Initial-Value Problems for ODEs

Variable Step-Size Multistep Methods

Numerical Analysis (9th Edition) R L Burden & J D Faires

> Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

(日) (四) (분) (분) (분) 분

AB4 LTE	AM4 LTE	APC4 LTE	Stepsize Selection	Algorithm
Outline				

1 LTE of the 4-Step Explicit Adams-Bashforth Method

3 →

< 🗇 🕨

1 LTE of the 4-Step Explicit Adams-Bashforth Method

2 LTE of the 3-Step Implicit Adams-Moulton Method

- 1 LTE of the 4-Step Explicit Adams-Bashforth Method
- 2 LTE of the 3-Step Implicit Adams-Moulton Method
- 3 LTE of the Adams 4th-Order Predictor-Corrector Method

・ 同 ト ・ ヨ ト ・ ヨ

- 1 LTE of the 4-Step Explicit Adams-Bashforth Method
- 2 LTE of the 3-Step Implicit Adams-Moulton Method
- 3 LTE of the Adams 4th-Order Predictor-Corrector Method
- Using the LTE Estimate to Vary the Stepsize

- ITE of the 4-Step Explicit Adams-Bashforth Method
- 2 LTE of the 3-Step Implicit Adams-Moulton Method
- 3 LTE of the Adams 4th-Order Predictor-Corrector Method
- Using the LTE Estimate to Vary the Stepsize
- 5 Adams Variable Step-Size Predictor-Corrector Algorithm

1 LTE of the 4-Step Explicit Adams-Bashforth Method

- 2 LTE of the 3-Step Implicit Adams-Moulton Method
- 3 LTE of the Adams 4th-Order Predictor-Corrector Method
- 4 Using the LTE Estimate to Vary the Stepsize
- 5 Adams Variable Step-Size Predictor-Corrector Algorithm

Comparison with the RKF45 Method

Numerical Analysis (Chapter 5)

Comparison with the RKF45 Method

 The Runge-Kutta-Fehlberg method is used for error control because at each step it provides, at little additional cost, two approximations that can be compared and related to the local truncation error.

→ ∃ →

Comparison with the RKF45 Method

- The Runge-Kutta-Fehlberg method is used for error control because at each step it provides, at little additional cost, two approximations that can be compared and related to the local truncation error.
- Predictor-corrector techniques always generate two approximations at each step, so they are natural candidates for error-control adaptation.

★ ∃ →

Comparison with the RKF45 Method

- The Runge-Kutta-Fehlberg method is used for error control because at each step it provides, at little additional cost, two approximations that can be compared and related to the local truncation error.
- Predictor-corrector techniques always generate two approximations at each step, so they are natural candidates for error-control adaptation.
- To demonstrate the error-control procedure, we construct a variable step-size predictor-corrector method using the 4-step explicit Adams-Bashforth method as predictor and the 3-step implicit Adams-Moulton method as corrector.

4-step Explicit Adams-Bashforth Method

The Adams-Bashforth 4-step method comes from the relation

$$y(t_{i+1}) = y(t_i) + \frac{h}{24} [55f(t_i, y(t_i)) - 59f(t_{i-1}, y(t_{i-1})) + 37f(t_{i-2}, y(t_{i-2})) - 9f(t_{i-3}, y(t_{i-3}))] + \frac{251}{720} y^{(5)}(\hat{\mu}_i) h^5$$

for some $\hat{\mu}_i \in (t_{i-3}, t_{i+1})$.

< ロ > < 同 > < 回 > < 回 >

4-step Explicit Adams-Bashforth Method

The Adams-Bashforth 4-step method comes from the relation

$$\begin{aligned} y(t_{i+1}) &= y(t_i) + \frac{h}{24} [55f(t_i, y(t_i)) - 59f(t_{i-1}, y(t_{i-1})) \\ &+ 37f(t_{i-2}, y(t_{i-2})) - 9f(t_{i-3}, y(t_{i-3}))] + \frac{251}{720} y^{(5)}(\hat{\mu}_i) h^5 \end{aligned}$$

for some $\hat{\mu}_i \in (t_{i-3}, t_{i+1})$. The assumption that the approximations w_0, w_1, \ldots, w_i are all exact implies that the Adams-Bashforth local truncation error (LTE) is

$$\frac{y(t_{i+1}) - w_{i+1}^{\rho}}{h} = \frac{251}{720} y^{(5)}(\hat{\mu}_i) h^4$$

