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Chapter 2.1: Solutions: Eqs. in 1 Var

Algorithm 2.1: BISECTION
To find a solution to f (x) = 0 given the continuous function f on the interval [a, b],
where f (a) and f (b) have opposite signs:

INPUT endpoints a, b; tolerance TOL; maximum number of iterations N0.
OUTPUT approximate solution p or message of failure.
Step 1 Set i = 1;

FA = f (a).
Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = a + (b − a)/2; (Compute pi .)
FP = f (p).

Step 4 If FP = 0 or (b − a)/2 < TOL then
OUTPUT (p); (Procedure completed successfully.)
STOP.

Step 5 Set i = i + 1.
Step 6 If FA · FP > 0 then set a = p; (Compute ai , bi .)

FA = FP
else set b = p. (FA is unchanged.)

Step 7 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.
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Chapter 2.1: Solutions: Eqs. in 1 Var

Bisection Illustration
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Figure: Figure 2.1

| Numerical Analysis 10E



3

Chapter 2.1: Solutions: Eqs. in 1 Var

This YouTube video can serve as a good illustration of the
Bisection Method for students. Bisection Video

Theorem (2.1)
Suppose that f ∈ C[a,b] and f (a) · f (b) < 0. The Bisection
method generates a sequence {pn}∞n=1 approximating a zero p
of f with

|pn − p| ≤ b − a
2n , when n ≥ 1.
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Chapter 2.2: Solutions:Fixed-Point

Definition (2.2)
The number p is a fixed point for a given function g if g(p) = p.

NOTES:
I Given a root-finding problem f (p) = 0, we can define

functions g with a fixed point at p in a number of ways, for
example, as

g(x) = x − f (x) or as g(x) = x + 3f (x).

I Conversely, if the function g has a fixed point at p, then the
function defined by

f (x) = x − g(x)

has a zero at p.
| Numerical Analysis 10E
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Chapter 2.2: Solutions: Fixed-Point

Theorem (2.3)
(i) If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], then g has at least one

fixed point in [a, b].

(ii) If, in addition, g′(x) exists on (a, b) and a positive constant k < 1 exists
with |g′(x)| ≤ k , for all x ∈ (a, b), then there is exactly one fixed point
in [a, b]. (See Figure 2.3.)
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Figure: Figure 2.3
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Chapter 2.2: Solutions: Fixed-Point

Algorithm 2.2: FIXED-POINT ITERATION
To find a solution to p = g(p) given an initial approximation p0:

INPUT initial approximation p0; tolerance TOL; max # of iterations N0.
OUTPUT approximate solution p or message of failure.
Step 1 Set i = 1.
Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = g(p0). (Compute pi .)
Step 4 If |p − p0| < TOL then

OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1.
Step 6 Set p0 = p. (Update p0.)

Step 7 OUTPUT (‘The method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.
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Chapter 2.2: Solutions: Fixed-Point

Fixed-Point Illustration
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Chapter 2.2: Solutions: Fixed-Point

This YouTube video developed by Oscar Veliz can serve as a
good illustration of the Fixed-Point Method for students.

Fixed-Point Video
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Chapter 2.2: Solutions: Fixed-Point

Theorem (2.4: Fixed-Point Theorem)
Let g ∈ C[a,b] be such that g(x) ∈ [a,b], for all x in [a,b].
Suppose, in addition, that g′ exists on (a,b) and that a constant
0 < k < 1 exists with

|g′(x)| ≤ k , for all x ∈ (a,b).

