Numerical Analysis

10th ed

R L Burden, J D Faires, and A M Burden

Beamer Presentation Slides Prepared by Dr. Annette M. Burden Youngstown State University

September 6, 2015

Definition (1.1)

A function *f* defined on a set *X* of real numbers has the **limit** *L* at x_0 , written

$$\lim_{x\to x_0}f(x)=L,$$

if, given any real number $\varepsilon > 0$, there exists a real number $\delta > 0$ such that

$$|f(x) - L| < \varepsilon$$
, whenever $x \in X$ and $0 < |x - x_0| < \delta$.

Definition (1.2)

Let *f* be a function defined on a set *X* of real numbers and $x_0 \in X$. Then *f* is **continuous** at x_0 if

$$\lim_{x\to x_0}f(x)=f(x_0).$$

The function *f* is **continuous on the set** *X* if it is continuous at each number in *X*.

Definition (1.3)

Let $\{x_n\}_{n=1}^{\infty}$ be an infinite sequence of real numbers. This sequence has the **limit** *x* (**converges to** *x*) if, for any $\varepsilon > 0$ there exists a positive integer $N(\varepsilon)$ such that $|x_n - x| < \varepsilon$, whenever $n > N(\varepsilon)$. The notation

$$\lim_{n\to\infty} x_n = x, \quad \text{or} \quad x_n \to x \quad \text{as} \quad n\to\infty,$$

means that the sequence $\{x_n\}_{n=1}^{\infty}$ converges to *x*.

Theorem (1.4)

If f is a function defined on a set X of real numbers and $x_0 \in X$, then the following statements are equivalent:

- **a.** *f* is continuous at x_0 ;
- **b.** If $\{x_n\}_{n=1}^{\infty}$ is any sequence in X converging to x_0 , then $\lim_{n\to\infty} f(x_n) = f(x_0)$.

Definition (1.5)

Let *f* be a function defined in an open interval containing x_0 . The function *f* is **differentiable** at x_0 if

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists. The number $f'(x_0)$ is called the **derivative** of f at x_0 . A function that has a derivative at each number in a set X is **differentiable on** X.

Theorem (1.6)

If the function f is differentiable at x_0 , then f is continuous at x_0 .

Theorem (1.7 Rolle's Theorem)

Suppose $f \in C[a, b]$ and f is differentiable on (a, b). If f(a) = f(b), then a number c in (a, b) exists with f'(c) = 0. (See Figure 1.3.)

Theorem (1.8 Mean Value Theorem)

If $f \in C[a, b]$ and f is differentiable on (a, b), then a number c in (a, b) exists with (See Figure 1.4.)

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Figure: Figure 1.4

Theorem (1.9 Extreme Value Theorem)

If $f \in C[a, b]$, then $c_1, c_2 \in [a, b]$ exist with $f(c_1) \leq f(x) \leq f(c_2)$, for all $x \in [a, b]$. In addition, if f is differentiable on (a, b), then the numbers c_1 and c_2 occur either at the endpoints of [a, b] or where f' is zero. (See Figure 1.5.)

Figure: Figure 1.5

Example 1

Use the Extreme Value Theorem to find $max_{0.1 \le x \le 0.6} |5x^3 + 2x^2 - 4x|$.

Solution

Since $f(x) = 5x^3 + 2x^2 - 4x$ is a polynomial function it is continuous for all $x \in [0, 0.7]$. Locate the critical points in [0.1, 0.6] by finding the first derivative and setting it equal to 0. $f'(x) = 15x^2 + 4x - 4 = 0$ at x = 0.4Evaluate |f(x)| at each critical point in the interval as well as at the endpoints of the interval. We have f(0.2) = 0.375, f(0.4) = 0.960, f(0.6) = 0.600

Thus, the max occurs at (0.4,0.960).

Theorem (1.10 Generalized Rolle's Theorem)

Suppose $f \in C[a, b]$ is n times differentiable on (a, b). If f(x) = 0 at the n + 1 distinct numbers $a \le x_0 < x_1 < \ldots < x_n \le b$, then a number c in (x_0, x_n) , and hence in (a, b), exists with $f^{(n)}(c) = 0$.

Theorem (1.11 Intermediate Value Theorem)

If $f \in C[a, b]$ and K is any number between f(a) and f(b), then there exists a number c in (a, b) for which f(c) = K.

Figure: Figure 1.6

Example 2

Use the Intermediate Value Theorem to show that $5x^3 + 2x^2 - 4x = 0$; has at least one solution in a given interval [-1, 0.5].

Solution

Let $f(x) = 5x^3 + 2x^2 - 4x$. Calculate the function values at each endpoint of the interval.

$$f(-1) = 1$$
 $f(0.5) = -8.75$

Since the function values are of opposite sign, there is at least one solution in the given interval.

Theorem (1.13 Weighted Mean Value Theorem for Integrals)

Suppose $f \in C[a, b]$, the Riemann integral of g exists on [a, b], and g(x) does not change sign on [a, b]. Then there exists a number c in (a, b) with

$$\int_a^b f(x)g(x)\ dx = f(c)\int_a^b g(x)\ dx.$$

NOTE: When $g(x) \equiv 1$, Theorem 1.13 is the usual Mean Value Theorem for Integrals. It gives the **average value** of the function *f* over the interval [*a*, *b*] as (See Figure 1.8.)

$$f(c)=\frac{1}{b-a}\int_a^b f(x)\ dx.$$

Theorem (1.14 Taylor's Theorem)

Suppose $f \in C^n[a, b]$, that $f^{(n+1)}$ exists on [a, b], and $x_0 \in [a, b]$. For every $x \in [a, b]$, there exists a number $\xi(x)$ between x_0 and x with

 $f(x)=P_n(x)+R_n(x),$

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots$$
$$+ \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$
$$R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x - x_0)^{n+1}.$$

Example 3

Let $f(x) = \cos x$ and $x_0 = 0$. Determine The second Taylor polynomial for *f* about x_0 .

Solution

Since $f \in C^{\infty}(\mathbb{R})$, Taylor's Theorem can be applied for any $n \ge 0$. Also, $f'(x) = -\sin x$, $f''(x) = -\cos x$, $f'''(x) = \sin x$ and $f^{(4)}(x) = \cos x$. So f(0) = 1, f'(0) = 0, f''(0) = -1, and f'''(0) = 0. For n = 2 and $x_0 = 0$, $\cos x = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(\xi(x))}{3!}x^3 = 1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 \sin \xi(x)$, where $\xi(x)$ is some (generally unknown) number between 0 and x.

Chapter 1.2: Preliminaries; Error Analysis

Definition (1.15)

Suppose that p^* is an approximation to p. The **actual error** is $p - p^*$, the **absolute error** is $|p - p^*|$, and the **relative error** is $\frac{|p - p^*|}{|p|}$, provided that $p \neq 0$.

Definition (1.16)

The number p^* is said to approximate p to t significant digits (or figures) if t is the largest nonnegative integer for which

$$\frac{|\boldsymbol{p}-\boldsymbol{p}^*|}{|\boldsymbol{p}|} \leq 5 \times 10^{-t}.$$

Chapter 1.3: Preliminaries; Convergence

Definition (1.17)

Suppose that $E_0 > 0$ denotes an error introduced at some stage in the calculations and E_n represents the magnitude of the error after *n* subsequent operations.

- If $E_n \approx CnE_0$, where *C* is a constant independent of *n*, then the growth of error is said to be **linear**.
- If $E_n \approx C^n E_0$, for some C > 1, then the growth of error is called **exponential**.

Chapter 1.3: Preliminaries; Convergence

Definition (1.18)

Suppose $\{\beta_n\}_{n=1}^{\infty}$ is a sequence known to converge to zero, and $\{\alpha_n\}_{n=1}^{\infty}$ converges to a number α . If a positive constant *K* exists with

 $|\alpha_n - \alpha| \leq K |\beta_n|$, for large n,

then we say that $\{\alpha_n\}_{n=1}^{\infty}$ converges to α with **rate, or order, of convergence** $O(\beta_n)$. (This expression is read "big oh of β_n ".) It is indicated by writing $\alpha_n = \alpha + O(\beta_n)$.