Iterative Techniques in Matrix Algebra

Jacobi & Gauss-Seidel Iterative Techniques I

Numerical Analysis (9th Edition) R L Burden & J D Faires

> Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

<ロト <回ト < 国ト < 国ト = 国

Introducing Iterative Techniques for Linear Systems

< 17 ▶

Introducing Iterative Techniques for Linear Systems

2 The Jacobi Iterative Method

< 17 ▶

Introducing Iterative Techniques for Linear Systems

2 The Jacobi Iterative Method

3 Converting $A\mathbf{x} = \mathbf{b}$ into an Equivalent System

A (10) A (10)

Introducing Iterative Techniques for Linear Systems

- 2 The Jacobi Iterative Method
- 3 Converting $A\mathbf{x} = \mathbf{b}$ into an Equivalent System
- 4 The Jacobi Iterative Algorithm

- **→ → →**

4 A N

Introducing Iterative Techniques for Linear Systems

2 The Jacobi Iterative Method

3 Converting *A***x** = **b** into an Equivalent System

4 The Jacobi Iterative Algorithm

A (10) > A (10) > A (10)

Intyroduction

 We will now describe the Jacobi and the Gauss-Seidel iterative methods, classic methods that date to the late eighteenth century.

.

4 A N

Jacobi Algorithm

The Jacobi & Gauss-Seidel Methods

Intyroduction

- We will now describe the Jacobi and the Gauss-Seidel iterative methods, classic methods that date to the late eighteenth century.
- Iterative techniques are seldom used for solving linear systems of small dimension since the time required for sufficient accuracy exceeds that required for direct techniques such as Gaussian elimination.

→ ∃ > < ∃</p>

A D M A A A M M

Jacobi Algorithm

The Jacobi & Gauss-Seidel Methods

Intyroduction

- We will now describe the Jacobi and the Gauss-Seidel iterative methods, classic methods that date to the late eighteenth century.
- Iterative techniques are seldom used for solving linear systems of small dimension since the time required for sufficient accuracy exceeds that required for direct techniques such as Gaussian elimination.
- For large systems with a high percentage of 0 entries, however, these techniques are efficient in terms of both computer storage and computation.

< ロ > < 同 > < 回 > < 回 >

Iterative Technique

An iterative technique to solve the $n \times n$ linear system

 $A \bm{x} = \bm{b}$

.

< 17 ▶

Iterative Technique

An iterative technique to solve the $n \times n$ linear system

 $A\mathbf{x} = \mathbf{b}$

starts with an initial approximation

x⁽⁰⁾

to the solution x

< 4 →

Iterative Technique

An iterative technique to solve the $n \times n$ linear system

$$A\mathbf{x} = \mathbf{b}$$

starts with an initial approximation

x⁽⁰⁾

to the solution \mathbf{x} and generates a sequence of vectors

$$\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$$

that converges to x.

Numerical Analysis (Chapter 7)

- B

< A >

Introducing Iterative Techniques for Linear Systems

2 The Jacobi Iterative Method

3 Converting Ax = b into an Equivalent System

4 The Jacobi Iterative Algorithm

A (10) > A (10) > A (10)

The Jacobi iterative method is obtained by solving the *i*th equation in $A\mathbf{x} = \mathbf{b}$ for x_i to obtain (provided $a_{ii} \neq 0$)

$$x_i = \sum_{\substack{j=1\j
eq i}}^n \left(-rac{a_{ij}x_j}{a_{ii}}
ight) + rac{b_i}{a_{ii}}, \qquad ext{for } i=1,2,\ldots,n$$

The Jacobi iterative method is obtained by solving the *i*th equation in $A\mathbf{x} = \mathbf{b}$ for x_i to obtain (provided $a_{ii} \neq 0$)

$$x_i = \sum_{\substack{j=1\j
eq i}}^n \left(-rac{a_{ij}x_j}{a_{ii}}
ight) + rac{b_i}{a_{ii}}, \qquad ext{for } i=1,2,\ldots,n$$

For each $k \ge 1$, generate the components $x_i^{(k)}$ of $\mathbf{x}^{(k)}$ from the components of $\mathbf{x}^{(k-1)}$ by

$$x_{i}^{(k)} = \frac{1}{a_{ij}} \left[\sum_{\substack{j=1 \ i \neq i}}^{n} \left(-a_{ij} x_{j}^{(k-1)} \right) + b_{i} \right], \quad \text{for } i = 1, 2, \dots, n$$

Numerical Analysis (Chapter 7)

Example

The linear system $A\mathbf{x} = \mathbf{b}$ given by

has the unique solution $\mathbf{x} = (1, 2, -1, 1)^t$.

