Approximating Eigenvalues

Single Value Decomposition

Numerical Analysis (10th Edition) R L Burden & J D Faires & A M Burden

Beamer Presentation Slides prepared by Dr. Annette M. Burden Youngstown State University

Cengage Details & Supplement Web Address

<ロト <四ト <注入 <注下 <注下 <

Outline

イロト イポト イヨト イヨト

Rank and Nullity 1

Definition

Let *A* be an $m \times n$ matrix

- The **Rank** of *A*, denoted Rank (*A*) is the number of linearly independent rows in *A*.
- The Nullity of A, denoted Nullity of A, is n − Nullity(A), and describes the largest set of linearly independent vectors *textbfv* in ℝⁿ for which Av = 0.
- NOTE: The Rank and Nullity of a matrix are important in characterizing the behavior of the matrix.

Rank and Nullity 2

Theorem 9.25

The number of linearly independent rows of an $m \times n$ matrix A is the same as the number of linearly independent columns of A.

Theorem 9.26

Let *A* be $m \times n$ matrix.

- (i) The matrices $A^t A$ and AA^t are symmetric.
- (ii) $A = A^t A$.
- (iii) $A = A^t A$.
- (iv) The eigenvalues of $A^t A$ are real and nonnegative.
- (v) The nonzero eigenvalues of AA^t are the same as the nonzero eigenvalues of A^tA .

Outline

ヘロン 人間 とくほ とくほ とう

1

Overview

Our objective is to determine a factorization of the $m \times n$ matrix A, where $m \ge n$, in the form

$$A = USV^t,$$

where *U* is an $m \times m$ orthogonal matrix, *V* is $n \times n$ an orthogonal matrix, and *S* is an $m \times n$ diagonal matrix, that is, its only nonzero entries are $(S)_{ii} \equiv s_i \ge 0$, for i = 1, ..., n.

э

Construction of the Factorization

• Construct S in the factorization $A = U S V^t$

- Find the eigenvalues of the $n \times n$ symmetric matrix $A^t A$.
- Order them from largest to smallest and denote as

$$s_1^2 \geq s_2^2 \geq \cdots \geq s_k^2 > s_{k+1} = \cdots = s_n = 0.$$

- The diagonal entries of D are the square roots of singular values of s₁, s₂, s₃, ···, s_n.
- 2 Construct V in the factorization $A = U S V^t$
 - Find the associated eigenvectors v_1, v_2, \dots, v_n for the eigenvectors $s_1, s_2, s_3, \dots, s_n$.
 - Ormalize the eigenvectors v₁, v₂, ··· , v_n to obtain the columns of V.
- Sonstruct U in the factorization $A = U S V^t$
 - Compute the first k columns of U: $u_i = \frac{1}{s_i} A v_i$ for i = 1, 2, ..., k.
 - Use the Gram-Schmidt process to obtain additional columns.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Alternate Step 3 of USV^t

- Compute the *m* eigenvalues of *AA*^t.
- Find the set of *m* corresponding eigenvectors.
- Normalize these eigenvectors and make them the columns of U.