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The Nature of One-Step Methods

@ The methods met so far are called one-step methods because the
approximation for the mesh point t;, ; involves information from
only one of the previous mesh points, t;.
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only one of the previous mesh points, t;.

@ Although these methods might use function evaluation information
at points between t; and t;, 1, they do not retain that information for
direct use in future approximations.
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One-Step Methods

From One-Step to Multistep Methods

The Nature of One-Step Methods

@ The methods met so far are called one-step methods because the
approximation for the mesh point t;, ; involves information from
only one of the previous mesh points, t;.

@ Although these methods might use function evaluation information
at points between t; and t;, 1, they do not retain that information for
direct use in future approximations.

@ All the information used by these methods is obtained within the
subinterval over which the solution is being approximated.
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From One-Step to Multistep Methods

Moving to Multistep Methods

@ The approximate solution is available at each of the mesh points
to,t1, ..., ti before the approximation at t; ; is obtained, and
because the error |w; — y(tj)| tends to increase with j, ...
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accurate previous data when approximating the solution at t; ;.
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@ so it seems reasonable to develop methods that use these more
accurate previous data when approximating the solution at t; ;.

@ Methods using the approximation at more than one previous mesh
point to determine the approximation at the next point are called
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From One-Step to Multistep Methods

Moving to Multistep Methods

@ The approximate solution is available at each of the mesh points
to,t1, ..., ti before the approximation at t; ; is obtained, and
because the error |w; — y(tj)| tends to increase with j, ...

@ so it seems reasonable to develop methods that use these more
accurate previous data when approximating the solution at t; ;.

@ Methods using the approximation at more than one previous mesh
point to determine the approximation at the next point are called
multistep methods.

@ We will now give a precise definition of these methods, together
with the definition of the two types of multistep methods.
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Multistep Methods

An m-Step Multistep Method

An m-step multistep method for solving the initial-value problem
y' =f(ty), a<t<b, y@) =a

has a difference equation for finding the approximation w;; at the
mesh point t;, ; represented by the following equation, where m is an
integer greater than 1:
Wit1 = amaWj +8m-2Wj_1+---+aWit1-m

+ hibmf(tiss, Wir1) +bm_af(t, wi) + -+ bof (tiy1-m, Wit 1-m)]

fori=m-1m,...,N—1,where h=(b—a)/N, theagp,as,...,am-1
and bg, by, ..., by are constants, and the starting values
Wo=ca, W;=a, Wx=az ..., Wm_1=0m

ol

are specified.
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An m-Step Multistep Method

Wit1 = amaWj +am 2Wj_1+ - +aWir1-m
+ h[bnf(tivs, Wivt) +bm_af(ti, wi) 4+ - + bof (tiy1—m, Wit1-m)]

Numerical Analysis (Chapter 5) Linear Multistep Methods R L Burden & J D Faires 8/17



Multistep Methods
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Wit1 = amaWj +am 2Wj_1+ - +aWir1-m
+ D [bof(tipr, Wig1) + bm_gf (i, wi) 4 - - - + bof (tiy1—-m, Wit1-m)]
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An m-Step Multistep Method

Wit1 = am-aWj +am_2Wj_1 + - +agWjt1-m
+ D [bof(tipr, Wig1) + bm_gf (i, wi) 4 - - - + bof (tiy1—-m, Wit1-m)]

Explicit & Implicit Methods

@ When = 0, the method is called explicit, or open, because the
difference equation then gives w;, 1 explicitly in terms of previously
determined values.
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An m-Step Multistep Method

Wit1 = am-aWj +am_2Wj_1 + - +agWjt1-m
+ D [bof(tipr, Wig1) + bm_gf (i, wi) 4 - - - + bof (tiy1—-m, Wit1-m)]

Explicit & Implicit Methods

@ When = 0, the method is called explicit, or open, because the
difference equation then gives w;, 1 explicitly in terms of previously
determined values.

@ When = 0, the method is called implicit, or closed, because
w;_ 1 occurs on both sides of the difference equation, so w;, 1 is
specified only implicitly.
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SEW]ES

The 4th-order Adams-Bashforth Method

The equations

Wog = «

Wi = o
Wz = g
W3 = a3

h
Wiy1 = W+ 27 [55f (i, w;i) — 59f (t_1,wi_1) + 37f(ti_2,Wi_»)
—9f (ti _3, Wi _3)]

ol

foreachi = 3,4,...,N — 1, define an explicit 4-step method known as
the 4th-order Adams-Bashforth technique.
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SEW]ES

The 4th-order Adams-Moulton Method

The equations

Wop = «
Wy = o
Wy = o

h
Wiy1 = W+ >4 [9f(ti+1,Wi+1) + 19f(ti,Wi) = 5f(ti_1,Wi_1)
+(ti—2,Wi_2)]

foreachi =2,3,...,N — 1, define an implicit 3-step method known as
the 4th-order Adams-Moulton technique.
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4th-Order Adams-Bashforth & Adams-Moulton

Methods

Starting Values & Accuracy

@ The 4 or 3 starting values (in either explicit AB4 or implicit AM4)
must be specified, generally by assuming wg = « and generating
the remaining values by either a Runge-Kutta or Taylor method.
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@ The 4 or 3 starting values (in either explicit AB4 or implicit AM4)
must be specified, generally by assuming wg = « and generating
the remaining values by either a Runge-Kutta or Taylor method.

@ The implicit methods are generally more accurate then the explicit
methods, but to apply an implicit method such as the
Adams-Moulton Method directly, we must solve the implicit
equation for w;_ .
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SEW]ES

4th-Order Adams-Bashforth & Adams-Moulton

Methods

Starting Values & Accuracy

@ The 4 or 3 starting values (in either explicit AB4 or implicit AM4)
must be specified, generally by assuming wg = « and generating
the remaining values by either a Runge-Kutta or Taylor method.

@ The implicit methods are generally more accurate then the explicit
methods, but to apply an implicit method such as the
Adams-Moulton Method directly, we must solve the implicit
equation for w;_ .

@ This is not always possible, and even when it can be done the
solution for w;,; may not be unique.
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4th-order Adams-Bashforth Method

@ Assume that we have used the Runge-Kutta method of order 4
with h = 0.2 to approximate the solutions to the initial value
problem

y =y 241, 0<t<2, y(0)=05
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Examples

4th-order Adams-Bashforth Method

@ Assume that we have used the Runge-Kutta method of order 4
with h = 0.2 to approximate the solutions to the initial value
problem

y =y 241, 0<t<2, y(0)=05

@ The first four approximations were found to be y(0) = wp = 0.5,
y(0.2) ~ w; = 0.8292933, y(0.4) ~ w, = 1.2140762, and
y(0.6) ~ wz = 1.6489220.

'
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Examples

4th-order Adams-Bashforth Method

@ Assume that we have used the Runge-Kutta method of order 4
with h = 0.2 to approximate the solutions to the initial value
problem

y =y 241, 0<t<2, y(0)=05

@ The first four approximations were found to be y(0) = wp = 0.5,
y(0.2) ~ w; = 0.8292933, y(0.4) ~ w, = 1.2140762, and
y(0.6) ~ wz = 1.6489220.

@ Use these as starting values for the 4th-order Adams-Bashforth
method to compute new approximations for y(0.8) and y(1.0), and
compare these new approximations to those produced by the
Runge-Kutta method of order 4.

'
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Solution (1/3)

o
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Examples

Example: 4th-order Adams-Bashforth Method

Solution (1/3)

For the 4th-order Adams-Bashforth, we have

y(08)~w; = wz+ %(SSf (0.6,w3) — 59f (0.4, w,) + 37f(0.2,w;)

—9f(0,wp))

o
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Examples

Example: 4th-order Adams-Bashforth Method

Solution (1/3)

For the 4th-order Adams-Bashforth, we have
0.2

y(08)~w; = wz+ ﬁ(SSf (0.6,w3) — 59f (0.4, w,) + 37f(0.2,w;)

= (07 WO))

0.2
= 16489220 + —(55f(0.6,1.6489220)

—59f(0.4,1.2140762) + 37f(0.2,0.8292933)
—9f(0,0.5))

o
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Examples

Example: 4th-order Adams-Bashforth Method

Solution (1/3)
For the 4th-order Adams-Bashforth, we have

y(08)~w; = wz+ %(55f(0.6,Wg) — 59f(0.4,wy) + 37f(0.2,wq)

—9f(0,wo))

— 1.6489220 + %(SSf(O.G, 1.6489220)
—59f(0.4,1.2140762) + 37f(0.2,0.8292933)
—9f(0,0.5))

= 1.6489220 + 0.0083333(55(2.2889220)
—59(2.0540762) + 37(1.7892933) — 9(1.5))

o
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Examples

Example: 4th-order Adams-Bashforth Method

Solution (1/3)
For the 4th-order Adams-Bashforth, we have

y(08)~w; = wz+ %(55f(0.6,Wg) — 59f(0.4,wy) + 37f(0.2,wq)

—of (07 WO))
0.2
— 1.6489220 + (55 (0.6, 1.6489220)

—59f(0.4,1.2140762) + 37f(0.2,0.8292933)
—9f(0,0.5))
= 1.6489220 + 0.0083333(55(2.2889220)
—59(2.0540762) + 37(1.7892933) — 9(1.5))
= 2.1272892

o
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Examples

Example: 4th-order Adams-Bashforth Method

Solution (2/3)
and

y(1.0)~ws = wy+ % (55f(0.8,w,) — 59f(0.6,w3) + 37f(0.4,w,)

—9f(0.2,w1))

o
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Example: 4th-order Adams-Bashforth Method

Solution (2/3)
and

y(1.0)~ws = wy+ % (55f(0.8,w,) — 59f(0.6,w3) + 37f(0.4,w,)

—9f(0.2,w;))
= 21272892+ %(5& (0.8,2.1272892)

—59f(0.6,1.6489220) + 37f(0.4,1.2140762)
—9f(0.2,0.8292933))

o
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Example: 4th-order Adams-Bashforth Method

Solution (2/3)
and

y(1.0)~ws = wy+ % (55f(0.8,w,) — 59f(0.6,w3) + 37f(0.4,w,)

—9f(0.2,w;))
= 21272892+ %(5& (0.8,2.1272892)

—59f(0.6, 1.6489220) + 37f(0.4,1.2140762)
—9f(0.2,0.8292933))
= 2.1272892 + 0.0083333 (55(2.4872892)
—59(2.2889220) + 37(2.0540762)
—9(1.7892933))

o
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Examples

Example: 4th-order Adams-Bashforth Method

Solution (2/3)
and

y(1.0)~ws = wy+ % (55f(0.8,w,) — 59f(0.6,w3) + 37f(0.4,w,)

—9f(0.2,w;))
= 21272892+ %(5& (0.8,2.1272892)

—59f(0.6, 1.6489220) + 37f(0.4,1.2140762)
—9f(0.2,0.8292933))

= 2.1272892 + 0.0083333 (55(2.4872892)
—59(2.2889220) + 37(2.0540762)
—9(1.7892933))

— 26410533

o
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Example: 4th-order Adams-Bashforth Method

Solution (3/3)

The error for these approximations att = 0.8 andt = 1.0 are,
respectively:

2.1272295 — 2.1272892| = 5.97 x 10~° and
2.6410533 — 2.6408591| = 1.94 x 10~*
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Example: 4th-order Adams-Bashforth Method

Solution (3/3)

The error for these approximations att = 0.8 andt = 1.0 are,
respectively:

2.1272295 — 2.1272892| = 5.97 x 10~° and
2.6410533 — 2.6408591| = 1.94 x 10~*

The corresponding Runge-Kutta approximations had errors:

|2.1272027 — 2.1272892| = 2.69 x 10~° and
|2.6408227 — 2.6408591| = 3.64 x 107°
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