Numerical Analysis (Chapter 7)

Example

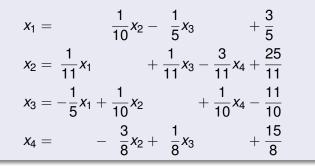
The linear system $A\mathbf{x} = \mathbf{b}$ given by

has the unique solution $\mathbf{x} = (1, 2, -1, 1)^t$. Use Jacobi's iterative technique to find approximations $\mathbf{x}^{(k)}$ to \mathbf{x} starting with $\mathbf{x}^{(0)} = (0, 0, 0, 0)^t$ until

$$\frac{\|\bm{x}^{(k)}-\bm{x}^{(k-1)}\|_{\infty}}{\|\bm{x}^{(k)}\|_{\infty}} < 10^{-3}$$

Solution (1/4)

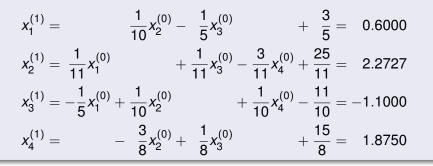
We first solve equation E_i for x_i , for each i = 1, 2, 3, 4, to obtain



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Solution (2/4)

From the initial approximation $\mathbf{x}^{(0)} = (0, 0, 0, 0)^t$ we have $\mathbf{x}^{(1)}$ given by



10/26

-

Solution (3/4)

Additional iterates, $\mathbf{x}^{(k)} = (x_1^{(k)}, x_2^{(k)}, x_3^{(k)}, x_4^{(k)})^t$, are generated in a similar manner and are summarized as follows:

k	0	1	2	3	4		10
$x_{1}^{(k)}$	0.0		1.0473		1.0152		
$x_2^{(k)}$	0.0	2.2727	1.7159	2.053	1.9537		1.9998
$x_{3}^{(k)}$		-1.1000					-0.9998
$x_{4}^{(k)}$	0.0	1.8750	0.8852	1.1309	0.9739	•••	0.9998

11/26

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Solution (4/4)

The process was stopped after 10 iterations because

$$\frac{\|\bm{x}^{(10)}-\bm{x}^{(9)}\|_{\infty}}{\|\bm{x}^{(10)}\|_{\infty}}=\frac{8.0\times10^{-4}}{1.9998}<10^{-3}$$

In fact, $\|\mathbf{x}^{(10)} - \mathbf{x}\|_{\infty} = 0.0002$.

< ロ > < 同 > < 回 > < 回 >

Introducing Iterative Techniques for Linear Systems

2) The Jacobi Iterative Method

3 Converting $A\mathbf{x} = \mathbf{b}$ into an Equivalent System

4 The Jacobi Iterative Algorithm

A (10) > A (10) > A (10)

A More General Representation

 In general, iterative techniques for solving linear systems involve a process that converts the system Ax = b into an equivalent system of the form

$$\mathbf{x} = T\mathbf{x} + \mathbf{c}$$

for some fixed matrix T and vector \mathbf{c} .

A More General Representation

 In general, iterative techniques for solving linear systems involve a process that converts the system Ax = b into an equivalent system of the form

$$\mathbf{x} = T\mathbf{x} + \mathbf{c}$$

for some fixed matrix T and vector \mathbf{c} .

 After the initial vector x⁽⁰⁾ is selected, the sequence of approximate solution vectors is generated by computing

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{C}$$

for each k = 1, 2, 3, ... (reminiscent of the fixed-point iteration for solving nonlinear equations).

A More General Representation (Cont'd)

• The Jacobi method can be written in the form

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$$

by splitting A into its diagonal and off-diagonal parts.

A More General Representation (Cont'd)

• The Jacobi method can be written in the form

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$$

by splitting A into its diagonal and off-diagonal parts.

To see this, let *D* be the diagonal matrix whose diagonal entries are those of *A*, -*L* be the strictly lower-triangular part of *A*, and -*U* be the strictly upper-triangular part of *A* where

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Numerical Analysis (Chapter 7)

Jacobi & Gauss-Seidel Methods I

A More General Representation (Cont'd)

We then write A = D - L - U

Numerical Analysis (Chapter 7)

э

・ロト ・ 四ト ・ ヨト ・ ヨト

A More General Representation (Cont'd)

We then write A = D - L - U where

$$D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix}$$

э

ヘロン 人間と 人間と 人間と

A More General Representation (Cont'd)

We then write A = D - L - U where

$$D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix} \quad L = \begin{bmatrix} 0 & \cdots & \cdots & 0 \\ -a_{21} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ -a_{n1} & \cdots & -a_{n,n-1} & 0 \end{bmatrix}$$

э

イロト イポト イヨト イヨト

A More General Representation (Cont'd)

We then write A = D - L - U where

$$D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix} L = \begin{bmatrix} 0 & \cdots & \cdots & 0 \\ -a_{21} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ -a_{n1} & \cdots & -a_{n,n-1} & 0 \end{bmatrix}$$

and
$$U = \begin{bmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & -a_{n-1,n} \\ 0 & \cdots & 0 \end{bmatrix}$$

Numerical Analysis (Chapter 7)

A More General Representation (Cont'd)

The equation $A\mathbf{x} = \mathbf{b}$, or $(D - L - U)\mathbf{x} = \mathbf{b}$, is then transformed into

 $D\mathbf{x} = (L + U)\mathbf{x} + \mathbf{b}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A More General Representation (Cont'd)

The equation $A\mathbf{x} = \mathbf{b}$, or $(D - L - U)\mathbf{x} = \mathbf{b}$, is then transformed into

$$D\mathbf{x} = (L+U)\mathbf{x} + \mathbf{b}$$

and, if D^{-1} exists, that is, if $a_{ii} \neq 0$ for each *i*, then

$$x = D^{-1}(L+U)x + D^{-1}b$$

Numerical Analysis (Chapter 7)

イロト イ団ト イヨト イヨト

A More General Representation (Cont'd)

The equation $A\mathbf{x} = \mathbf{b}$, or $(D - L - U)\mathbf{x} = \mathbf{b}$, is then transformed into

$$D\mathbf{x} = (L+U)\mathbf{x} + \mathbf{b}$$

and, if D^{-1} exists, that is, if $a_{ii} \neq 0$ for each *i*, then

$$\mathbf{x} = D^{-1}(L+U)\mathbf{x} + D^{-1}\mathbf{b}$$

This results in the matrix form of the Jacobi iterative technique:

$$\mathbf{x}^{(k)} = D^{-1}(L+U)\mathbf{x}^{(k-1)} + D^{-1}\mathbf{b}, \quad k = 1, 2, \dots$$

A More General Representation (Cont'd)

Introducing the notation $T_j = D^{-1}(L + U)$ and $c_j = D^{-1}b$

Numerical Analysis (Chapter 7)

э.

・ロト ・ 四ト ・ ヨト ・ ヨト

A More General Representation (Cont'd)

Introducing the notation $T_j = D^{-1}(L + U)$ and $c_j = D^{-1}b$ gives the Jacobi technique the form

$$\mathbf{x}^{(k)} = T_j \mathbf{x}^{(k-1)} + \mathbf{c}_j$$

э.

A More General Representation (Cont'd)

Introducing the notation $T_j = D^{-1}(L + U)$ and $c_j = D^{-1}b$ gives the Jacobi technique the form

$$\mathbf{x}^{(k)} = T_j \mathbf{x}^{(k-1)} + \mathbf{c}_j$$

In practice, this form is only used for theoretical purposes while

$$x_i^{(k)} = rac{1}{a_{ii}} \left[\sum_{\substack{j=1 \ j
eq i}}^n \left(-a_{ij} x_j^{(k-1)} \right) + b_i
ight], \quad \text{for } i = 1, 2, \dots, n$$

is used in computation.

< ロ > < 同 > < 回 > < 回 >

Jacobi's Method in the form $\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$

Example

Express the Jacobi iteration method for the linear system $A\mathbf{x} = \mathbf{b}$ given by

$$E_1: 10x_1 - x_2 + 2x_3 = 6$$

$$E_2: -x_1 + 11x_2 - x_3 + 3x_4 = 25$$

$$E_3: 2x_1 - x_2 + 10x_3 - x_4 = -1^{-1}$$

$$E_4: 3x_2 - x_3 + 8x_4 = 15$$

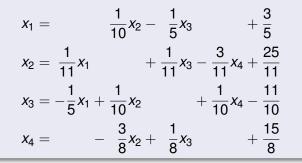
in the form $\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Jacobi's Method in the form $\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$

Solution (1/2)

We saw earlier that the Jacobi method for this system has the form



3

Jacobi's Method in the form $\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$

Solution (2/2)

Hence, we have

$$T = \begin{bmatrix} 0 & \frac{1}{10} & -\frac{1}{5} & 0\\ \frac{1}{11} & 0 & \frac{1}{11} & -\frac{3}{11}\\ -\frac{1}{5} & \frac{1}{10} & 0 & \frac{1}{10}\\ 0 & -\frac{3}{8} & \frac{1}{8} & 0 \end{bmatrix} \text{ and } \mathbf{c} = \begin{bmatrix} \frac{3}{5}\\ \frac{25}{11}\\ -\frac{11}{10}\\ \frac{15}{8} \end{bmatrix}$$

< ロ > < 同 > < 回 > < 回 >

Outline

Introducing Iterative Techniques for Linear Systems

2 The Jacobi Iterative Method

3 Converting Ax = b into an Equivalent System

4 The Jacobi Iterative Algorithm

A (10) > A (10) > A (10)

To solve $A\mathbf{x} = \mathbf{b}$ given an initial approximation $\mathbf{x}^{(0)}$:

イロト イポト イヨト イヨ

To solve $A\mathbf{x} = \mathbf{b}$ given an initial approximation $\mathbf{x}^{(0)}$:

INPUT the number of equations and unknowns n; the entries a_{ij} , $1 \le i, j \le n$ of the matrix A; the entries b_i , $1 \le i \le n$ of **b**; the entries XO_i , $1 \le i \le n$ of **XO** = **x**⁽⁰⁾; tolerance *TOL*; maximum number of iterations N.

A (10) > A (10) > A (10)

To solve $A\mathbf{x} = \mathbf{b}$ given an initial approximation $\mathbf{x}^{(0)}$:

INPUT the number of equations and unknowns n; the entries a_{ij} , $1 \le i, j \le n$ of the matrix A; the entries b_i , $1 \le i \le n$ of **b**; the entries XO_i , $1 \le i \le n$ of **XO** = **x**⁽⁰⁾; tolerance *TOL*; maximum number of iterations N.

OUTPUT the approximate solution x_1, \ldots, x_n or a message that the number of iterations was exceeded.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Step 1 Set k = 1Step 2 While $(k \le N)$ do Steps 3–6

Numerical Analysis (Chapter 7)

Step 1 Set k = 1Step 2 While $(k \le N)$ do Steps 3–6

Step 3 For i = 1, ..., n

Step 3 For
$$i = 1, \dots, n$$

set $x_i = \frac{1}{a_{ii}} \left[-\sum_{\substack{j=1 \ j \neq i}}^n (a_{ij} X O_j) + b_i \right]$

Step 3 For
$$i = 1, ..., n$$

set $x_i = \frac{1}{a_{ii}} \left[-\sum_{\substack{j=1 \ j \neq i}}^n (a_{ij} X O_j) + b_i \right]$
Step 4 If $||\mathbf{x} - \mathbf{XO}|| < TOL$ then OUTPUT $(x_1, ..., x_n)$

Step 3 For
$$i = 1, ..., n$$

set $x_i = \frac{1}{a_{ii}} \left[-\sum_{\substack{j=1 \ j \neq i}}^n (a_{ij} X O_j) + b_i \right]$
Step 4 If $||\mathbf{x} - \mathbf{XO}|| < TOL$ then OUTPUT $(x_1, ..., x_n)$
(*The procedure was successful*)
STOP

Step 1 Set k = 1Step 2 While $(k \le N)$ do Steps 3–6

Step 3 For
$$i = 1, ..., n$$

set $x_i = \frac{1}{a_{ii}} \left[-\sum_{\substack{j=1 \ j \neq i}}^n (a_{ij} X O_j) + b_i \right]$
Step 4 If $||\mathbf{x} - \mathbf{XO}|| < TOL$ then OUTPUT $(x_1, ..., x_n)$
(*The procedure was successful*)
STOP

Step 5 Set k = k + 1

Step 3 For
$$i = 1, ..., n$$

set $x_i = \frac{1}{a_{ii}} \left[-\sum_{\substack{j=1 \ j \neq i}}^n (a_{ij}XO_j) + b_i \right]$
Step 4 If $||\mathbf{x} - \mathbf{XO}|| < TOL$ then OUTPUT $(x_1, ..., x_n)$
(*The procedure was successful*)
STOP
Step 5 Set $k = k + 1$
Step 6 For $i = 1, ..., n$ set $XO_i = x_i$

Step 1Set k = 1Step 2While $(k \le N)$ do Steps 3–6

Step 3 For
$$i = 1, ..., n$$

set $x_i = \frac{1}{a_{ii}} \left[-\sum_{\substack{j=1 \ j \neq i}}^n (a_{ij}XO_j) + b_i \right]$
Step 4 If $||\mathbf{x} - \mathbf{XO}|| < TOL$ then OUTPUT $(x_1, ..., x_n)$
(*The procedure was successful*)
STOP
Step 5 Set $k = k + 1$
Step 6 For $i = 1, ..., n$ set $XO_i = x_i$

Step 7 OUTPUT ('Maximum number of iterations exceeded') (*The procedure was successful*) STOP

Numerical Analysis (Chapter 7)

Jacobi & Gauss-Seidel Methods I

Comments on the Algorithm

• Step 3 of the algorithm requires that $a_{ii} \neq 0$, for each i = 1, 2, ..., n.

Numerical Analysis (Chapter 7)

Comments on the Algorithm

Step 3 of the algorithm requires that a_{ii} ≠ 0, for each i = 1, 2, ..., n. If one of the a_{ii} entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no a_{ii} = 0.

Comments on the Algorithm

- Step 3 of the algorithm requires that a_{ii} ≠ 0, for each i = 1, 2, ..., n. If one of the a_{ii} entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no a_{ii} = 0.
- To speed convergence, the equations should be arranged so that *a_{ii}* is as large as possible.

Comments on the Algorithm

- Step 3 of the algorithm requires that a_{ii} ≠ 0, for each i = 1, 2, ..., n. If one of the a_{ii} entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no a_{ii} = 0.
- To speed convergence, the equations should be arranged so that *a_{ii}* is as large as possible.
- Another possible stopping criterion in Step 4 is to iterate until

$$\frac{\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|}{\|\mathbf{x}^{(k)}\|}$$

is smaller than some prescribed tolerance.

Comments on the Algorithm

- Step 3 of the algorithm requires that a_{ii} ≠ 0, for each i = 1, 2, ..., n. If one of the a_{ii} entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no a_{ii} = 0.
- To speed convergence, the equations should be arranged so that *a_{ii}* is as large as possible.
- Another possible stopping criterion in Step 4 is to iterate until

$$\frac{\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|}{\|\mathbf{x}^{(k)}\|}$$

is smaller than some prescribed tolerance.

• For this purpose, any convenient norm can be used, the usual being the I_{∞} norm.

Numerical Analysis (Chapter 7)

Jacobi & Gauss-Seidel Methods I

Questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで