Numerical Analysis

10th ed

R L Burden, J D Faires, and A M Burden

Beamer Presentation Slides Prepared by Dr. Annette M. Burden Youngstown State University

September 6, 2015

Definition (1.1)

A function *f* defined on a set *X* of real numbers has the **limit** *L* at *x*0, written

1

$$
\lim_{x\to x_0}f(x)=L,
$$

if, given any real number $\varepsilon > 0$, there exists a real number $\delta > 0$ such that

 $|f(x) - L| < \varepsilon$, whenever $x \in X$ and $0 < |x - x_0| < \delta$.

Definition (1.2)

Let *f* be a function defined on a set *X* of real numbers and $x_0 \in X$. Then *f* is **continuous** at x_0 if

$$
\lim_{x\to x_0}f(x)=f(x_0).
$$

2

The function *f* is **continuous on the set** *X* if it is continuous at each number in *X*.

Definition (1.3)

Let $\{x_n\}_{n=1}^{\infty}$ be an infinite sequence of real numbers. This sequence has the **limit** *x* (converges to *x*) if, for any $\varepsilon > 0$ there exists a positive integer $N(\varepsilon)$ such that $|x_n - x| < \varepsilon$, whenever $n > N(\varepsilon)$. The notation

$$
\lim_{n\to\infty}x_n=x,\quad\text{or}\quad x_n\to x\quad\text{as}\quad n\to\infty,
$$

3

means that the sequence $\{x_n\}_{n=1}^{\infty}$ converges to *x*.

Theorem (1.4)

If f is a function defined on a set X of real numbers and $x_0 \in X$, *then the following statements are equivalent:*

4

- **a.** *f* is continuous at x_0 ;
- **b.** If $\{x_n\}_{n=1}^{\infty}$ is any sequence in X converging to x_0 , then $\lim_{n\to\infty} f(x_n) = f(x_0)$.

Definition (1.5)

Let *f* be a function defined in an open interval containing x_0 . The function *f* is **differentiable** at x_0 if

$$
f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}
$$

5

exists. The number $f'(x_0)$ is called the **derivative** of *f* at x_0 . A function that has a derivative at each number in a set *X* is **differentiable on** *X* .

Theorem (1.6)

If the function f is differentiable at x_0 *, then f is continuous at* x_0 *.*

6

Theorem (1.7 Rolle's Theorem)

Suppose $f \in C[a, b]$ *and f is differentiable on* (a, b) *. If* $f(a) = f(b)$, then a number c in (a, b) exists with $f'(c) = 0$. (See *Figure 1.3.)*

Theorem (1.8 Mean Value Theorem)

If $f \in C[a, b]$ *and f is differentiable on* (a, b) *, then a number c in* (*a, b*) *exists with (See Figure 1.4.)*

7

$$
f'(c)=\frac{f(b)-f(a)}{b-a}.
$$

Numerical Analysis 10E **Figure: Figure 1.4**

Theorem (1.9 Extreme Value Theorem)

If $f \in C[a, b]$, then c_1 , $c_2 \in [a, b]$ *exist with* $f(c_1) \le f(x) \le f(c_2)$, *for all* $x \in [a, b]$ *. In addition, if f is differentiable on* (a, b) *, then the numbers c*¹ *and c*² *occur either at the endpoints of* [*a, b*] *or where f' is zero. (See Figure 1.5.)*

8

Figure: Figure 1.5

9

Example 1

Use the Extreme Value Theorem to find *max*_{0.1} $\langle x \times 0.6 | 5x^3 + 2x^2 - 4x |$.

Solution

Since $f(x) = 5x^3 + 2x^2 - 4x$ is a polynomial function it is continuous for all $x \in [0, 0.7]$. Locate the critical points in [0.1,0.6] by finding the first derivative and setting it equal to 0. $f'(x) = 15x^2 + 4x - 4 = 0$ at $x = 0.4$ Evaluate $|f(x)|$ at each critical point in the interval as well as at the endpoints of the interval. We have $f(0.2) = 0.375$, $f(0.4) = 0.960$, $f(0.6) = 0.600$

Thus, the max occurs at (0.4,0.960).

10

Theorem (1.10 Generalized Rolle's Theorem)

Suppose $f \in C[a, b]$ *is n times differentiable on* (a, b) *. If* $f(x) = 0$ *at the n* + 1 *distinct numbers* $a \leq x_0 < x_1 < \ldots < x_n \leq b$, then a number c in (x_0, x_n) , and *hence in* (a, b) *, exists with* $f^{(n)}(c) = 0$ *.*

Theorem (1.11 Intermediate Value Theorem)

If $f \in C[a, b]$ *and* K *is any number between* $f(a)$ *and* $f(b)$ *, then there exists a number c in* (a, b) *for which* $f(c) = K$.

11

Figure: Figure 1.6

Example 2

Use the Intermediate Value Theorem to show that $5x^3 + 2x^2 - 4x = 0$; has at least one solution in a given interval $[-1, 0.5]$.

12

Solution

Let $f(x) = 5x^3 + 2x^2 - 4x$. Calculate the function values at each endpoint of the interval.

$$
f(-1) = 1 \quad f(0.5) = -8.75
$$

Since the function values are of opposite sign, there is at least one solution in the given interval.

13

Theorem (1.13 Weighted Mean Value Theorem for Integrals)

Suppose $f \in C[a, b]$ *, the Riemann integral of g exists on* [a, b], *and g*(*x*) *does not change sign on* [*a, b*]*. Then there exists a number c in* (*a, b*) *with*

$$
\int_a^b f(x)g(x) \ dx = f(c) \int_a^b g(x) \ dx.
$$

NOTE: When $g(x) \equiv 1$, Theorem 1.13 is the usual Mean Value Theorem for Integrals. It gives the **average value** of the function *f* over the interval [*a, b*] as (See Figure 1.8.)

$$
f(c)=\frac{1}{b-a}\int_a^b f(x)\,dx.
$$

Theorem (1.14 Taylor's Theorem)

Suppose $f \in C^n[a, b]$ *, that* $f^{(n+1)}$ *exists on* [a, b]*, and* $x_0 \in [a, b]$ *. For every* $x \in [a, b]$ *, there exists a number* $\xi(x)$ *between* x_0 *and x with*

14

 $f(x) = P_n(x) + R_n(x)$,

$$
P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots
$$

+
$$
\frac{f^{(n)}(x_0)}{n!}(x - x_0)^n = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k
$$

$$
B_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x - x_0)^{n+1}.
$$

Example 3

Let $f(x) = \cos x$ and $x_0 = 0$. Determine The second Taylor polynomial for f about x_0 .

15

Solution

Since $f \in C^{\infty}(\mathbb{R})$, Taylor's Theorem can be applied for any $n \ge 0$. Also, $f'(x) = -\sin x$, $f''(x) = -\cos x$, $f'''(x) = \sin x$ and $f^{(4)}(x) = \cos x$. So $f(0) = 1$, $f'(0) = 0$, $f''(0) = -1$, and $f'''(0) = 0.$ For $n = 2$ and $x_0 = 0$, $\cos x = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(\xi(x))}{3!}x^3$ $= 1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 \sin \xi(x),$ where $\xi(x)$ is some (generally unknown) number between 0 and *x*.

Chapter 1.2: Preliminaries; Error Analysis

Definition (1.15)

Suppose that *p*⇤ is an approximation to *p*. The **actual error** is $p - p^*$, the **absolute error** is $|p - p^*|$, and the **relative error** is $\frac{|p-p^*|}{|p-p^*|}$ $\frac{P}{|P|}$, provided that $p \neq 0$.

16

Definition (1.16)

The number *p*⇤ is said to approximate *p* to *t* **significant digits** (or figures) if *t* is the largest nonnegative integer for which

$$
\frac{|\boldsymbol{\rho}-\boldsymbol{\rho}^*|}{|\boldsymbol{\rho}|}\leq 5\times 10^{-t}.
$$

Chapter 1.3: Preliminaries; Convergence

Definition (1.17)

Suppose that $E_0 > 0$ denotes an error introduced at some stage in the calculations and *En* represents the magnitude of the error after *n* subsequent operations.

17

- If $E_n \approx CnE_0$, where *C* is a constant independent of *n*, then the growth of error is said to be **linear**.
- If $E_n \approx C^n E_0$, for some $C > 1$, then the growth of error is called **exponential**.

Chapter 1.3: Preliminaries; Convergence

Definition (1.18)

Suppose $\{\beta_n\}_{n=1}^{\infty}$ is a sequence known to converge to zero, and $\{\alpha_n\}_{n=1}^{\infty}$ converges to a number α . If a positive constant *K* exists with

18

 $|\alpha_n - \alpha| \leq K|\beta_n|$, for large *n*,

then we say that $\{\alpha_n\}_{n=1}^\infty$ converges to α with **rate, or order, of convergence** $O(\beta_n)$. (This expression is read "big oh of β_n ".) It is indicated by writing $\alpha_n = \alpha + O(\beta_n)$.