< ロ > < 同 > < 三 > < 三 >

1 LTE of the 4-Step Explicit Adams-Bashforth Method

2 LTE of the 3-Step Implicit Adams-Moulton Method

3 LTE of the Adams 4th-Order Predictor-Corrector Method

Using the LTE Estimate to Vary the Stepsize

5 Adams Variable Step-Size Predictor-Corrector Algorithm

3-Step Implicit Adams-Moulton Method

Numerical Analysis (Chapter 5)

Variable Step-Size Multistep Methods

э

イロン イロン イヨン イヨン

3-Step Implicit Adams-Moulton Method

A similar analysis of the Adams-Moulton method which comes from

$$y(t_{i+1}) = y(t_i) + \frac{h}{24} [9f(t_{i+1}, y(t_{i+1})) + 19f(t_i, y(t_i)) - 5f(t_{i-1}, y(t_{i-1})) + f(t_{i-2}, y(t_{i-2}))] - \frac{19}{720} y^{(5)}(\tilde{\mu}_i) h^5$$

for some $\tilde{\mu}_i \in (t_{i-2}, t_{i+1})$,

э

3-Step Implicit Adams-Moulton Method

A similar analysis of the Adams-Moulton method which comes from

$$\begin{aligned} y(t_{i+1}) &= y(t_i) + \frac{h}{24} [9f(t_{i+1}, y(t_{i+1})) + 19f(t_i, y(t_i)) - 5f(t_{i-1}, y(t_{i-1})) \\ &+ f(t_{i-2}, y(t_{i-2}))] - \frac{19}{720} y^{(5)}(\tilde{\mu}_i) h^5 \end{aligned}$$

for some $\tilde{\mu}_i \in (t_{i-2}, t_{i+1})$, leads to the local truncation error (LTE):

$$rac{y(t_{i+1})-w^c_{i+1}}{h}=-rac{19}{720}y^{(5)}(ilde{\mu_i})h^4$$

where w_{i+1}^c represents the corrected approximation given by the 3-Step implicit Adams-Moulton method.

Numerical Analysis (Chapter 5)

(a)

- ITE of the 4-Step Explicit Adams-Bashforth Method
- 2 LTE of the 3-Step Implicit Adams-Moulton Method
- 3 LTE of the Adams 4th-Order Predictor-Corrector Method
- Using the LTE Estimate to Vary the Stepsize
- 5 Adams Variable Step-Size Predictor-Corrector Algorithm

Crucial Assumption

To proceed further, we must make the assumption that for small values of *h*, we have

$$\gamma^{(5)}(\hat{\mu}_i) pprox \pmb{y}^{(5)}(\tilde{\mu}_i)$$

The effectiveness of the error-control technique depends directly on this assumption.

Combining the LTE Estimates

If we subtract the AB4 (predictor) local truncation error estimate

$$\frac{y(t_{i+1}) - w_{i+1}^{p}}{h} = \frac{251}{720}y^{(5)}(\hat{\mu}_{i})h^{4}$$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Combining the LTE Estimates

If we subtract the AB4 (predictor) local truncation error estimate

$$\frac{y(t_{i+1}) - w_{i+1}^{\rho}}{h} = \frac{251}{720}y^{(5)}(\hat{\mu}_i)h^4$$

from the AM4 (corrector) local truncation error estimate

$$rac{y(t_{i+1})-w^c_{i+1}}{h}=-rac{19}{720}y^{(5)}(ilde{\mu_i})h^2$$

Numerical Analysis (Chapter 5)

Variable Step-Size Multistep Methods

R L Burden & J D Faires 1

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

10/33

Combining the LTE Estimates

If we subtract the AB4 (predictor) local truncation error estimate

$$\frac{y(t_{i+1}) - w_{i+1}^{\rho}}{h} = \frac{251}{720}y^{(5)}(\hat{\mu}_i)h^4$$

from the AM4 (corrector) local truncation error estimate

$$rac{y(t_{i+1})-w_{i+1}^c}{h}=-rac{19}{720}y^{(5)}(ilde{\mu_i})h^4$$

we have

$$rac{w_{i+1}^c-w_{i+1}^
ho}{h}=rac{h^4}{720}[251y^{(5)}(\hat{\mu_i})+19y^{(5)}(ilde{\mu_i})]pproxrac{3}{8}h^4y^{(5)}(ilde{\mu_i})$$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

э

$$\frac{w_{i+1}^c - w_{i+1}^\rho}{h} = \frac{h^4}{720} [251y^{(5)}(\hat{\mu_i}) + 19y^{(5)}(\tilde{\mu_i})] \approx \frac{3}{8}h^4y^{(5)}(\tilde{\mu_i})$$

Combining the LTE Estimates (Cont'd)

Therefore

$$y^{(5)}(ilde{\mu}_i) pprox rac{8}{3h^5}(w^c_{i+1} - w^p_{i+1})$$

$$\frac{w_{i+1}^c - w_{i+1}^\rho}{h} = \frac{h^4}{720} [251y^{(5)}(\hat{\mu_i}) + 19y^{(5)}(\tilde{\mu_i})] \approx \frac{3}{8}h^4y^{(5)}(\tilde{\mu_i})$$

Combining the LTE Estimates (Cont'd)

Therefore

$$y^{(5)}(\tilde{\mu}_i) \approx \frac{8}{3h^5}(w^c_{i+1} - w^p_{i+1})$$

Using this result to eliminate the term involving $y^{(5)}(\tilde{\mu}_i)h^4$ in

$$rac{y(t_{i+1})-w^c_{i+1}}{h}=-rac{19}{720}y^{(5)}(ilde{\mu_i})h^4$$

gives the following approximation to the Adams-Moulton local truncation error:

Numerical Analysis (Chapter 5)

11/33

Combining the LTE Estimates (Cont'd)

The approximation to the Adams-Moulton local truncation error is finally:

$$|\tau_{i+1}(h)| = \frac{|y(t_{i+1}) - w_{i+1}^c|}{h}$$

Combining the LTE Estimates (Cont'd)

The approximation to the Adams-Moulton local truncation error is finally:

$$|v_{i+1}(h)| = rac{|y(t_{i+1}) - w_{i+1}^c|}{h}$$

 $pprox rac{19h^4}{720} \cdot rac{8}{3h^5} |w_{i+1}^c - w_{i+1}^p|$

 $|\tau|$

LTE of the Predictor-Corrector Method

Combining the LTE Estimates (Cont'd)

The approximation to the Adams-Moulton local truncation error is finally:

$$|w_{i+1}(h)| = rac{|y(t_{i+1}) - w_{i+1}^c|}{h}$$

 $\approx rac{19h^4}{720} \cdot rac{8}{3h^5} |w_{i+1}^c - w_{i+1}^p|$
 $= rac{19}{270h} |w_{i+1}^c - w_{i+1}^p|$

- 1 LTE of the 4-Step Explicit Adams-Bashforth Method
- 2 LTE of the 3-Step Implicit Adams-Moulton Method
- 3 LTE of the Adams 4th-Order Predictor-Corrector Method
- Using the LTE Estimate to Vary the Stepsize
- 5 Adams Variable Step-Size Predictor-Corrector Algorithm

Changing the Step-Size

Numerical Analysis (Chapter 5)

Variable Step-Size Multistep Methods

R L Burden & J D Faires

14/33

Changing the Step-Size

Suppose we now reconsider the 3-step AM4 Corrector LTE equation

$$\frac{y(t_{i+1}) - w_{i+1}^c}{h} = -\frac{19}{720}y^{(5)}(\tilde{\mu_i})h^4$$

with a new step size qh generating new approximations \hat{w}_{i+1}^p and \hat{w}_{i+1}^c .

< ロ > < 同 > < 三 > < 三 >

Changing the Step-Size

Suppose we now reconsider the 3-step AM4 Corrector LTE equation

$$rac{y(t_{i+1})-w^c_{i+1}}{h}=-rac{19}{720}y^{(5)}(ilde{\mu_i})h^4$$

with a new step size *qh* generating new approximations \hat{w}_{i+1}^{p} and \hat{w}_{i+1}^{c} .

 The object is to choose *q* so that the local truncation error given in this equation is bounded by a prescribed tolerance *ε*.

14/33

< ロ > < 同 > < 三 > < 三 >

Changing the Step-Size (Cont'd)

If we assume that the value $y^{(5)}(\mu)$ in the equation

$$rac{y(t_{i+1})-w^c_{i+1}}{h}=-rac{19}{720}y^{(5)}(ilde{\mu_i})h^4$$

associated with qh

Changing the Step-Size (Cont'd)

If we assume that the value $y^{(5)}(\mu)$ in the equation

$$rac{y(t_{i+1})-w^c_{i+1}}{h}=-rac{19}{720}y^{(5)}(ilde{\mu_i})h^4$$

associated with qh is also approximated using

$$y^{(5)}(\tilde{\mu_i}) \approx \frac{8}{3h^5}(w^c_{i+1} - w^p_{i+1})$$

Changing the Step-Size (Cont'd)

If we assume that the value $y^{(5)}(\mu)$ in the equation

$$rac{y(t_{i+1})-w_{i+1}^c}{h}=-rac{19}{720}y^{(5)}(ilde{\mu}_i)h^4$$

associated with qh is also approximated using

$$y^{(5)}(\tilde{\mu_i}) \approx rac{8}{3h^5}(w^c_{i+1} - w^p_{i+1})$$

$$\frac{\text{then}}{|y(t_i+qh)-\hat{w}_{i+1}^c|} = \frac{19q^4h^4}{720}|y^{(5)}(\mu)| \approx \frac{19q^4h^4}{720}\left[\frac{8}{3h^5}|w_{i+1}^c - w_{i+1}^p|\right]$$

Changing the Step-Size (Cont'd)

If we assume that the value $y^{(5)}(\mu)$ in the equation

$$rac{y(t_{i+1})-w_{i+1}^c}{h}=-rac{19}{720}y^{(5)}(ilde{\mu}_i)h^4$$

associated with qh is also approximated using

$$y^{(5)}(\tilde{\mu_i}) \approx \frac{8}{3h^5}(w^c_{i+1} - w^p_{i+1})$$

$$\frac{\frac{19q^4h^4}{|y(t_i+qh)-\hat{w}_{i+1}^c|}}{qh} = \frac{19q^4h^4}{720}|y^{(5)}(\mu)| \approx \frac{19q^4h^4}{720}\left[\frac{8}{3h^5}|w_{i+1}^c - w_{i+1}^p|\right]$$
$$= \frac{19q^4}{270}\frac{|w_{i+1}^c - w_{i+1}^p|}{h}$$

Numerical Analysis (Chapter 5)

Changing the Step-Size (Cont'd)

We need to choose q so that

$$rac{|y(t_i+qh)-\hat{w}_{i+1}^c|}{qh} pprox rac{19q^4}{270} rac{|w_{i+1}^c-w_{i+1}^p|}{h} < arepsilon$$

16/33
Changing the Step-Size (Cont'd)

We need to choose q so that

$$rac{|y(t_i+qh)-\hat{w}_{i+1}^c|}{qh}pprox rac{19q^4}{270}\,rac{|w_{i+1}^c-w_{i+1}^p|}{h}$$

That is, choose q so that

$$q < \left(\frac{270}{19} \frac{h\varepsilon}{|w_{i+1}^{c} - w_{i+1}^{p}|}\right)^{1/4} \approx 2\left(\frac{h\varepsilon}{|w_{i+1}^{c} - w_{i+1}^{p}|}\right)^{1/4}$$

Numerical Analysis (Chapter 5)

Variable Step-Size Multistep Methods

R L Burden & J D Faires

16/33

$$q < \left(\frac{270}{19} \frac{h\varepsilon}{\left|w_{i+1}^c - w_{i+1}^\rho\right|}\right)^{1/4} \approx 2\left(\frac{h\varepsilon}{\left|w_{i+1}^c - w_{i+1}^\rho\right|}\right)^{1/4}$$

→ ∃ → < ∃</p>

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

$$q < \left(\frac{270}{19} \frac{h\varepsilon}{\left|w_{i+1}^c - w_{i+1}^p\right|}\right)^{1/4} \approx 2\left(\frac{h\varepsilon}{\left|w_{i+1}^c - w_{i+1}^p\right|}\right)^{1/4}$$

Changing the Step-Size (Cont'd)

 A number of approximation assumptions have been made in this development, so in practice q is chosen conservatively, often as

$$q = 1.5 \left(\frac{h\varepsilon}{\left|w_{i+1}^c - w_{i+1}^p\right|}\right)^{1/4}$$

4 A N

The Cost of a Change in Step-Size

 A change in step size for a multistep method is more costly in terms of function evaluations than for a one-step method, because new equally-spaced starting values must be computed.

< ロ > < 同 > < 三 > < 三 >

The Cost of a Change in Step-Size

- A change in step size for a multistep method is more costly in terms of function evaluations than for a one-step method, because new equally-spaced starting values must be computed.
- As a consequence, it is common practice to ignore the step-size change whenever the local truncation error is between $\varepsilon/10$ and ε , that is, when

$$\frac{\varepsilon}{10} < |\tau_{i+1}(h)| = \frac{|y(t_{i+1}) - w_{i+1}^c|}{h} \approx \frac{19|w_{i+1}^c - w_{i+1}^p|}{270h} < \varepsilon$$

イロン イボン イヨン イヨン

The Cost of a Change in Step-Size

- A change in step size for a multistep method is more costly in terms of function evaluations than for a one-step method, because new equally-spaced starting values must be computed.
- As a consequence, it is common practice to ignore the step-size change whenever the local truncation error is between $\varepsilon/10$ and ε , that is, when

$$\frac{\varepsilon}{10} < |\tau_{i+1}(h)| = \frac{|y(t_{i+1}) - w_{i+1}^c|}{h} \approx \frac{19 \left| w_{i+1}^c - w_{i+1}^p \right|}{270h} < \varepsilon$$

• In addition, *q* is given an upper bound (e.g. 4) to ensure that a single unusually accurate approximation does not result in too large a step size.

イロン イボン イヨン イヨン

18/33

Outline

- 1 LTE of the 4-Step Explicit Adams-Bashforth Method
- 2 LTE of the 3-Step Implicit Adams-Moulton Method
- 3 LTE of the Adams 4th-Order Predictor-Corrector Method
- 4 Using the LTE Estimate to Vary the Stepsize
- 5 Adams Variable Step-Size Predictor-Corrector Algorithm

To approximate the solution of the initial-value problem

$$\mathbf{y}' = f(t, \mathbf{y}), \qquad \mathbf{a} \le t \le \mathbf{b}, \qquad \mathbf{y}(\mathbf{a}) = \alpha$$

with local truncation error within a given tolerance:

・ 同 ト ・ ヨ ト ・ ヨ

To approximate the solution of the initial-value problem

$$\mathbf{y}' = f(t, \mathbf{y}), \qquad \mathbf{a} \le t \le \mathbf{b}, \qquad \mathbf{y}(\mathbf{a}) = \alpha$$

with local truncation error within a given tolerance:

INPUT endpoints a, b; initial condition α ; tolerance *TOL*; maximum step size *hmax*; minimum step size *hmin*

OUTPUT i, t_i, w_i, h where at the *i*th step w_i approximates $y(t_i)$ and the step size *h* was used, or a message that the minimum step size was exceeded.

Numerical Analysis (Chapter 5)

R L Burden & J D Faires

20/33

Step 1 Set up a subalgorithm for the Runge-Kutta 4th-order method to be called $RK4(h, v_0, x_0, v_1, x_1, v_2, x_2, v_3, x_3)$ that accepts as input a step size *h* and starting values $v_0 \approx y(x_0)$ and returns $\{(x_j, v_j) \mid j = 1, 2, 3\}$ defined by the following:

for
$$j = 1, 2, 3$$

set $K_1 = hf(x_{j-1}, v_{j-1})$
 $K_2 = hf(x_{j-1} + h/2, v_{j-1} + K_1/2)$
 $K_3 = hf(x_{j-1} + h/2, v_{j-1} + K_2/2)$
 $K_4 = hf(x_{j-1} + h, v_{j-1} + K_3)$
 $v_j = v_{j-1} + (K_1 + 2K_2 + 2K_3 + K_4)/6$
 $x_j = x_0 + jh$

A 3 > 4 3

Step 2 Set $t_0 = a$ $w_0 = \alpha$ h = hmax FLAG = 1 (FLAG will be used to exit the loop in Step 4) LAST = 0 (LAST will indicate when the last value is calculated)OUTPUT (t_0, w_0)

э.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Step 2 Set
$$t_0 = a$$

 $w_0 = \alpha$
 $h = hmax$
 $FLAG = 1$
 $(FLAG will be used to exit the loop in Step 4)$
 $LAST = 0$
 $(LAST will indicate when the last value is calculated)$
OUTPUT (t_0, w_0)
Step 3 Call RK4 $(h, w_0, t_0, w_1, t_1, w_2, t_2, w_3, t_3)$
Set NFLAG = 1 (Indicates computation from RK4)
 $i = 4$
 $t = t_3 + h$

Numerical Analysis (Chapter 5)

R L Burden & J D Faires 22 / 33

э

・ロト ・ 同ト ・ ヨト ・ ヨト

Step 4 While (FLAG = 1) do Steps 5–20

Numerical Analysis (Chapter 5)

Variable Step-Size Multistep Methods

R L Burden & J D Faires

イロン イロン イヨン イヨン

23/33

э

Step 4 While (FLAG = 1) do Steps 5–20

Step 5 Set
$$WP = w_{i-1} + \frac{h}{24} [55f(t_{i-1}, w_{i-1}) - 59f(t_{i-2}, w_{i-2}) + 37f(t_{i-3}, w_{i-3}) - 9f(t_{i-4}, w_{i-4})]$$
 (Predict w_i)

$$WC = w_{i-1} + \frac{h}{24}[9f(t, WP) + 19f(t_{i-1}, w_{i-1}) - 5f(t_{i-2}, w_{i-2}) + f(t_{i-3}, w_{i-3})] (Correct w_i)$$

$$\sigma = 19|WC - WP|/(270h)$$

Numerical Analysis (Chapter 5)

э

イロン イロン イヨン イヨン

Step 4 While (FLAG = 1) do Steps 5–20

Step 5 Set
$$WP = w_{i-1} + \frac{h}{24} [55f(t_{i-1}, w_{i-1}) - 59f(t_{i-2}, w_{i-2}) + 37f(t_{i-3}, w_{i-3}) - 9f(t_{i-4}, w_{i-4})]$$
 (Predict w_i)

$$WC = w_{i-1} + \frac{h}{24}[9f(t, WP) + 19f(t_{i-1}, w_{i-1}) - 5f(t_{i-2}, w_{i-2}) + f(t_{i-3}, w_{i-3})] (Correct w_i)$$

$$\sigma = 19|WC - WP|/(270h)$$

Step 6 If $\sigma \le TOL$ then do Steps 7–16 (*Result accepted*) else do Steps 17–19 (*Result rejected*)

Numerical Analysis (Chapter 5)

э

イロト イポト イヨト イヨト

Step 6 (Continuation of Steps 7–16)

Step 7 Set $w_i = WC$ (*Result accepted*) $t_i = t$

Step 6 (Continuation of Steps 7–16)

Step 7 Set $w_i = WC$ (Result accepted) $t_i = t$

Step 8 If NFLAG = 1 then for j = i - 3, i - 2, i - 1, iOUTPUT (j, t_j, w_j, h) (*Previous results also accepted*) else OUTPUT (i, t_i, w_i, h) (*Previous results already accepted*)

Step 6 (Continuation of Steps 7–16)

Step 7 Set $w_i = WC$ (*Result accepted*) $t_i = t$

Step 8 If NFLAG = 1 then for j = i - 3, i - 2, i - 1, iOUTPUT (j, t_j, w_j, h) (*Previous results also accepted*) else OUTPUT (i, t_i, w_i, h) (*Previous results already accepted*)

Step 9 If LAST = 1 then set FLAG = 0 (*Next step is* 20) else do Steps 10–16

Step 6 (Continuation of Steps 7–16)

Step 7 Set $w_i = WC$ (*Result accepted*) $t_i = t$

Step 8 If NFLAG = 1 then for j = i - 3, i - 2, i - 1, iOUTPUT (j, t_j, w_j, h) (*Previous results also accepted*) else OUTPUT (i, t_i, w_i, h) (*Previous results already accepted*)

Step 9 If LAST = 1 then set FLAG = 0 (Next step is 20) else do Steps 10–16

Step 10 Set
$$T = T + 1$$

NFLAG = 0

Step 6 (Continuation of Steps 7–16)

Step 11 If $\sigma \le 0.1$ TOL or $t_{i-1} + h > b$ then do Steps 12–16 (Increase h if it is more accurate than required or decrease h to include b as a mesh point)

Step 6 (Continuation of Steps 7–16)

Step 11 If $\sigma \le 0.1$ TOL or $t_{i-1} + h > b$ then do Steps 12–16 (Increase h if it is more accurate than required or decrease h to include b as a mesh point) Step 12 Set $q = (TOL/(2\sigma))^{1/4}$

Step 6 (Continuation of Steps 7–16)

Step 11 If $\sigma \le 0.1$ TOL or $t_{i-1} + h > b$ then do Steps 12–16 (Increase h if it is more accurate than required or decrease h to include b as a mesh point) Step 12 Set $q = (TOL/(2\sigma))^{1/4}$ Step 13 If q > 4 then set h = 4helse set h = qh

Step 6 (Continuation of Steps 7–16)

Step 11If $\sigma \leq 0.1$ TOL or $t_{i-1} + h > b$ then do Steps 12–16
(Increase h if it is more accurate than required or
decrease h to include b as a mesh point)Step 12Set $q = (TOL/(2\sigma))^{1/4}$ Step 13If q > 4 then set h = 4h
else set h = qhStep 14If h > hmax then set h = hmax

Step 6 (Continuation of Steps 7–16)

Step 11 If $\sigma \le 0.1$ TOL or $t_{i-1} + h > b$ then do Steps 12–16 (Increase h if it is more accurate than required or decrease h to include b as a mesh point) Step 12 Set $q = (TOL/(2\sigma))^{1/4}$ Step 13 If q > 4 then set h = 4helse set h = qhStep 14 If h > hmax then set h = hmaxStep 15 If $t_{i-1} + 4h > b$ then set $h = (b - t_{i-1})/4$ & LAST = 1

Step 6 (Continuation of Steps 7–16)

Step 11 If $\sigma < 0.1$ TOL or $t_{i-1} + h > b$ then do Steps 12–16 (Increase h if it is more accurate than required or decrease h to include b as a mesh point) Step 12 Set $q = (TOL/(2\sigma))^{1/4}$ Step 13 If q > 4 then set h = 4helse set h = qhStep 14 If h > hmax then set h = hmaxStep 15 If $t_{i-1} + 4h > b$ then set $h = (b - t_{i-1})/4$ & LAST = 1 Step 16 Call RK4($h, w_{i-1}, t_{i-1}, w_i, t_i, w_{i+1}, t_{i+1}, w_{i+2}, t_{i+2}$) Set NFLAG = 1 i = i + 3(True branch completed. Next step is 20)

Steps 17–19 (False branch from Step 6: Result rejected) Step 17 Set $q = (TOL/(2\sigma))^{1/4}$

Steps 17–19 (False branch from Step 6: Result rejected) Step 17 Set $q = (TOL/(2\sigma))^{1/4}$ Step 18 If q < 0.1 then set h = 0.1helse set h = qh

Steps 17–19 (False branch from Step 6: Result rejected) Step 17 Set $q = (TOL/(2\sigma))^{1/4}$ Step 18 If q < 0.1 then set h = 0.1helse set h = qhStep 19 If h < hmin then set FLAG = 0OUTPUT ('hmin exceeded') else if NFLAG = 1 then set i = i - 3(Previous results also rejected) Call RK4(h, $w_{i-1}, t_{i-1}, w_i, t_i, w_{i+1}, t_{i+1}, w_{i+2}, t_{i+2})$ set i = i + 3NFLAG = 1

Steps 17–19 (False branch from Step 6: Result rejected) Step 17 Set $q = (TOL/(2\sigma))^{1/4}$ Step 18 If q < 0.1 then set h = 0.1helse set h = qhStep 19 If h < hmin then set FLAG = 0OUTPUT ('*hmin* exceeded') else if NFLAG = 1 then set i = i - 3(Previous results also rejected) Call $RK4(h, w_{i-1}, t_{i-1}, w_i, t_i, w_{i+1}, t_{i+1}, w_{i+2}, t_{i+2})$ set i = i + 3NFLAG = 1Step 20 Set $t = t_{i-1} + h$

Step 21 STOP

Example: Applying the Algorithm

Use the Adams variable step-size predictor-corrector method with maximum step size hmax = 0.2, minimum step size hmin = 0.01, and tolerance $TOL = 10^{-5}$ to approximate the solution of the initial-value problem:

$$y' = y - t^2 + 1,$$
 $0 \le t \le 2,$ $y(0) = 0.5$

Solution (1/5)

Numerical Analysis (Chapter 5)

Solution (1/5)

• We begin with h = hmax = 0.2, and obtain w_0 , w_1 , w_2 and w_3 using Runge-Kutta, then find w_4^p and w_4^c by applying the predictor-corrector method.

(日)

Solution (1/5)

- We begin with h = hmax = 0.2, and obtain w_0 , w_1 , w_2 and w_3 using Runge-Kutta, then find w_4^p and w_4^c by applying the predictor-corrector method.
- These calculations were done in an earlier example where it was determined that the Runge-Kutta approximations are:

$y(0) = w_0$	=	0.5	
$y(0.2) \approx w_1$	=	0.8292933	
$y(0.4) \approx w_2$	=	1.2140762	and
$y(0.6) \approx w_3$	=	1.6489220	

(日)

Solution (2/5)

The predictor and corrector gave

$$y(0) = w_0 = 0.5$$

- $y(0.2) \approx w_1 = 0.8292933$
- $y(0.4) \approx w_2 = 1.2140762$
- $y(0.6) \approx w_3 = 1.6489220$

$$y(0.8) \approx w_4^p = w_3 + \frac{0.2}{24} (55f(0.6, w_3) - 59f(0.4, w_2) + 37f(0.2, w_1))$$

 $-9f(0, w_0))$

$$= 2.1272892$$

 $y(0.8) \approx w_4^c = w_3 + \frac{0.2}{24} \left(9f(0.8, w_4^p) + 19f(0.6, w_3) - 5f(0.42, w_2) + f(0.2, w_1)\right)$

= 2.1272056

Solution (3/5)

We now need to determine if these approximations are sufficiently accurate or if there needs to be a change in the step size.

・ 同 ト ・ ヨ ト ・ ヨ

Solution (3/5)

We now need to determine if these approximations are sufficiently accurate or if there needs to be a change in the step size. First we find:

$$\delta = \frac{19}{270h} |w_4^c - w_4^p| = \frac{19}{270(0.2)} |2.1272056 - 2.1272892| = 2.941 \times 10^{-5}.$$

・ 同 ト ・ ヨ ト ・ ヨ
Solution (3/5)

We now need to determine if these approximations are sufficiently accurate or if there needs to be a change in the step size. First we find:

$$\delta = \frac{19}{270h} |w_4^c - w_4^p| = \frac{19}{270(0.2)} |2.1272056 - 2.1272892| = 2.941 \times 10^{-5}.$$

Because this exceeds the tolerance of 10^{-5} , a new step size is needed and the new step size is:

$$qh = \left(\frac{10^{-5}}{2\delta}\right)^{1/4} = \left(\frac{10^{-5}}{2(2.941 \times 10^{-5})}\right)^{1/4} (0.2) = 0.642(0.2) \approx 0.128.$$

< ロ > < 同 > < 三 > < 三 >

Solution (4/5)

Numerical Analysis (Chapter 5)

Variable Step-Size Multistep Methods

R L Burden & J D Faires

31/33

Solution (4/5)

• As a consequence, we need to begin the procedure again computing the Runge-Kutta values with this step size, ...

・ 同 ト ・ ヨ ト ・ ヨ

Solution (4/5)

- As a consequence, we need to begin the procedure again computing the Runge-Kutta values with this step size, ...
- and then use the predictor-corrector method with this same step size to compute the new values of w_4^p and w_4^c .

4 D b 4 A b

Solution (4/5)

- As a consequence, we need to begin the procedure again computing the Runge-Kutta values with this step size, ...
- and then use the predictor-corrector method with this same step size to compute the new values of w₄^p and w₄^c.
- We then need to run the accuracy check on these approximations to see that we have been successful.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Solution (4/5)

- As a consequence, we need to begin the procedure again computing the Runge-Kutta values with this step size, ...
- and then use the predictor-corrector method with this same step size to compute the new values of w₄^p and w₄^c.
- We then need to run the accuracy check on these approximations to see that we have been successful.
- The following table shows that this second run is successful and lists the all results obtained using the algorithm.

Solution (5/5): Summary of Numerical Results

t_i	$y(t_i)$	w_i	h_i	σ_i	$ y(t_i) - w_i $
0	0.5	0.5			
0.1257017	0.7002323	0.7002318	0.1257017	4.051×10^{-6}	0.0000005
0.2514033	0.9230960	0.9230949	0.1257017	4.051×10^{-6}	0.0000011
0.3771050	1.1673894	1.1673877	0.1257017	4.051×10^{-6}	0.0000017
÷	÷	:	÷	:	:
1.2570166	3.3366642	3.3366562	0.1257017	8.622×10^{-6}	0.0000080
1.3827183	3.6844857	3.6844761	0.1257017	9.777×10^{-6}	0.0000097
1.4857283	3.9697541	3.9697433	0.1030100	7.029×10^{-6}	0.0000108
1.5887383	4.2527830	4.2527711	0.1030100	7.029×10^{-6}	0.0000120
÷	÷	÷	÷	÷	:
1.8977683	5.0615660	5.0615488	0.1030100	7.760×10^{-6}	0.0000172
1.9233262	5.1239941	5.1239764	0.0255579	3.918×10^{-8}	0.0000177
1.9488841	5.1854932	5.1854751	0.0255579	3.918×10^{-8}	0.0000181
1.9744421	5.2460056	5.2459870	0.0255579	3.918×10^{-8}	0.0000186
2.0000000	5.3054720	5.3054529	0.0255579	3.918×10^{-8}	0.0000191

Numerical Analysis (Chapter 5)

Variable Step-Size Multistep Methods

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで