Initial-Value Problems for ODEs

Predictor-Corrector Methods

Numerical Analysis (9th Edition) R L Burden & J D Faires

> Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

(日) (四) (분) (분) (분) 분

The Rationale for Predictor-Corrector Methods

The Rationale for Predictor-Corrector Methods

2 A 4th Order Predictor-Corrector Method

A (10) A (10) A (10)

The Rationale for Predictor-Corrector Methods

- 2 A 4th Order Predictor-Corrector Method
 - 3 Adams 4th Order Predictor-Corrector Algorithm

.

4 A N

The Rationale for Predictor-Corrector Methods

- 2 A 4th Order Predictor-Corrector Method
- 3 Adams 4th Order Predictor-Corrector Algorithm
- Applying the 4th Order Predictor-Corrector Method

The Rationale for Predictor-Corrector Methods

- 2 A 4th Order Predictor-Corrector Method
- 3 Adams 4th Order Predictor-Corrector Algorithm
- Applying the 4th Order Predictor-Corrector Method

4 A N

A (10) A (10) A (10)

Implicit versus Explicit Methods

 In general, an implicit Adams-Moulton method gives better results than the explicit Adams-Bashforth method of the same order.

4 A N

Implicit versus Explicit Methods

- In general, an implicit Adams-Moulton method gives better results than the explicit Adams-Bashforth method of the same order.
- However, implicit methods have the inherent weakness of first having to convert the method algebraically to an explicit representation for w_{i+1}.

A B A A B A

4 D b 4 A b

Implicit versus Explicit Methods

- In general, an implicit Adams-Moulton method gives better results than the explicit Adams-Bashforth method of the same order.
- However, implicit methods have the inherent weakness of first having to convert the method algebraically to an explicit representation for w_{i+1}.
- This procedure is not always possible, as can be seen from the following example.

< ロ > < 同 > < 三 > < 三 >

A (10) A (10) A (10)

Implicit versus Explicit Methods (Cont'd)

Consider the elementary initial-value problem

$$y' = e^{y}, \qquad 0 \le t \le 0.25, \qquad y(0) = 1$$

Implicit versus Explicit Methods (Cont'd)

Consider the elementary initial-value problem

$$y' = e^{y}, \qquad 0 \le t \le 0.25, \qquad y(0) = 1$$

Because $f(t, y) = e^{y}$, the three-step Adams-Moulton method has

$$w_{i+1} = w_i + \frac{h}{24} [9e^{w_{i+1}} + 19e^{w_i} - 5e^{w_{i-1}} + e^{w_{i-2}}]$$

as its difference equation, and this equation cannot be algebraically solved for w_{i+1} .

Implicit versus Explicit Methods (Cont'd)

Consider the elementary initial-value problem

$$y' = e^{y}, \qquad 0 \le t \le 0.25, \qquad y(0) = 1$$

Because $f(t, y) = e^{y}$, the three-step Adams-Moulton method has

$$w_{i+1} = w_i + \frac{h}{24} [9e^{w_{i+1}} + 19e^{w_i} - 5e^{w_{i-1}} + e^{w_{i-2}}]$$

as its difference equation, and this equation cannot be algebraically solved for w_{i+1} .

• One could use Newton's method or the secant method to approximate w_{i+1} , but this complicates the procedure considerably.

The Rationale for Predictor-Corrector Methods

2 A 4th Order Predictor-Corrector Method

3 Adams 4th Order Predictor-Corrector Algorithm

Applying the 4th Order Predictor-Corrector Method

4 A N

Predictor-Corrector Methods

Combining Explicit & Implicit Methods

Numerical Analysis (Chapter 5)

< 17 ▶

AB4-AM4 Algorithm

Example

Predictor-Corrector Methods

Combining Explicit & Implicit Methods

In practice, implicit multistep methods are not used as described earlier.

Numerical Analysis (Chapter 5)

・ 同 ト ・ ヨ ト ・ ヨ

Predictor-Corrector Methods

Combining Explicit & Implicit Methods

- In practice, implicit multistep methods are not used as described earlier.
- Rather, they are used to improve approximations obtained by explicit methods.

→ ∃ → < ∃</p>

Predictor-Corrector Methods

Combining Explicit & Implicit Methods

- In practice, implicit multistep methods are not used as described earlier.
- Rather, they are used to improve approximations obtained by explicit methods.
- The combination of an explicit method to predict and an implicit to improve the prediction is called a predictor-corrector method.

< ロ > < 同 > < 三 > < 三 >

A 4th-order Predictor-Corrector Method

Combining Explicit & Implicit Methods (Cont'd)

- Consider the following fourth-order method for solving an initial-value problem.
- The first step is to calculate the starting values w₀, w₁, w₂, and w₃ for the 4-step explicit Adams-Bashforth method.

< 17 ▶

A 4th-order Predictor-Corrector Method

Combining Explicit & Implicit Methods (Cont'd)

- Consider the following fourth-order method for solving an initial-value problem.
- The first step is to calculate the starting values w_0 , w_1 , w_2 , and w_3 for the 4-step explicit Adams-Bashforth method. To do this, we use a 4th-order one-step method, the Runge-Kutta method of order 4.

→ ∃ → < ∃ →</p>

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

A 4th-order Predictor-Corrector Method

Combining Explicit & Implicit Methods (Cont'd)

- Consider the following fourth-order method for solving an initial-value problem.
- The first step is to calculate the starting values w_0 , w_1 , w_2 , and w_3 for the 4-step explicit Adams-Bashforth method. To do this, we use a 4th-order one-step method, the Runge-Kutta method of order 4.
- The next step is to calculate an approximation, w_4^p , to $y(t_4)$ using the explicit Adams-Bashforth method as predictor:

$$w_4^{p} = w_3 + \frac{h}{24} [55f(t_3, w_3) - 59f(t_2, w_2) + 37f(t_1, w_1) - 9f(t_0, w_0)]$$

< ロ > < 同 > < 三 > < 三 >

A 4th-order Predictor-Corrector Method

$$w_4^p = w_3 + \frac{h}{24} [55f(t_3, w_3) - 59f(t_2, w_2) + 37f(t_1, w_1) - 9f(t_0, w_0)]$$

Combining Explicit & Implicit Methods (Cont'd)

Numerical Analysis (Chapter 5)

Predictor-Corrector Methods

A 4th-order Predictor-Corrector Method

$$w_4^p = w_3 + \frac{h}{24} [55f(t_3, w_3) - 59f(t_2, w_2) + 37f(t_1, w_1) - 9f(t_0, w_0)]$$

Combining Explicit & Implicit Methods (Cont'd)

 This approximation is improved by inserting w₄^p in the right side of the three-step implicit Adams-Moulton method and using that method as a corrector. This gives

$$w_4^c = w_3 + \frac{h}{24} \left[9f(t_4, w_4^p) + 19f(t_3, w_3) - 5f(t_2, w_2) + f(t_1, w_1) \right]$$

A 4th-order Predictor-Corrector Method

$$w_4^p = w_3 + \frac{h}{24} [55f(t_3, w_3) - 59f(t_2, w_2) + 37f(t_1, w_1) - 9f(t_0, w_0)]$$

Combining Explicit & Implicit Methods (Cont'd)

 This approximation is improved by inserting w₄^p in the right side of the three-step implicit Adams-Moulton method and using that method as a corrector. This gives

$$w_4^c = w_3 + \frac{h}{24} \left[9f(t_4, w_4^{\rho}) + 19f(t_3, w_3) - 5f(t_2, w_2) + f(t_1, w_1) \right]$$

• The only new function evaluation required in this procedure is $f(t_4, w_4^p)$ in the corrector equation; all the other values of *f* have been calculated for earlier approximations.

Numerical Analysis (Chapter 5)

Predictor-Corrector Methods

A 4th-order Predictor-Corrector Method

A 4th-order Predictor-Corrector Method

Combining Explicit & Implicit Methods (Cont'd)

• The value w_4^c is then used as the approximation to $y(t_4), \ldots$

Numerical Analysis (Chapter 5)

A 4th-order Predictor-Corrector Method

- The value w_4^c is then used as the approximation to $y(t_4), \ldots$
- and the technique of using the Adams-Bashforth method as a predictor and the Adams-Moulton method as a corrector is repeated to find w_5^p and w_5^c , the initial and final approximations to $y(t_5)$.

A 4th-order Predictor-Corrector Method

- The value w_4^c is then used as the approximation to $y(t_4), \ldots$
- and the technique of using the Adams-Bashforth method as a predictor and the Adams-Moulton method as a corrector is repeated to find w_5^p and w_5^c , the initial and final approximations to $y(t_5)$.
- This process is continued until we obtain an approximation w_N^c to $y(t_N) = y(b)$.

A 4th-order Predictor-Corrector Method

- The value w_4^c is then used as the approximation to $y(t_4), \ldots$
- and the technique of using the Adams-Bashforth method as a predictor and the Adams-Moulton method as a corrector is repeated to find w_5^p and w_5^c , the initial and final approximations to $y(t_5)$.
- This process is continued until we obtain an approximation w_N^c to $y(t_N) = y(b)$.
- Improved approximations to $y(t_{i+1})$ might be obtained by iterating the Adams-Moulton formula, but these converge to the approximation given by the implicit formula rather than to the solution $y(t_{i+1})$.

A 4th-order Predictor-Corrector Method

- The value w_4^c is then used as the approximation to $y(t_4), \ldots$
- and the technique of using the Adams-Bashforth method as a predictor and the Adams-Moulton method as a corrector is repeated to find w_5^p and w_5^c , the initial and final approximations to $y(t_5)$.
- This process is continued until we obtain an approximation w_N^c to $y(t_N) = y(b)$.
- Improved approximations to $y(t_{i+1})$ might be obtained by iterating the Adams-Moulton formula, but these converge to the approximation given by the implicit formula rather than to the solution $y(t_{i+1})$.
- Hence it is usually more efficient to use a reduction in the step size if improved accuracy is needed.

The Rationale for Predictor-Corrector Methods

2 A 4th Order Predictor-Corrector Method

3 Adams 4th Order Predictor-Corrector Algorithm

Applying the 4th Order Predictor-Corrector Method

→ ∃ → < ∃</p>

4 A N

Basic Components

Numerical Analysis (Chapter 5)

→ B → < B</p>

< 17 ▶

Basic Components

The following algorithm is based on the 4th-order, 4-step Adams-Bashforth method as predictor

$$w_{i+1}^{p} = w_{3} + \frac{h}{24} \left[55f(t_{i}, w_{i}) - 59f(t_{i-1}, w_{i-1}) + 37f(t_{i-2}, w_{i-2}) - 9f(t_{i-3}, w_{i-3}) \right]$$

< ロ > < 同 > < 三 > < 三

Basic Components

The following algorithm is based on the 4th-order, 4-step Adams-Bashforth method as predictor

$$w_{i+1}^{p} = w_{3} + \frac{h}{24} \left[55f(t_{i}, w_{i}) - 59f(t_{i-1}, w_{i-1}) + 37f(t_{i-2}, w_{i-2}) - 9f(t_{i-3}, w_{i-3}) \right]$$

and one iteration of the 4th-order, 3-step Adams-Moulton method as corrector,

$$w_{i+1}^{c} = w_{3} + \frac{h}{24} \left[9f(t_{i+1}, w_{i+1}^{p}) + 19f(t_{i}, w_{i}) - 5f(t_{i-1}, w_{i-1}) + f(t_{i-2}, w_{i-2}) \right]$$

Basic Components

The following algorithm is based on the 4th-order, 4-step Adams-Bashforth method as predictor

$$w_{i+1}^{p} = w_{3} + \frac{h}{24} \left[55f(t_{i}, w_{i}) - 59f(t_{i-1}, w_{i-1}) + 37f(t_{i-2}, w_{i-2}) - 9f(t_{i-3}, w_{i-3}) \right]$$

and one iteration of the 4th-order, 3-step Adams-Moulton method as corrector,

$$w_{i+1}^{c} = w_{3} + \frac{h}{24} \left[9f(t_{i+1}, w_{i+1}^{p}) + 19f(t_{i}, w_{i}) - 5f(t_{i-1}, w_{i-1}) + f(t_{i-2}, w_{i-2}) \right]$$

with the starting values obtained from the 4th-order Runge-Kutta method.

Numerical Analysis (Chapter 5)

< ロ > < 同 > < 三 > < 三 >

Adams 4th Order Predictor-Corrector Algorithm

To approximate the solution of the initial-value problem

$$\mathbf{y}' = f(t, \mathbf{y}), \qquad \mathbf{a} \le t \le \mathbf{b}, \qquad \mathbf{y}(\mathbf{a}) = \alpha$$

at (N + 1) equally spaced numbers in the interval [a, b]:

< □ > < 同 > < 回 > < 回

Adams 4th Order Predictor-Corrector Algorithm

To approximate the solution of the initial-value problem

$$\mathbf{y}' = f(t, \mathbf{y}), \qquad \mathbf{a} \le t \le \mathbf{b}, \qquad \mathbf{y}(\mathbf{a}) = \alpha$$

at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints *a*, *b*; integer *N*; initial condition α OUTPUT approximation *w* to *y* at the (*N* + 1) values of *t*

Step 1 Set
$$h = (b - a)/N$$

 $t_0 = a$
 $w_0 = \alpha$
OUTPUT (t_0, w_0)

Adams 4th Order Predictor-Corrector Algorithm

To approximate the solution of the initial-value problem

$$y' = f(t, y),$$
 $a \le t \le b,$ $y(a) = \alpha$

at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints *a*, *b*; integer *N*; initial condition α OUTPUT approximation *w* to *y* at the (*N* + 1) values of *t*

Step 1 Set
$$h = (b - a)/N$$

 $t_0 = a$
 $w_0 = \alpha$
OUTPUT (t_0, w_0)

Step 2 For i = 1, 2, 3, do Steps 3–5 (Compute starting values using Runge-Kutta method)

Numerical Analysis (Chapter 5)

Predictor-Corrector Methods

Step 3 Set
$$K_1 = hf(t_{i-1}, w_{i-1})$$

 $K_2 = hf(t_{i-1} + h/2, w_{i-1} + K_1/2)$
 $K_3 = hf(t_{i-1} + h/2, w_{i-1} + K_2/2)$
 $K_4 = hf(t_{i-1} + h, w_{i-1} + K_3)$

Step 3 Set
$$K_1 = hf(t_{i-1}, w_{i-1})$$

 $K_2 = hf(t_{i-1} + h/2, w_{i-1} + K_1/2)$
 $K_3 = hf(t_{i-1} + h/2, w_{i-1} + K_2/2)$
 $K_4 = hf(t_{i-1} + h, w_{i-1} + K_3)$

Step 4 Set
$$w_i = w_{i-1} + (K_1 + 2K_2 + 2K_3 + K_4)/6$$

 $t_i = a + ih$

Numerical Analysis (Chapter 5)

Step 3 Set
$$K_1 = hf(t_{i-1}, w_{i-1})$$

 $K_2 = hf(t_{i-1} + h/2, w_{i-1} + K_1/2)$
 $K_3 = hf(t_{i-1} + h/2, w_{i-1} + K_2/2)$
 $K_4 = hf(t_{i-1} + h, w_{i-1} + K_3)$

Step 4 Set
$$w_i = w_{i-1} + (K_1 + 2K_2 + 2K_3 + K_4)/6$$

 $t_i = a + ih$

Step 5 OUTPUT (t_i, w_i)

Numerical Analysis (Chapter 5)

Step 3 Set
$$K_1 = hf(t_{i-1}, w_{i-1})$$

 $K_2 = hf(t_{i-1} + h/2, w_{i-1} + K_1/2)$
 $K_3 = hf(t_{i-1} + h/2, w_{i-1} + K_2/2)$
 $K_4 = hf(t_{i-1} + h, w_{i-1} + K_3)$

Step 4 Set
$$w_i = w_{i-1} + (K_1 + 2K_2 + 2K_3 + K_4)/6$$

 $t_i = a + ih$

Step 5 OUTPUT (t_i, w_i)

Step 6 For
$$i = 4, \ldots, N$$
 do Steps 7–10

Numerical Analysis (Chapter 5)

< ロ > < 同 > < 回 > < 回 >

Step 6 For
$$i = 4, \ldots, N$$
 do Steps 7–10

Step 7 Set
$$t = a + ih$$

 $w = w_3 + h[55f(t_3, w_3) - 59f(t_2, w_2) + 37f(t_1, w_1)$
 $-9f(t_0, w_0)]/24$ (Predict w_i)
 $w = w_3 + h[9f(t, w) + 19f(t_3, w_3) - 5f(t_2, w_2)$
 $+f(t_1, w_1)]/24$ (Correct w_i)

Step 6 For
$$i = 4, \ldots, N$$
 do Steps 7–10

Step 7 Set
$$t = a + ih$$

 $w = w_3 + h[55f(t_3, w_3) - 59f(t_2, w_2) + 37f(t_1, w_1) -9f(t_0, w_0)]/24$ (Predict w_i)
 $w = w_3 + h[9f(t, w) + 19f(t_3, w_3) - 5f(t_2, w_2) +f(t_1, w_1)]/24$ (Correct w_i)
Step 8 OUTPUT (t, w)

Step 6 For
$$i = 4, \ldots, N$$
 do Steps 7–10

Step 6 For
$$i = 4, \ldots, N$$
 do Steps 7–10

Step 7
 Set
$$t = a + ih$$
 $w = w_3 + h[55f(t_3, w_3) - 59f(t_2, w_2) + 37f(t_1, w_1) - 9f(t_0, w_0)]/24$ (Predict w_i)

 $w = w_3 + h[9f(t, w) + 19f(t_3, w_3) - 5f(t_2, w_2) + f(t_1, w_1)]/24$ (Correct w_i)

 Step 8
 OUTPUT (t, w)

 Step 9
 For $j = 0, 1, 2$
 $w_j = w_{j+1}$

 Step 10
 Set $t_3 = t$
 $w_3 = w$

Step 6 For
$$i = 4, \ldots, N$$
 do Steps 7–10

Step 11 STOP

Numerical Analysis (Chapter 5)

Outline

The Rationale for Predictor-Corrector Methods

- 2 A 4th Order Predictor-Corrector Method
- 3 Adams 4th Order Predictor-Corrector Algorithm

Applying the 4th Order Predictor-Corrector Method

→ ∃ → < ∃</p>

Example

Apply the Adams fourth-order predictor-corrector method with h = 0.2and starting values from the Runge-Kutta fourth order method to the initial-value problem

$$y' = y - t^2 + 1,$$
 $0 \le t \le 2,$ $y(0) = 0.5$

.

4 A N

Example

Apply the Adams fourth-order predictor-corrector method with h = 0.2and starting values from the Runge-Kutta fourth order method to the initial-value problem

$$y' = y - t^2 + 1,$$
 $0 \le t \le 2,$ $y(0) = 0.5$

This is a continuation and modification of an earlier problem where we found that the starting approximations from Runge-Kutta are

$$y(0) = w_0 = 0.5$$

 $y(0.2) \approx w_1 = 0.8292933$
 $y(0.4) \approx w_2 = 1.2140762$
 $y(0.6) \approx w_3 = 1.6489220$

Numerical Analysis (Chapter 5)

Solution (1/6)

Numerical Analysis (Chapter 5)

э

イロト イロト イヨト イヨト

Solution (1/6)

For the 4th-order Adams-Bashforth, we obtained

$$y(0.8) \approx w_4^{\rho} = w_3 + \frac{0.2}{24}(55f(0.6, w_3) - 59f(0.4, w_2) + 37f(0.2, w_1)) - 9f(0, w_0))$$

э

Solution (1/6)

For the 4th-order Adams-Bashforth, we obtained

$$y(0.8) \approx w_4^p = w_3 + \frac{0.2}{24} (55f(0.6, w_3) - 59f(0.4, w_2) + 37f(0.2, w_1)) -9f(0, w_0)) = 1.6489220 + \frac{0.2}{24} (55f(0.6, 1.6489220)) -59f(0.4, 1.2140762) + 37f(0.2, 0.8292933) -9f(0, 0.5))$$

э

Solution (1/6)

For the 4th-order Adams-Bashforth, we obtained

$$y(0.8) \approx w_4^p = w_3 + \frac{0.2}{24} (55f(0.6, w_3) - 59f(0.4, w_2) + 37f(0.2, w_1)) -9f(0, w_0)) = 1.6489220 + \frac{0.2}{24} (55f(0.6, 1.6489220)) -59f(0.4, 1.2140762) + 37f(0.2, 0.8292933)) -9f(0, 0.5)) = 1.6489220 + 0.0083333(55(2.2889220)) -59(2.0540762) + 37(1.7892933) - 9(1.5))$$

э

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Solution (1/6)

For the 4th-order Adams-Bashforth, we obtained

$$y(0.8) \approx w_4^p = w_3 + \frac{0.2}{24} (55f(0.6, w_3) - 59f(0.4, w_2) + 37f(0.2, w_1)) \\ -9f(0, w_0)) \\ = 1.6489220 + \frac{0.2}{24} (55f(0.6, 1.6489220)) \\ -59f(0.4, 1.2140762) + 37f(0.2, 0.8292933)) \\ -9f(0, 0.5)) \\ = 1.6489220 + 0.0083333(55(2.2889220)) \\ -59(2.0540762) + 37(1.7892933) - 9(1.5)) \\ = 2.1272892$$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

э

Solution (2/6)

Numerical Analysis (Chapter 5)

Predictor-Corrector Methods

R L Burden & J D Faires 19

19/24

Solution (2/6)

$$y(0.8) \approx w_4^c = w_3 + \frac{0.2}{24} \left(9f(0.8, w_4^p) + 19f(0.6, w_3) - 5f(0.4, w_2) + f(0.2, w_1)\right)$$

Solution (2/6)

$$y(0.8) \approx w_4^c = w_3 + \frac{0.2}{24} \left(9f(0.8, w_4^p) + 19f(0.6, w_3) - 5f(0.4, w_2) + f(0.2, w_1)\right)$$

= 1.6489220 + $\frac{0.2}{24} (9f(0.8, 2.1272892) + 19f(0.6, 1.6489220) - 5f(0.4, 1.2140762) + f(0.2, 0.8292933))$

Solution (2/6)

$$y(0.8) \approx w_4^c = w_3 + \frac{0.2}{24} \left(9f(0.8, w_4^p) + 19f(0.6, w_3) - 5f(0.4, w_2) + f(0.2, w_1)\right)$$

= 1.6489220 + $\frac{0.2}{24} (9f(0.8, 2.1272892) + 19f(0.6, 1.6489220) - 5f(0.4, 1.2140762) + f(0.2, 0.8292933))$
= 1.6489220 + 0.0083333 (9(2.4872892) + 19(2.2889220) - 5(2.0540762) + (1.7892933))

Solution (2/6)

$$y(0.8) \approx w_4^c = w_3 + \frac{0.2}{24} \left(9f(0.8, w_4^p) + 19f(0.6, w_3) - 5f(0.4, w_2) + f(0.2, w_1)\right)$$

$$= 1.6489220 + \frac{0.2}{24} (9f(0.8, 2.1272892) + 19f(0.6, 1.6489220) - 5f(0.4, 1.2140762) + f(0.2, 0.8292933))$$

$$= 1.6489220 + 0.0083333 (9(2.4872892) + 19(2.2889220) - 5(2.0540762) + (1.7892933))$$

$$= 2.1272056$$

Solution (3/6)

Numerical Analysis (Chapter 5)

Predictor-Corrector Methods

R L Burden & J D Faires 20 / 24

Solution (3/6)

Now we use this approximation (noting that $w_4 = w_4^c$) to determine the predictor, w_5^p , for y(1.0):

$$y(1.0) \approx w_5^p = w_4 + \frac{0.2}{24} (55f(0.8, w_4) - 59f(0.6, w_3) + 37f(0.4, w_2) - 9f(0.2, w_1))$$

Solution (3/6)

Now we use this approximation (noting that $w_4 = w_4^c$) to determine the predictor, w_5^p , for y(1.0):

$$y(1.0) \approx w_5^p = w_4 + \frac{0.2}{24} (55f(0.8, w_4) - 59f(0.6, w_3) + 37f(0.4, w_2) \\ -9f(0.2, w_1)) \\ = 2.1272056 + \frac{0.2}{24} (55f(0.8, 2.1272056) \\ -59f(0.6, 1.6489220) + 37f(0.4, 1.2140762) \\ -9f(0.2, 0.8292933))$$

Solution (3/6)

Now we use this approximation (noting that $w_4 = w_4^c$) to determine the predictor, w_5^p , for y(1.0):

$$y(1.0) \approx w_5^{p} = w_4 + \frac{0.2}{24} (55f(0.8, w_4) - 59f(0.6, w_3) + 37f(0.4, w_2)) -9f(0.2, w_1)) = 2.1272056 + \frac{0.2}{24} (55f(0.8, 2.1272056)) -59f(0.6, 1.6489220) + 37f(0.4, 1.2140762)) -9f(0.2, 0.8292933)) = 2.1272056 + 0.0083333 (55(2.4872056) - 59(2.2889220)) +37(2.0540762) - 9(1.7892933))$$

Solution (3/6)

Now we use this approximation (noting that $w_4 = w_4^c$) to determine the predictor, w_5^p , for y(1.0):

$$y(1.0) \approx w_5^p = w_4 + \frac{0.2}{24} (55f(0.8, w_4) - 59f(0.6, w_3) + 37f(0.4, w_2)) \\ -9f(0.2, w_1)) \\ = 2.1272056 + \frac{0.2}{24} (55f(0.8, 2.1272056)) \\ -59f(0.6, 1.6489220) + 37f(0.4, 1.2140762)) \\ -9f(0.2, 0.8292933)) \\ = 2.1272056 + 0.0083333 (55(2.4872056) - 59(2.2889220)) \\ +37(2.0540762) - 9(1.7892933))$$

= 2.6409314

Solution (4/6)

and correct this with

$$y(1.0) \approx w_5^c = w_4 + \frac{0.2}{24} \left(9f(1.0, w_5^p) + 19f(0.8, w_4) - 5f(0.6, w_3) + f(0.4, w_2)\right)$$

э

イロト イヨト イヨト イヨト

Solution (4/6)

and correct this with

$$y(1.0) \approx w_5^c = w_4 + \frac{0.2}{24} \left(9f(1.0, w_5^p) + 19f(0.8, w_4) - 5f(0.6, w_3) + f(0.4, w_2)\right)$$

= 2.1272056 + $\frac{0.2}{24} (9f(1.0, 2.6409314) + 19f(0.8, 2.1272892) - 5f(0.6, 1.6489220) + f(0.4, 1.2140762))$

э

イロト イヨト イヨト イヨト

Solution (4/6)

and correct this with

$$y(1.0) \approx w_5^c = w_4 + \frac{0.2}{24} \left(9f(1.0, w_5^p) + 19f(0.8, w_4) - 5f(0.6, w_3) + f(0.4, w_2)\right)$$

= 2.1272056 + $\frac{0.2}{24} (9f(1.0, 2.6409314) + 19f(0.8, 2.1272892) - 5f(0.6, 1.6489220) + f(0.4, 1.2140762))$
= 2.1272056 + 0.0083333 (9(2.6409314) + 19(2.4872056) -5(2.2889220) + (2.0540762))

э

イロン イロン イヨン イヨン

Solution (4/6)

and correct this with

$$y(1.0) \approx w_5^c = w_4 + \frac{0.2}{24} \left(9f(1.0, w_5^p) + 19f(0.8, w_4) - 5f(0.6, w_3) + f(0.4, w_2)\right)$$

$$= 2.1272056 + \frac{0.2}{24} (9f(1.0, 2.6409314) + 19f(0.8, 2.1272892) - 5f(0.6, 1.6489220) + f(0.4, 1.2140762))$$

$$= 2.1272056 + 0.0083333 (9(2.6409314) + 19(2.4872056) - 5(2.2889220) + (2.0540762))$$

$$= 2.6408286$$

э

21/24

Solution (5/6): Accuracy Check

Earlier, we found that using the explicit Adams-Bashforth method alone produced results that were inferior to those of Runge-Kutta.

< ロ > < 同 > < 回 > < 回 >

Solution (5/6): Accuracy Check

Earlier, we found that using the explicit Adams-Bashforth method alone produced results that were inferior to those of Runge-Kutta. However, these approximations to y(0.8) and y(1.0) are accurate to within:

respectively,

< ロ > < 同 > < 三 > < 三 >

Solution (5/6): Accuracy Check

Earlier, we found that using the explicit Adams-Bashforth method alone produced results that were inferior to those of Runge-Kutta. However, these approximations to y(0.8) and y(1.0) are accurate to within:

respectively, compared to those of Runge-Kutta, which were accurate, respectively, to within:

 $|2.1272027 - 2.1272892| = 2.69 \times 10^{-5}$ and $|2.6408227 - 2.6408591| = 3.64 \times 10^{-5}$

э

4th Order Predictor-Corrector Method (6/6)

The remaining approximations were generated using the Adams 4th-Order Predictor-Corrector Algorithm:

t _i	$y_i = y(t_i)$	Wi	$ y_i - w_i $
0.0	0.5000000	0.5000000	0
0.2	0.8292986	0.8292933	0.0000053
0.4	1.2140877	1.2140762	0.0000114
0.6	1.6489406	1.6489220	0.0000186
0.8	2.1272295	2.1272056	0.0000239
1.0	2.6408591	2.6408286	0.0000305
1.2	3.1799415	3.1799026	0.0000389
1.4	3.7324000	3.7323505	0.0000495
1.6	4.2834838	4.2834208	0.0000630
1.8	4.8151763	4.8150964	0.0000799
2.0	5.3054720	5.3053707	0.0001013

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで