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The methods met so far are called one-step methods because the
approximation for the mesh point ti+1 involves information from
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The Nature of One-Step Methods
The methods met so far are called one-step methods because the
approximation for the mesh point ti+1 involves information from
only one of the previous mesh points, ti .

Although these methods might use function evaluation information
at points between ti and ti+1, they do not retain that information for
direct use in future approximations.

All the information used by these methods is obtained within the
subinterval over which the solution is being approximated.
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Moving to Multistep Methods
The approximate solution is available at each of the mesh points
t0, t1, . . . , ti before the approximation at ti+1 is obtained, and
because the error |wj − y(tj )| tends to increase with j , . . .

so it seems reasonable to develop methods that use these more
accurate previous data when approximating the solution at ti+1.

Methods using the approximation at more than one previous mesh
point to determine the approximation at the next point are called
multistep methods.

We will now give a precise definition of these methods, together
with the definition of the two types of multistep methods.
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An m-Step Multistep Method

Definition
An m-step multistep method for solving the initial-value problem

y ′ = f (t , y), a ≤ t ≤ b, y(a) = α

has a difference equation for finding the approximation wi+1 at the
mesh point ti+1 represented by the following equation, where m is an
integer greater than 1:
wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m

+ h [bmf (ti+1, wi+1) + bm−1f (ti , wi) + · · · + b0f (ti+1−m, wi+1−m)]

for i = m − 1, m, . . . , N − 1, where h = (b − a)/N, the a0, a1, . . . , am−1

and b0, b1, . . . , bm are constants, and the starting values

w0 = α, w1 = α1, w2 = α2, . . . , wm−1 = αm−1
are specified.
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Explicit & Implicit Methods
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difference equation then gives wi+1 explicitly in terms of previously
determined values.
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An m-Step Multistep Method

wi+1 = am−1wi + am−2wi−1 + · · · + a0wi+1−m

+ h [bmf (ti+1, wi+1) + bm−1f (ti , wi) + · · · + b0f (ti+1−m, wi+1−m)]

Explicit & Implicit Methods
When bm = 0, the method is called explicit, or open, because the
difference equation then gives wi+1 explicitly in terms of previously
determined values.

When bm 6= 0, the method is called implicit, or closed, because
wi+1 occurs on both sides of the difference equation, so wi+1 is
specified only implicitly.
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The 4th-order Adams-Bashforth Method

The equations

w0 = α

w1 = α1

w2 = α2

w3 = α3

wi+1 = wi +
h
24

[55f (ti , wi) − 59f (ti−1, wi−1) + 37f (ti−2, wi−2)

−9f (ti−3, wi−3)]

for each i = 3, 4, . . . , N − 1, define an explicit 4-step method known as
the 4th-order Adams-Bashforth technique.
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The 4th-order Adams-Moulton Method

The equations

w0 = α

w1 = α1

w2 = α2

wi+1 = wi +
h
24

[9f (ti+1, wi+1) + 19f (ti , wi) − 5f (ti−1, wi−1)

+f (ti−2, wi−2)]

for each i = 2, 3, . . . , N − 1, define an implicit 3-step method known as
the 4th-order Adams-Moulton technique.
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4th-Order Adams-Bashforth & Adams-Moulton
Methods

Starting Values & Accuracy
The 4 or 3 starting values (in either explicit AB4 or implicit AM4)
must be specified, generally by assuming w0 = α and generating
the remaining values by either a Runge-Kutta or Taylor method.
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Starting Values & Accuracy
The 4 or 3 starting values (in either explicit AB4 or implicit AM4)
must be specified, generally by assuming w0 = α and generating
the remaining values by either a Runge-Kutta or Taylor method.

The implicit methods are generally more accurate then the explicit
methods, but to apply an implicit method such as the
Adams-Moulton Method directly, we must solve the implicit
equation for wi+1.
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4th-Order Adams-Bashforth & Adams-Moulton
Methods

Starting Values & Accuracy
The 4 or 3 starting values (in either explicit AB4 or implicit AM4)
must be specified, generally by assuming w0 = α and generating
the remaining values by either a Runge-Kutta or Taylor method.

The implicit methods are generally more accurate then the explicit
methods, but to apply an implicit method such as the
Adams-Moulton Method directly, we must solve the implicit
equation for wi+1.

This is not always possible, and even when it can be done the
solution for wi+1 may not be unique.
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4th-order Adams-Bashforth Method

Example
Assume that we have used the Runge-Kutta method of order 4
with h = 0.2 to approximate the solutions to the initial value
problem

y ′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5
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4th-order Adams-Bashforth Method

Example
Assume that we have used the Runge-Kutta method of order 4
with h = 0.2 to approximate the solutions to the initial value
problem

y ′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5

The first four approximations were found to be y(0) = w0 = 0.5,
y(0.2) ≈ w1 = 0.8292933, y(0.4) ≈ w2 = 1.2140762, and
y(0.6) ≈ w3 = 1.6489220.
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4th-order Adams-Bashforth Method

Example
Assume that we have used the Runge-Kutta method of order 4
with h = 0.2 to approximate the solutions to the initial value
problem

y ′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5

The first four approximations were found to be y(0) = w0 = 0.5,
y(0.2) ≈ w1 = 0.8292933, y(0.4) ≈ w2 = 1.2140762, and
y(0.6) ≈ w3 = 1.6489220.

Use these as starting values for the 4th-order Adams-Bashforth
method to compute new approximations for y(0.8) and y(1.0), and
compare these new approximations to those produced by the
Runge-Kutta method of order 4.
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Solution (1/3)
For the 4th-order Adams-Bashforth,
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Example: 4th-order Adams-Bashforth Method

Solution (1/3)
For the 4th-order Adams-Bashforth, we have

y(0.8) ≈ w4 = w3 +
0.2
24

(55f (0.6, w3) − 59f (0.4, w2) + 37f (0.2, w1)

−9f (0, w0))
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Solution (1/3)
For the 4th-order Adams-Bashforth, we have

y(0.8) ≈ w4 = w3 +
0.2
24

(55f (0.6, w3) − 59f (0.4, w2) + 37f (0.2, w1)

−9f (0, w0))

= 1.6489220 +
0.2
24

(55f (0.6, 1.6489220)

−59f (0.4, 1.2140762) + 37f (0.2, 0.8292933)

−9f (0, 0.5))
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Example: 4th-order Adams-Bashforth Method

Solution (1/3)
For the 4th-order Adams-Bashforth, we have

y(0.8) ≈ w4 = w3 +
0.2
24

(55f (0.6, w3) − 59f (0.4, w2) + 37f (0.2, w1)

−9f (0, w0))

= 1.6489220 +
0.2
24

(55f (0.6, 1.6489220)

−59f (0.4, 1.2140762) + 37f (0.2, 0.8292933)

−9f (0, 0.5))

= 1.6489220 + 0.0083333(55(2.2889220)

−59(2.0540762) + 37(1.7892933)− 9(1.5))
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Example: 4th-order Adams-Bashforth Method

Solution (1/3)
For the 4th-order Adams-Bashforth, we have

y(0.8) ≈ w4 = w3 +
0.2
24

(55f (0.6, w3) − 59f (0.4, w2) + 37f (0.2, w1)

−9f (0, w0))

= 1.6489220 +
0.2
24

(55f (0.6, 1.6489220)

−59f (0.4, 1.2140762) + 37f (0.2, 0.8292933)

−9f (0, 0.5))

= 1.6489220 + 0.0083333(55(2.2889220)

−59(2.0540762) + 37(1.7892933)− 9(1.5))

= 2.1272892
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Solution (2/3)
and

y(1.0) ≈ w5 = w4 +
0.2
24
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(55f (0.8, w4) − 59f (0.6, w3) + 37f (0.4, w2)

−9f (0.2, w1))

= 2.1272892 +
0.2
24

(55f (0.8, 2.1272892)

−59f (0.6, 1.6489220) + 37f (0.4, 1.2140762)

−9f (0.2, 0.8292933))
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= 2.1272892 +
0.2
24

(55f (0.8, 2.1272892)

−59f (0.6, 1.6489220) + 37f (0.4, 1.2140762)
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−59(2.2889220) + 37(2.0540762)

−9(1.7892933))
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Example: 4th-order Adams-Bashforth Method

Solution (2/3)
and

y(1.0) ≈ w5 = w4 +
0.2
24

(55f (0.8, w4) − 59f (0.6, w3) + 37f (0.4, w2)

−9f (0.2, w1))

= 2.1272892 +
0.2
24

(55f (0.8, 2.1272892)

−59f (0.6, 1.6489220) + 37f (0.4, 1.2140762)

−9f (0.2, 0.8292933))

= 2.1272892 + 0.0083333 (55(2.4872892)

−59(2.2889220) + 37(2.0540762)

−9(1.7892933))

= 2.6410533
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Solution (3/3)
The error for these approximations at t = 0.8 and t = 1.0 are,
respectively:

|2.1272295− 2.1272892| = 5.97 × 10−5 and

|2.6410533− 2.6408591| = 1.94 × 10−4
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Solution (3/3)
The error for these approximations at t = 0.8 and t = 1.0 are,
respectively:

|2.1272295− 2.1272892| = 5.97 × 10−5 and

|2.6410533− 2.6408591| = 1.94 × 10−4

The corresponding Runge-Kutta approximations had errors:

|2.1272027− 2.1272892| = 2.69 × 10−5 and

|2.6408227− 2.6408591| = 3.64 × 10−5
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