LTE in Euler's Method

Euler's method has local truncation error at the ith step

$$\tau_{i+1}(h) = \frac{y_{i+1} - y_i}{h} - f(t_i, y_i), \text{ for each } i = 0, 1, \dots, N-1$$

Example: LTE in Euler's Method

Euler's method has local truncation error at the ith step

$$\tau_{i+1}(h) = \frac{y_{i+1} - y_i}{h} - f(t_i, y_i), \text{ for each } i = 0, 1, \dots, N-1$$

 This error is a local error because it measures the accuracy of the method at a specific step, assuming that the method was exact at the previous step.

Example: LTE in Euler's Method

Euler's method has local truncation error at the ith step

$$\tau_{i+1}(h) = \frac{y_{i+1} - y_i}{h} - f(t_i, y_i), \text{ for each } i = 0, 1, \dots, N-1$$

- This error is a local error because it measures the accuracy of the method at a specific step, assuming that the method was exact at the previous step.
- As such, it depends on the differential equation, the step size, and the particular step in the approximation.

LTE in Euler's Method (Cont'd)

LTE in Euler's Method (Cont'd)

Earlier, we have seen that, for Euler's method:

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}y''(\xi_i)$$

LTE in Euler's Method (Cont'd)

Earlier, we have seen that, for Euler's method:

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}y''(\xi_i)$$

so that the LTE is

$$\tau_{i+1}(h) = \frac{h}{2}y''(\xi_i), \quad \text{for some } \xi_i \text{ in } (t_i, t_{i+1})$$

LTE in Euler's Method (Cont'd)

Earlier, we have seen that, for Euler's method:

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}y''(\xi_i)$$

so that the LTE is

$$\tau_{i+1}(h) = \frac{h}{2}y''(\xi_i), \quad \text{for some } \xi_i \text{ in } (t_i, t_{i+1})$$

When y''(t) is known to be bounded by a constant M on [a, b], this implies

$$| au_{i+1}(h)| \leq \frac{h}{2}M$$

Local Truncation Error

LTE in Euler's Method (Cont'd)

Earlier, we have seen that, for Euler's method:

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}y''(\xi_i)$$

so that the LTE is

$$\tau_{i+1}(h) = \frac{h}{2}y''(\xi_i), \text{ for some } \xi_i \text{ in } (t_i, t_{i+1})$$

When y''(t) is known to be bounded by a constant M on [a, b], this implies

$$|\tau_{i+1}(h)|\leq \frac{h}{2}M$$

so the local truncation error in Euler's method is O(h).

- The Local Truncation Error of a Method
- Higher-Order Taylor Methods
- 3 Example: Taylor Methods of Order 2 & 4
- 4 Local Truncation Error in Taylor Methods (Theorem)

Using Taylor's Theorem

```
Motivation
```

Using Taylor's Theorem

Motivation

• One way to select difference-equation methods for solving ordinary differential equations is in such a manner that their local truncation errors are $O(h^p)$ for as large a value of p as possible,

Using Taylor's Theorem

Motivation

- One way to select difference-equation methods for solving ordinary differential equations is in such a manner that their local truncation errors are $O(h^p)$ for as large a value of p as possible, ...
- while keeping the number and complexity of calculations of the methods within a reasonable bound.

Using Taylor's Theorem

Motivation

- One way to select difference-equation methods for solving ordinary differential equations is in such a manner that their local truncation errors are $O(h^p)$ for as large a value of p as possible, ...
- while keeping the number and complexity of calculations of the methods within a reasonable bound.
- Euler's method was derived by using Taylor's Theorem with n = 1 to approximate the solution of the differential equation.

Using Taylor's Theorem

Motivation

- One way to select difference-equation methods for solving ordinary differential equations is in such a manner that their local truncation errors are $O(h^p)$ for as large a value of p as possible, ...
- while keeping the number and complexity of calculations of the methods within a reasonable bound.
- Euler's method was derived by using Taylor's Theorem with n = 1 to approximate the solution of the differential equation.
- Can we extend this technique of derivation to larger values of n in order to find methods for improving the convergence properties of difference methods?

Higher-Order Taylor Methods

Assumption

The solution y(t) to the initial-value problem

$$y' = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha,$$

has (n+1) continuous derivatives.

10/33

Higher-Order Taylor Methods

Assumption

The solution y(t) to the initial-value problem

$$y' = f(t, y), \quad a < t < b, \quad y(a) = \alpha,$$

has (n+1) continuous derivatives.

Taylor Expansion about t_i

If we expand the solution, y(t), in terms of its nth Taylor polynomial about t_i and evaluate at t_{i+1} , we obtain

$$y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(t_i) + \dots + \frac{h^n}{n!}y^{(n)}(t_i) + \frac{h^{n+1}}{(n+1)!}y^{(n+1)}(\xi_i)$$

for some ξ_i in (t_i, t_{i+1}) .

Higher-Order Taylor Methods

Derivation (Cont'd)

Higher-Order Taylor Methods

Derivation (Cont'd)

Successive differentiation of the solution, y(t), gives

$$y'(t) = f(t, y(t)), \quad y''(t) = f'(t, y(t)), \quad \dots \quad y^{(k)}(t) = f^{(k-1)}(t, y(t))$$

Derivation (Cont'd)

Successive differentiation of the solution, y(t), gives

$$y'(t) = f(t, y(t)), \quad y''(t) = f'(t, y(t)), \quad \dots \quad y^{(k)}(t) = f^{(k-1)}(t, y(t))$$

Substituting these results into

$$y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(t_i) + \cdots + \frac{h^n}{n!}y^{(n)}(t_i) + \frac{h^{n+1}}{(n+1)!}y^{(n+1)}(\xi_i)$$

Derivation (Cont'd)

Successive differentiation of the solution, y(t), gives

$$y'(t) = f(t, y(t)), \quad y''(t) = f'(t, y(t)), \quad \dots \quad y^{(k)}(t) = f^{(k-1)}(t, y(t))$$

Substituting these results into

$$y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(t_i) + \cdots + \frac{h^n}{n!}y^{(n)}(t_i) + \frac{h^{n+1}}{(n+1)!}y^{(n+1)}(\xi_i)$$

gives

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}f'(t_i, y(t_i)) + \cdots + \frac{h^n}{n!}f^{(n-1)}(t_i, y(t_i)) + \frac{h^{n+1}}{(n+1)!}f^{(n)}(\xi_i, y(\xi_i))$$

Derivation (Cont'd)

Derivation (Cont'd)

The difference-equation method corresponding to

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}f'(t_i, y(t_i)) + \cdots + \frac{h^n}{n!}f^{(n-1)}(t_i, y(t_i)) + \frac{h^{n+1}}{(n+1)!}f^{(n)}(\xi_i, y(\xi_i))$$

is obtained by deleting the remainder term involving ξ_i .

12/33

Taylor's Method of order n

$$w_0 = \alpha$$

 $w_{i+1} = w_i + hT^{(n)}(t_i, w_i)$, for each $i = 0, 1, ..., N-1$

where

$$T^{(n)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2}f'(t_i, w_i) + \cdots + \frac{h^{n-1}}{n!}f^{(n-1)}(t_i, w_i)$$

Note: Euler's method is Taylor's method of order one.

- The Local Truncation Error of a Method
- 2 Higher-Order Taylor Methods
- Example: Taylor Methods of Order 2 & 4
- 4 Local Truncation Error in Taylor Methods (Theorem)

Example: Orders 2 & 4 Methods

Apply Taylor's method of orders

- 2 and
- 4

with N = 10 to the initial-value problem

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$

Higher-Order Taylor Methods

Order 2 Method (1/4)

For the method of order 2 Paylor's Nethod we need the first derivative of $f(t, y(t)) = y(t) - t^2 + 1$ with respect to the variable t.

Higher-Order Taylor Methods

Order 2 Method (1/4)

For the method of order 2 • Taylor's Nethod we need the first derivative of $f(t,y(t))=y(t)-t^2+1$ with respect to the variable t. Because $y'=y-t^2+1$ we have

$$f'(t,y(t)) = \frac{d}{dt}(y-t^2+1) = y'-2t = y-t^2+1-2t$$

Order 2 Method (1/4)

For the method of order 2 • Taylor's Nethod we need the first derivative of $f(t,y(t))=y(t)-t^2+1$ with respect to the variable t. Because $y'=y-t^2+1$ we have

$$f'(t,y(t)) = \frac{d}{dt}(y-t^2+1) = y'-2t = y-t^2+1-2t$$

so

$$T^{(2)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2}f'(t_i, w_i)$$

Higher-Order Taylor Methods

Order 2 Method (1/4)

For the method of order 2 • Taylor's Nethod we need the first derivative of $f(t,y(t))=y(t)-t^2+1$ with respect to the variable t. Because $y'=y-t^2+1$ we have

$$f'(t,y(t)) = \frac{d}{dt}(y-t^2+1) = y'-2t = y-t^2+1-2t$$

SO

$$T^{(2)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2}f'(t_i, w_i)$$
$$= w_i - t_i^2 + 1 + \frac{h}{2}(w_i - t_i^2 + 1 - 2t_i)$$

Higher-Order Taylor Methods

Order 2 Method (1/4)

For the method of order 2 • Taylor's Nethod we need the first derivative of $f(t,y(t))=y(t)-t^2+1$ with respect to the variable t. Because $y'=y-t^2+1$ we have

$$f'(t,y(t)) = \frac{d}{dt}(y-t^2+1) = y'-2t = y-t^2+1-2t$$

SO

$$T^{(2)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2}f'(t_i, w_i)$$

$$= w_i - t_i^2 + 1 + \frac{h}{2}(w_i - t_i^2 + 1 - 2t_i)$$

$$= \left(1 + \frac{h}{2}\right)(w_i - t_i^2 + 1) - ht_i$$

Higher-Order Taylor Methods

Order 2 Method (2/4)

Because N = 10 we have h = 0.2, and $t_i = 0.2i$ for each i = 1, 2, ..., 10.

Higher-Order Taylor Methods

Order 2 Method (2/4)

$$w_0 = 0.5$$

Order 2 Method (2/4)

$$w_0 = 0.5$$

 $w_{i+1} = w_i + h \left[\left(1 + \frac{h}{2} \right) \left(w_i - t_i^2 + 1 \right) - h t_i \right]$

Order 2 Method (2/4)

$$w_{0} = 0.5$$

$$w_{i+1} = w_{i} + h \left[\left(1 + \frac{h}{2} \right) \left(w_{i} - t_{i}^{2} + 1 \right) - ht_{i} \right]$$

$$= w_{i} + 0.2 \left[\left(1 + \frac{0.2}{2} \right) \left(w_{i} - 0.04i^{2} + 1 \right) - 0.04i \right]$$

Order 2 Method (2/4)

$$w_{0} = 0.5$$

$$w_{i+1} = w_{i} + h \left[\left(1 + \frac{h}{2} \right) \left(w_{i} - t_{i}^{2} + 1 \right) - ht_{i} \right]$$

$$= w_{i} + 0.2 \left[\left(1 + \frac{0.2}{2} \right) \left(w_{i} - 0.04i^{2} + 1 \right) - 0.04i \right]$$

$$= 1.22w_{i} - 0.0088i^{2} - 0.008i + 0.22$$

```
Order 2 Method (3/4)
```

Order 2 Method (3/4)

The first two steps give the approximations

$$y(0.2) \approx w_1 = 1.22(0.5) - 0.0088(0)^2 - 0.008(0) + 0.22$$

= 0.83

Order 2 Method (3/4)

The first two steps give the approximations

$$y(0.2) \approx w_1 = 1.22(0.5) - 0.0088(0)^2 - 0.008(0) + 0.22$$

= 0.83
 $y(0.4) \approx w_2 = 1.22(0.83) - 0.0088(0.2)^2 - 0.008(0.2) + 0.22$
= 1.2158

Higher-Order Taylor Methods

Order 2 Method (3/4)

The first two steps give the approximations

$$y(0.2) \approx w_1 = 1.22(0.5) - 0.0088(0)^2 - 0.008(0) + 0.22$$

= 0.83
 $y(0.4) \approx w_2 = 1.22(0.83) - 0.0088(0.2)^2 - 0.008(0.2) + 0.22$
= 1.2158

All the approximations and their errors are shown in the following table.

Order 2 Method (4/4): Summary of Numerical Results

	Taylor	
	Order 2	Error
t_i	W_i	$ y(t_i)-w_i $
0.0	0.500000	0
0.2	0.830000	0.000701
0.4	1.215800	0.001712
0.6	1.652076	0.003135
8.0	2.132333	0.005103
÷	÷	:
1.6	4.306146	0.022663
1.8	4.846299	0.031122
2.0	5.347684	0.042212

Higher-Order Taylor Methods

Order 4 Method (1/7)

For the method of order 4 \bigcirc Taylors Nethod we need the first 3 derivatives of f(t, y(t)) with respect to t.

Order 4 Method (1/7)

$$f'(t, y(t)) = y - t^2 + 1 - 2t$$

Order 4 Method (1/7)

$$f'(t, y(t)) = y - t^2 + 1 - 2t$$

 $f''(t, y(t)) = \frac{d}{dt}(y - t^2 + 1 - 2t)$

Order 4 Method (1/7)

$$f'(t, y(t)) = y - t^2 + 1 - 2t$$

 $f''(t, y(t)) = \frac{d}{dt}(y - t^2 + 1 - 2t) = y' - 2t - 2$

Order 4 Method (1/7)

$$f'(t, y(t)) = y - t^{2} + 1 - 2t$$

$$f''(t, y(t)) = \frac{d}{dt}(y - t^{2} + 1 - 2t) = y' - 2t - 2$$

$$= y - t^{2} + 1 - 2t - 2$$

Higher-Order Taylor Methods

Order 4 Method (1/7)

$$f'(t, y(t)) = y - t^{2} + 1 - 2t$$

$$f''(t, y(t)) = \frac{d}{dt}(y - t^{2} + 1 - 2t) = y' - 2t - 2$$

$$= y - t^{2} + 1 - 2t - 2 = y - t^{2} - 2t - 1$$

Order 4 Method (1/7)

$$f'(t, y(t)) = y - t^2 + 1 - 2t$$

$$f''(t, y(t)) = \frac{d}{dt}(y - t^2 + 1 - 2t) = y' - 2t - 2$$

$$= y - t^2 + 1 - 2t - 2 = y - t^2 - 2t - 1$$
and
$$f'''(t, y(t)) = \frac{d}{dt}(y - t^2 - 2t - 1)$$

Order 4 Method (1/7)

$$f'(t, y(t)) = y - t^2 + 1 - 2t$$

$$f''(t, y(t)) = \frac{d}{dt}(y - t^2 + 1 - 2t) = y' - 2t - 2$$

$$= y - t^2 + 1 - 2t - 2 = y - t^2 - 2t - 1$$
and
$$f'''(t, y(t)) = \frac{d}{dt}(y - t^2 - 2t - 1) = y' - 2t - 2$$

Order 4 Method (1/7)

$$f'(t, y(t)) = y - t^{2} + 1 - 2t$$

$$f''(t, y(t)) = \frac{d}{dt}(y - t^{2} + 1 - 2t) = y' - 2t - 2$$

$$= y - t^{2} + 1 - 2t - 2 = y - t^{2} - 2t - 1$$
and
$$f'''(t, y(t)) = \frac{d}{dt}(y - t^{2} - 2t - 1) = y' - 2t - 2$$

$$= y - t^{2} - 2t - 1$$

Order 4 Method (2/7)

Order 4 Method (2/7)

Therefore,

$$T^{(4)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2}f'(t_i, w_i) + \frac{h^2}{6}f''(t_i, w_i) + \frac{h^3}{24}f'''(t_i, w_i)$$

Order 4 Method (2/7)

Therefore,

$$T^{(4)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2}f'(t_i, w_i) + \frac{h^2}{6}f''(t_i, w_i) + \frac{h^3}{24}f'''(t_i, w_i)$$

$$= w_i - t_i^2 + 1 + \frac{h}{2}(w_i - t_i^2 + 1 - 2t_i)$$

$$+ \frac{h^2}{6}(w_i - t_i^2 - 2t_i - 1) + \frac{h^3}{24}(w_i - t_i^2 - 2t_i - 1)$$

Order 4 Method (2/7)

Therefore,

$$T^{(4)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2}f'(t_i, w_i) + \frac{h^2}{6}f''(t_i, w_i) + \frac{h^3}{24}f'''(t_i, w_i)$$

$$= w_i - t_i^2 + 1 + \frac{h}{2}(w_i - t_i^2 + 1 - 2t_i)$$

$$+ \frac{h^2}{6}(w_i - t_i^2 - 2t_i - 1) + \frac{h^3}{24}(w_i - t_i^2 - 2t_i - 1)$$

$$= \left(1 + \frac{h}{2} + \frac{h^2}{6} + \frac{h^3}{24}\right)(w_i - t_i^2) - \left(1 + \frac{h}{3} + \frac{h^2}{12}\right)(ht_i)$$

$$+ 1 + \frac{h}{2} - \frac{h^2}{6} - \frac{h^3}{24}$$

```
Order 4 Method (3/7)
```

Order 4 Method (3/7)

Hence Taylor's method of order four is

$$w_{0} = 0.5,$$

$$w_{i+1} = w_{i} + h \left[\left(1 + \frac{h}{2} + \frac{h^{2}}{6} + \frac{h^{3}}{24} \right) (w_{i} - t_{i}^{2}) - \left(1 + \frac{h}{3} + \frac{h^{2}}{12} \right) h t_{i} + 1 + \frac{h}{2} - \frac{h^{2}}{6} - \frac{h^{3}}{24} \right]$$

for i = 0, 1, ..., N - 1.

Higher-Order Taylor Methods

Order 4 Method (4/7)

Because N = 10 and h = 0.2,

Order 4 Method (4/7)

Because N = 10 and h = 0.2, the method becomes

$$w_{i+1} = w_i + 0.2 \left[\left(1 + \frac{0.2}{2} + \frac{0.04}{6} + \frac{0.008}{24} \right) (w_i - 0.04i^2) - \left(1 + \frac{0.2}{3} + \frac{0.04}{12} \right) (0.04i) + 1 + \frac{0.2}{2} - \frac{0.04}{6} - \frac{0.008}{24} \right]$$

Order 4 Method (4/7)

Because N = 10 and h = 0.2, the method becomes

$$w_{i+1} = w_i + 0.2 \left[\left(1 + \frac{0.2}{2} + \frac{0.04}{6} + \frac{0.008}{24} \right) (w_i - 0.04i^2) - \left(1 + \frac{0.2}{3} + \frac{0.04}{12} \right) (0.04i) + 1 + \frac{0.2}{2} - \frac{0.04}{6} - \frac{0.008}{24} \right]$$

$$= 1.2214w_i - 0.008856i^2 - 0.00856i + 0.2186$$

for each i = 0, 1, ..., 9.

Order 4 Method (5/7)

Higher-Order Taylor Methods

Order 4 Method (5/7)

The first two steps give the approximations

$$y(0.2) \approx w_1 = 1.2214(0.5) - 0.008856(0)^2 - 0.00856(0) + 0.2186$$

= 0.8293

Higher-Order Taylor Methods

Order 4 Method (5/7)

The first two steps give the approximations

$$y(0.2) \approx w_1 = 1.2214(0.5) - 0.008856(0)^2 - 0.00856(0) + 0.2186$$

= 0.8293
 $y(0.4) \approx w_2 = 1.2214(0.8293) - 0.008856(0.2)^2 - 0.00856(0.2)$
+0.2186

$$= 1.214091$$

Higher-Order Taylor Methods

Order 4 Method (5/7)

The first two steps give the approximations

$$y(0.2) \approx w_1 = 1.2214(0.5) - 0.008856(0)^2 - 0.00856(0) + 0.2186$$

= 0.8293
 $y(0.4) \approx w_2 = 1.2214(0.8293) - 0.008856(0.2)^2 - 0.00856(0.2)$
+0.2186
= 1.214091

All the approximations and their errors are shown in the following table.

Order 4 Method (6/7): Summary of Numerical Results

	Taylor	
	Order 4	Error
t_i	W_i	$ y(t_i)-w_i $
0.0	0.500000	0
0.2	0.829300	0.000001
0.4	1.214091	0.000003
0.6	1.648947	0.000006
÷	÷	÷
1.4	3.732432	0.000032
1.6	4.283529	0.000045
1.8	4.815238	0.000062
2.0	5.305555	0.000083

Higher-Order Taylor Methods

Order 4 Method (7/7)

Higher-Order Taylor Methods

Order 4 Method (7/7)

 A comparison of these results with those of Taylor's method of order 2 shows that the 4th-order results are vastly superior.

Higher-Order Taylor Methods

Order 4 Method (7/7)

- A comparison of these results with those of Taylor's method of order 2 shows that the 4th-order results are vastly superior.
- The table of results for Taylor's method of order 4 indicate that the method is quite accurate at the nodes 0.2, 0.4, etc.

Outline

- The Local Truncation Error of a Method
- 2 Higher-Order Taylor Methods
- 3 Example: Taylor Methods of Order 2 & 4
- 4 Local Truncation Error in Taylor Methods (Theorem)

Higher-Order Taylor Methods

Theorem

If Taylor's method of order *n* is used to approximate the solution to

$$y'(t) = f(t, y(t)), \quad a \le t \le b, \quad y(a) = \alpha,$$

with step size h and if $y \in C^{n+1}[a, b]$, then the local truncation error is $O(h^n)$.

```
Proof (1/2)
```

Higher-Order Taylor Methods

Proof (1/2)

When deriving Taylor Methods, we obtained the expression

$$y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(t_i) + \cdots + \frac{h^n}{n!}y^{(n)}(t_i) + \frac{h^{n+1}}{(n+1)!}y^{(n+1)}(\xi_i)$$

Higher-Order Taylor Methods

Proof (1/2)

When deriving Taylor Methods, we obtained the expression

$$y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(t_i) + \cdots + \frac{h^n}{n!}y^{(n)}(t_i) + \frac{h^{n+1}}{(n+1)!}y^{(n+1)}(\xi_i)$$

and this can be rewritten in the form

$$y_{i+1} - y_i - hf(t_i, y_i) - \frac{h^2}{2}f'(t_i, y_i) - \dots - \frac{h^n}{n!}f^{(n-1)}(t_i, y_i)$$

$$= \frac{h^{n+1}}{(n+1)!}f^{(n)}(\xi_i, y(\xi_i))$$

for some ξ_i in (t_i, t_{i+1}) .

$$y_{i+1} - y_i - hf(t_i, y_i) - \frac{h^2}{2}f'(t_i, y_i) - \dots - \frac{h^n}{n!}f^{(n-1)}(t_i, y_i)$$

$$= \frac{h^{n+1}}{(n+1)!}f^{(n)}(\xi_i, y(\xi_i))$$

Proof (2/2)

$$y_{i+1} - y_i - hf(t_i, y_i) - \frac{h^2}{2}f'(t_i, y_i) - \dots - \frac{h^n}{n!}f^{(n-1)}(t_i, y_i)$$

$$= \frac{h^{n+1}}{(n+1)!}f^{(n)}(\xi_i, y(\xi_i))$$

Proof (2/2)

So the local truncation error is

$$\tau_{i+1}(h) = \frac{y_{i+1} - y_i}{h} - T^{(n)}(t_i, y_i) = \frac{h^n}{(n+1)!} f^{(n)}(\xi_i, y(\xi_i))$$

for each i = 0, 1, ..., N - 1.

$$y_{i+1} - y_i - hf(t_i, y_i) - \frac{h^2}{2}f'(t_i, y_i) - \dots - \frac{h^n}{n!}f^{(n-1)}(t_i, y_i)$$

$$= \frac{h^{n+1}}{(n+1)!}f^{(n)}(\xi_i, y(\xi_i))$$

Proof (2/2)

So the local truncation error is

$$\tau_{i+1}(h) = \frac{y_{i+1} - y_i}{h} - T^{(n)}(t_i, y_i) = \frac{h^n}{(n+1)!} f^{(n)}(\xi_i, y(\xi_i))$$

for each $i=0,1,\ldots,N-1$. Since $y\in C^{n+1}[a,b]$, we have $y^{(n+1)}(t)=f^{(n)}(t,y(t))$ bounded on [a,b] and $\tau_i(h)=O(h^n)$, for each $i=1,2,\ldots,N$.

Questions?

Reference Material

Taylor's Method of order *n*

$$w_0 = \alpha$$

 $w_{i+1} = w_i + hT^{(n)}(t_i, w_i), \text{ for each } i = 0, 1, ..., N-1$

where

$$T^{(n)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2}f'(t_i, w_i) + \cdots + \frac{h^{n-1}}{n!}f^{(n-1)}(t_i, w_i)$$

◆ Return to Example on Taylor's 2nd Order Method

Return to Example on Taylor's 4th Order Method

