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Taylor Methods .v. Runge-Kutta Methods

@ Taylor methods have the desirable property of high-order local
truncation error,

@ but the disadvantage of requiring the computation and evaluation
of the derivatives of f(t,y).

@ This is a complicated and time-consuming procedure for most
problems, so the Taylor methods are seldom used in practice.

@ Runge-Kutta methods have the high-order local truncation error of
the Taylor methods but eliminate the need to compute and
evaluate the derivatives of f(t,y).

Numerical Analysis (Chapter 5) Runge-Kutta Methods R L Burden & J D Faires 4/34



Introduction

Taylor Theorem in 2 Variables (1/2)

Suppose that f(t,y) and all its partial derivatives of order less than or
equal to n + 1 are continuouson D = { (t,y) |la<t <b,c <y <d},
and let (tp,Yo) € D. For every (t,y) € D, there exists ¢ between t and
to and u between y and yg with

f(t,y) = Pn(t,y) + Ra(t,y)
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Introduction

Taylor Theorem in 2 Variables (1/2)

Suppose that f(t,y) and all its partial derivatives of order less than or
equal to n + 1 are continuouson D = { (t,y) |la<t <b,c <y <d},
and let (tp,Yo) € D. For every (t,y) € D, there exists ¢ between t and
to and u between y and yg with

f(t,y) = Pn(t,y) + Ra(t,y)

The function Py (t,y) is called the nth Taylor polynomial in two
variables for the function f about (to, yo), and Rn(t,y) is the remainder
term associated with P, (t,y).

Details of P,(t,y) and Ry(t,y) are given on the next slide. |
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Introduction

Taylor Theorem in 2 Variables (2/2)

Pa(ty) = flto.yo) + [(t = t0) 0, Y0) + (¥~ Yo) 5 (1Y)

N2 a2 o2
[(t ztO) gti(thO) +(t —to)(y — YO)atafy(to,yo)
(y Yo)? 0°f

2 ayz (tO YO):|
1 <~ /n n—j ; of
+ {n! 2 <j>(t —10)" (Y — Yo) m(toayo)

+1
n+1 on+if
Ra(t,y) = _ < j >(t —10)"(y — yo) m(f,

1)

o
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Outline
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Runge-Kutta 2

2nd Order Runge-Kutta Methods

Basic Structure of RK2 Methods

Our starting point is to assume that the numerical method has the
following structure:

Wo = «
Wiys = Wi+arf(t+a,w+ 70f(t,w))
fori =0,1,...,N — 1, where a;, a7 and (J; are parameters to be

determined to ensure a local truncation error of O(h?).
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2nd Order Runge-Kutta Methods

Method of Derivation

o
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2nd Order Runge-Kutta Methods

Method of Derivation

The first step is to determine values for a;, a1, and (; with the property
that

h
arf (t+agy + 1) = TOy) =f(ty) + 5f'(Ly),

with error no greater than O(h?), which is same as the order of the
local truncation error for the Taylor method of order two.
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The first step is to determine values for a;, a1, and (; with the property
that

h
arf (t+agy + 1) = TOy) =f(ty) + 5f'(Ly),

with error no greater than O(h?), which is same as the order of the
local truncation error for the Taylor method of order two. Since

F(ty) = GtY) = AN+ 5y YO and ¥ =1y,
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2nd Order Runge-Kutta Methods

Method of Derivation

The first step is to determine values for a;, a1, and (; with the property
that

h
arf (t+agy + 1) = TOy) =f(ty) + 5f'(Ly),

with error no greater than O(h?), which is same as the order of the
local truncation error for the Taylor method of order two. Since

df of of , by
Flty) = Gty) = (tY) + 5, Gy) y'(©)  and y'(t) =f(ty),
we have

h of h of
@)(t,y) = .
TEMY) =1y) + 35 LY + 555 (LY) (L)
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Runge-Kutta 2

2nd Order Runge-Kutta Methods

Method of Derivation (Cont’d)

Expanding f(t + a1,y + (1) in its Taylor polynomial of degree one
about (t,y) gives

of
af(t+ag,y +51) = alf(t,y)+a1a1§(t,y)

of
+ alﬁl@(M/) +ag-Rai(t + a1,y +61)
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2nd Order Runge-Kutta Methods

Method of Derivation (Cont’d)

Expanding f(t + a1,y + (1) in its Taylor polynomial of degree one
about (t,y) gives

of
arf(t+ag,y +61) = aif(t, y)jtalozl6

of
+ alﬁl@(M/) +ag-Rai(t + a1,y +61)

(t,y)

where

2 52f 0°f %f
Ri(t+ o1,y +61) = %W(&M) 1516t8y(5 M)‘f‘ﬂzlayz(&/i)

for some £ betweent andt + a4 and y betweeny andy + ;.
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Runge-Kutta 2

2nd Order Runge-Kutta Methods

Method of Derivation (Cont’d)

Matching the coefficients of f and its derivatives in

of
arf(t+ o1,y +51) = asf(tyy) 7“3110118 (t,y)
of
+alﬁ1@(t7Y) +ag-Rai(t + a1,y +61)

and
h of h of
@)(t,y) = .
TEMY) =1y) + 35 LY + 55, (LY) (L)
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2nd Order Runge-Kutta Methods

Method of Derivation (Cont’d)

Matching the coefficients of f and its derivatives in

of
arf(t+ o1,y +51) = asf(tyy) 7“3110118 (t,y)
of
+alﬁ1@(t7Y) +ag-Rai(t + a1,y +61)

and
h of h of
@)(t,y) = .
TEMY) =1y) + 35 LY + 55, (LY) (L)

gives the three equations

a1 f = h (t y)

N>

a;=1 A1 =
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Runge-Kutta 2

2nd Order Runge-Kutta Methods

h h
a;=1 o =5 a1 f = Ef(t,Y) J
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Runge-Kutta 2

2nd Order Runge-Kutta Methods

h h
a; =1 ao1 = 5 a1 f = (t y) J

Method of Derivation (Cont’d)

The parameters a;, a4, and 3, are therefore

h h
a;=1 @ =g ﬁlzéf(t,Y)

so that

h h h h
(2) = — — _ - —
TY)(t,y) f<t+2,y+2f(t,y)) R1 <t+2,y+2f(t,y)>
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Runge-Kutta 2

2nd Order Runge-Kutta Methods

Method of Derivation (Cont’d)

Earlier, we saw that

20% 0% el
GO (e +rBad (€ ) + 2T e g

Rl(t+al’y+ﬁl) = 8t8y
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Runge-Kutta 2

2nd Order Runge-Kutta Methods

Method of Derivation (Cont’d)

Earlier, we saw that

o2 52f 02f B2 9%
Rl(t+a1,y+ﬁl):71W(£7 w) + 1ﬂ18t8y(£’ 1) 216y2

which leads to

h h h? 9%f h?2 0?f
Ro (1459 +510Y)) = gl + Yz €
h? , 32

()P 5 (6 )

which is O(h?) if all the second-order partial derivatives of f are
bounded.
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Runge-Kutta 2

2nd Order Runge-Kutta Methods

The difference-equation method resulting from replacing T ) (t,y)
Taylor’'s method of order two by f(t + (h/2),y + (h/2)f(t,y)) is a
specific Runge-Kutta method known as the Midpoint Method.

Numerical Analysis (Chapter 5)

Runge-Kutta Methods

R L Burden & J D Faires
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Runge-Kutta 2

2nd Order Runge-Kutta Methods

The difference-equation method resulting from replacing T ®)(t,y) in
Taylor’'s method of order two by f(t + (h/2),y + (h/2)f(t,y)) is a
specific Runge-Kutta method known as the Midpoint Method.

The Midpoint Method

Wo = «,

h h
Wit = w; + hf (ti+§7wi+§f(ti7wi)>

fori=0,1,...,N — 1.
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Runge-Kutta 2

2nd Order Runge-Kutta Methods

Number of Parameters Required

@ Only three parameters are present in
ar f(t + ag,wi + 71 F (4, W)

aif(t + a1,y + f1) and all are needed in the match of T ().

Numerical Analysis (Chapter 5) Runge-Kutta Methods R L Burden & J D Faires 15/ 34



Runge-Kutta 2

2nd Order Runge-Kutta Methods

Number of Parameters Required

@ Only three parameters are present in
ar f(t + ag,wi + 71 F (4, W)

aif(t + a1,y + f1) and all are needed in the match of T ().

@ So a more complicated form is required to satisfy the conditions
for any of the higher-order Taylor methods.
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2nd Order Runge-Kutta Methods

Number of Parameters Required (Cont'd)

The most appropriate four-parameter form for approximating

2
TOLY) =F(ty) + 2/(ty) + (L)
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Runge-Kutta 2

2nd Order Runge-Kutta Methods

Number of Parameters Required (Cont'd)

The most appropriate four-parameter form for approximating

2
TOLY) =F(ty) + 2/(ty) + (L)

is arf(t,y) +axf(t + ap,y + 9 (t,y))
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Runge-Kutta 2

2nd Order Runge-Kutta Methods

Number of Parameters Required (Cont'd)

The most appropriate four-parameter form for approximating

2
TO(ty) = f(t,y) + Sf(t, y)+h f(t,y)

is arf(t,y) + axf(t + a2,y + 62f(t,y))
and even with this, there is insufficient flexibility to match the term
h2 [ of 2
% || rey

resulting from the expansion of (h?/6)f"(t,y).
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Runge-Kutta 2

2nd Order Runge-Kutta Methods

Number of Parameters Required (Cont'd)

The most appropriate four-parameter form for approximating

2
TO(ty) = f(t,y) + Sf(t, y)+h f(t,y)

is arf(t,y) + axf(t + a2,y + 62f(t,y))
and even with this, there is insufficient flexibility to match the term
h2 [ of 2
% || rey

resulting from the expansion of (h?/6)f”(t,y). Consequently, the best
that can be obtained from using this form are methods with O(h?) local
truncation error.

o
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Runge-Kutta 2

2nd Order Runge-Kutta Methods

The fact that
alf(t7y) + aZf(t + 0427)’ + 52f(t7y))

has four parameters, however, gives a flexibility in their choice, so a
number of O(h?) methods can be derived. One of the most important

is the Modified Euler method, which corresponds to choosing
alzazz%andazzézzh.

Modified Euler Method

Wo = «
h
Wipr = Wit 3 [f (t,wi) +f (tige, Wi + hf (ti,w;))]

fori =0,1,...,N — 1.

Numerical Analysis (Chapter 5)

Runge-Kutta Methods

R L Burden & J D Faires 17134
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e Example: Comparing 2nd Order Runge-Kutta Methods
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Example

Comparing 2nd Order Runge-Kutta Methods

Use the Midpoint Method and the Modified Euler Method with N = 10,
h =0.2, tf = 0.2i, and wy = 0.5 to approximate the solution to our
usual example,

y=y-t?4+1, 0<t<2 y(0)=05.
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Example

Comparing 2nd Order Runge-Kutta Methods

Use the Midpoint Method and the Modified Euler Method with N = 10,
h =0.2, tf = 0.2i, and wy = 0.5 to approximate the solution to our
usual example,

y=y—-t?+1, 0<t<2 y(0)=05.
The difference equations produced from the two formulae are

Midpoint:  w;,; = 1.22w; — 0.0088i% — 0.008i + 0.218
Modified Euler:  w;,1 = 1.22w; — 0.0088i2 — 0.008i + 0.216

foreachi=0,1,...,9.
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Example

Comparing 2nd Order Runge-Kutta Methods

Solution (1/2): Computing the first 2 steps

The first two steps of the Midpoint method give:

wi; = 1.22(0.5)—0.0088(0)2 — 0.008(0) + 0.218 = 0.828
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The first two steps of the Midpoint method give:

wi; = 1.22(0.5)—0.0088(0)2 — 0.008(0) + 0.218 = 0.828
w, = 1.22(0.828)—0.0088(0.2)2 — 0.008(0.2) + 0.218 = 1.21136

while the first two steps of the Modified Euler method give:

wi; = 1.22(0.5)—0.0088(0)2 — 0.008(0) + 0.216 = 0.826
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Example

Comparing 2nd Order Runge-Kutta Methods

Solution (1/2): Computing the first 2 steps

The first two steps of the Midpoint method give:

wi; = 1.22(0.5)—0.0088(0)2 — 0.008(0) + 0.218 = 0.828
w, = 1.22(0.828)—0.0088(0.2)2 — 0.008(0.2) + 0.218 = 1.21136

while the first two steps of the Modified Euler method give:

wi; = 1.22(0.5)—0.0088(0)2 — 0.008(0) + 0.216 = 0.826
w, = 1.22(0.826)— 0.0088(0.2)2 — 0.008(0.2) + 0.216 = 1.20692
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Example

Comparing 2nd Order Runge-Kutta Methods

Solution (2/2): Tabulated Results for both methods

Midpoint Modified Euler
t; y(t) Method Error Method Error

0.0 0.5000000 0.5000000 O 0.5000000 O

0.2 0.8292986 0.8280000 0.0013  0.8260000 0.0033
0.4 1.2140877 1.2113600 0.0027 1.2069200 0.0072
0.6 1.6489406 1.6446592 0.0043 1.6372424 0.0117
0.8 2.1272295 2.1212842 0.0059 2.1102357 0.0170
1.0 2.6408591 2.6331668 0.0077 2.6176876 0.0232
1.2 3.1799415 3.1704634 0.0095  3.1495789 0.0304
1.4 3.7324000 3.7211654 0.0112  3.6936862 0.0387
1.6 4.2834838 4.2706218 0.0129 4.2350972 0.0484
1.8 4.8151763 4.8009586 0.0142  4.7556185 0.0596
2.0 5.3054720 5.2903695 0.0151 5.2330546  0.0724

Numerical Analysis (Chapter 5)

Runge-Kutta Methods
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Runge-Kutta 4

Outline

@ Higher-Order Runge-Kutta Methods
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Runge-Kutta 4

Higher-Order Runge-Kutta Methods

The Heun Method of order 3
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Runge-Kutta 4

Higher-Order Runge-Kutta Methods

The Heun Method of order 3

The term T()(t,y) can be approximated with error O(h®) by an
expression of the form

f(t 4+ ag,y + 01f(t + az,y + 62f(t,y)))

involving 4 parameters,
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The Heun Method of order 3

The term T()(t,y) can be approximated with error O(h®) by an
expression of the form

f(t 4+ ag,y + 01f(t + az,y + 62f(t,y)))

involving 4 parameters, but the algebra involved in the determination of
a1, 01, ap, and d, is quite involved.
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Higher-Order Runge-Kutta Methods

The Heun Method of order 3

The term T()(t,y) can be approximated with error O(h®) by an
expression of the form

f(t 4+ ag,y + 01f(t + az,y + 62f(t,y)))

involving 4 parameters, but the algebra involved in the determination of
a1,01, ap, and &, is quite involved. The most common O(h®) method is
that of Heun, given by

Wo = «
Wig = wi+ 3 (f(t,w)
+3 (F (6 + 3 wi + 2 (6 + 5, wi + 5f (6, wi)))))

fori=0,1,...,N — 1.
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Runge-Kutta 4

Higher-Order Runge-Kutta Methods

Example: The Heun Method

Applying Heun’s method with N = 10, h = 0.2, t; = 0.2i, and wp = 0.5
to approximate the solution to the equation:

y'=y-t?+1, 0<t<2, y(0)=0S5.

gives the values listed in the following table.

Note the decreased error throughout the range over the Midpoint and
Modified Euler approximations.
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Higher-Order Runge-Kutta Methods

Runge-Kutta 4

t;

y(t)

Heun’s
Method

Error

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.5000000
0.8292986
1.2140877
1.6489406
2.1272295
2.6408591
3.1799415
3.7324000
4.2834838
4.8151763
5.3054720

0.5000000
0.8292444
1.2139750
1.6487659
2.1269905
2.6405555
3.1795763
3.7319803
4.2830230
4.8146966
5.3050072

0

0.0000542
0.0001127
0.0001747
0.0002390
0.0003035
0.0003653
0.0004197
0.0004608
0.0004797
0.0004648

Numerical Analysis (Chapter 5)

Runge-Kutta Methods
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Runge-Kutta 4

Higher-Order Runge-Kutta Methods

Wo = «
ki = hf(t,w)
k, = hf (ti + D,Wi + %k]_)

h 1
ks = hf(tiys,w +ka)

1
Wit1 = W+ E(kl + 2k, + 2k3 + k4)

foreachi =0,1,...,N — 1. This method has local truncation error
O(h*), provided the solution y(t) has five continuous derivatives.

Numerical Analysis (Chapter 5) Runge-Kutta Methods R L Burden & J D Faires
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Runge-Kutta 4

Runge-Kutta Order 4 Algorithm (1/2)

To approximate the solution of the initial-value problem
y' =f(ty), a<t<b, y(a)=«

at (N + 1) equally spaced numbers in the interval [a, b]:
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Runge-Kutta 4

Runge-Kutta Order 4 Algorithm (1/2)

To approximate the solution of the initial-value problem
y' =f(ty), a<t<b, y(a)=«
at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; integer N; initial condition «.
OUTPUT approximation w to y at the (N + 1) values of t.

Step 1 Seth =(b—-a)/N
t=a
W =a
OUTPUT (t,w)

Steps 2 to 6 on the next Slide

ol
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Runge-Kutta 4

Runge-Kutta Order 4 Algorithm (2/2)

Step2 Fori=1,2,...,N do Steps 3-5:

Step3  SetK; = hf(t,w)
Ko =hf(t+h/2,w +Ky/2)
Ks =hf(t+h/2,w +K5/2)
K4:hf( —|—h W+K3)

Step4 Setw =w + (Ky + 2K, + 2K3 + Ky4) /6
t=a+ih

Step5 OUTPUT (t,w)

Step6 STOP
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Runge-Kutta 4

Higher-Order Runge-Kutta Methods

Example: Runge-Kutta 4

Use the Runge-Kutta method of order four with h = 0.2, N = 10 and
t; = 0.2i to obtain approximations to the solution of the initial-value
problem

y=y—-t?+1, 0<t<2 y(0)=05
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Runge-Kutta 4

Higher-Order Runge-Kutta Methods

Solution
The approximation to y(0.2) is obtained by

wg = 05
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Runge-Kutta 4

Higher-Order Runge-Kutta Methods

Solution
The approximation to y(0.2) is obtained by

wg = 05
ki = 0.2f(0,0.5)=0.2(1.5) = 0.3
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Runge-Kutta 4

Higher-Order Runge-Kutta Methods

Solution
The approximation to y(0.2) is obtained by

wg = 05
ki = 0.2f(0,0.5)=0.2(1.5) = 0.3
ko, = 0.2f(0.1,0.65) = 0.328
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Higher-Order Runge-Kutta Methods

The approximation to y(0.2) is obtained by

wg = 05

k;, = 0.2f(0,0.5)=0.2(1.5)=0.3
k., = 0.2f(0.1,0.65) = 0.328

ks = 0.2f(0.1,0.664) = 0.3308
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Higher-Order Runge-Kutta Methods

The approximation to y(0.2) is obtained by

wg = 05

k;, = 0.2f(0,0.5)=0.2(1.5)=0.3
0.2f(0.1,0.65) = 0.328
0.2f(0.1,0.664) = 0.3308

ks = 0.2f(0.2,0.8308) = 0.35816

~ x
w N
I
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Higher-Order Runge-Kutta Methods

The approximation to y(0.2) is obtained by

wg = 05

k;, = 0.2f(0,0.5)=0.2(1.5)=0.3
0.2f(0.1,0.65) = 0.328
0.2f(0.1,0.664) = 0.3308

ks = 0.2f(0.2,0.8308) = 0.35816

~ x
w N
I

wy = 05+ %(0.3 +2(0.328) + 2(0.3308) + 0.35816) = 0.8292933
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Higher-Order Runge-Kutta Methods

The approximation to y(0.2) is obtained by

wg = 05

k;, = 0.2f(0,0.5)=0.2(1.5)=0.3
0.2f(0.1,0.65) = 0.328
0.2f(0.1,0.664) = 0.3308

ks = 0.2f(0.2,0.8308) = 0.35816

~ x
w N
I

1
wi = 05+ 7(0.3+2(0.328) + 2(0.3308) + 0.35816) = 0.8292933

The remaining results and their errors are listed in the following table.

o
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Higher-Order Runge-Kutta Methods

Runge-Kutta 4

Runge-Kutta

Exact Order Four Error
iy =y(t) Wi lyi — wi]

0.0 0.5000000 0.5000000 O

0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272027 0.0000269
1.0 2.6408591 2.6408227 0.0000364
1.2 3.1799415 3.1798942 0.0000474
1.4 3.7324000 3.7323401 0.0000599
1.6 4.2834838 4.2834095 0.0000743
1.8 4.8151763 4.8150857 0.0000906
2.0 5.3054720 5.3053630 0.0001089
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A Comparison of Runge-Kutta Methods

@ For the problem

y=y-t?+1, 0<t<2, y(0)=05
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A Comparison of Runge-Kutta Methods

@ For the problem

y=y-t?+1, 0<t<2, y(0)=05

Euler's method with h = 0.025, the Midpoint method with

h = 0.05, and the Runge-Kutta 4th-order method with h = 0.1 are
compared at the common mesh points of these methods 0.1, 0.2,
0.3, 0.4, and 0.5.
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A Comparison of Runge-Kutta Methods

@ For the problem

y=y-t?+1, 0<t<2, y(0)=05

Euler's method with h = 0.025, the Midpoint method with
h = 0.05, and the Runge-Kutta 4th-order method with h = 0.1 are
compared at the common mesh points of these methods 0.1, 0.2,
0.3, 0.4, and 0.5.

@ Each of these techniques requires 20 function evaluations to
determine the values (listed in the following table) to approximate

y(0.5). )
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A Comparison of Runge-Kutta Methods

Runge-Kutta 4

Modified  Runge-Kutta
Euler Euler Order Four
t Exact h=0.025 h=0.05 h=0.1
0.0 0.5000000 0.5000000 0.5000000 0.5000000
0.1 0.6574145 0.6554982 0.6573085 0.6574144
0.2 0.8292986 0.8253385 0.8290778 0.8292983
0.3 1.0150706 1.0089334 1.0147254 1.0150701
0.4 1.2140877 1.2056345 1.2136079 1.2140869
0.5 1.4256394 1.4147264 1.4250141 1.4256384

In this example, the fourth-order method is clearly superior.
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