Then for any number p0 in [a,b], the sequence defined by

pn = g(pn−1), n ≥ 1,

converges to the unique fixed point p in [a,b].
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Chapter 2.2: Solutions: Fixed-Point

Corollary (2.5)
If g satisfies the hypotheses of Theorem 2.4, then bounds for
the error involved in using pn to approximate p are given by

|pn − p| ≤ kn max{p0 − a,b − p0} (1)

and

|pn − p| ≤ kn

1− k
|p1 − p0|, for all n ≥ 1. (2)
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Chapter 2.3: Solutions: Newton’s Method

Algorithm 2.3: NEWTON’S METHOD
To find a solution to f (x) = 0 given an initial approximation p0:

INPUT initial approximation p0; tolerance TOL; maximum
number of iterations N0.
OUTPUT approximate solution p or message of failure.
Step 1 Set i = 1.
Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = p0 − f (p0)/f ′(p0). (Compute pi .)
Step 4 If |p − p0| < TOL then

OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1.
Step 6 Set p0 = p. (Update p0.)

Step 7 OUTPUT (‘The method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.
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Chapter 2.3: Solutions: Newton’s Method

Newton’s Illustration
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Chapter 2.3: Solutions: Newton’s Method

This YouTube video developed by MIT Open Courseware can
serve as a good illustration of the Newton’s Method for
students. Newton’s Method Video

Theorem (2.6)

Let f ∈ C2[a,b]. If p ∈ (a,b) is such that f (p) = 0 and f ′(p) 6= 0,
then there exists a δ > 0 such that Newton’s method generates
a sequence {pn}∞n=1 converging to p for any initial
approximation p0 ∈ [p − δ, p + δ].
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Chapter 2.3: Solutions: Secant Method

Algorithm 2.4: SECANT METHOD
To find a solution to f (x) = 0 given initial approximations p0 and p1:

INPUT initial approximations p0, p1; tolerance TOL; maximum number of iterations N0.
OUTPUT approximate solution p or message of failure.
Step 1 Set i = 2;

q0 = f (p0);
q1 = f (p1).

Step 2 While i ≤ N0 do Steps 3–6.
Step 3 Set p = p1 − q1(p1 − p0)/(q1 − q0). (Compute pi .)
Step 4 If |p − p1| < TOL then

OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1.
Step 6 Set p0 = p1; (Update p0, q0, p1, q1.)

q0 = q1;
p1 = p;
q1 = f (p).

Step 7 OUTPUT (‘The method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.
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Chapter 2.3: Solutions: Secant Method

Secant Illustration
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Chapter 2.3: Solutions: Secant Method

This YouTube video developed by Oscar Veliz can serve as a
good illustration of the Secant Method for students.

Secant Method Video

| Numerical Analysis 10E
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Chapter 2.3: Solutions: Newton’s Method

Algorithm 2.5: FALSE POSITION
To find a solution to f (x) = 0 given the continuous function f on the interval [p0, p1] where f (p0) and f (p1) have
opposite signs:

INPUT initial approximations p0, p1; tolerance TOL; maximum number of iterations N0.
OUTPUT approximate solution p or message of failure.
Step 1 Set i = 2;

q0 = f (p0);
q1 = f (p1).

Step 2 While i ≤ N0 do Steps 3–7.
Step 3 Set p = p1 − q1(p1 − p0)/(q1 − q0). (Compute pi .)
Step 4 If |p − p1| < TOL then

OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1;
q = f (p).

Step 6 If q · q1 < 0 then set p0 = p1;
q0 = q1.

Step 7 Set p1 = p;
q1 = q.

Step 8 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(The procedure unsuccessful.)
STOP.
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Chapter 2.3: Solutions: Newton’s Method

This YouTube video developed by Jacob Bishop can serve as a
good illustration of the False Position Method for students.

False Position Method Video
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Chapter 2.4: Error Analysis

Definition (2.7: Order of Convergence)
Suppose {pn}∞n=0 is a sequence that converges to p, with
pn 6= p for all n. If positive constants λ and α exist with

lim
n→∞

|pn+1 − p|
|pn − p|α

= λ,

then {pn}∞n=0 converges to p of order α, with asymptotic
error constant λ.
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Chapter 2.4: Error Analysis

Theorem (2.8)
Let g ∈ C[a,b] be such that g(x) ∈ [a,b], for all x ∈ [a,b].
Suppose, in addition, that g′ is continuous on (a,b) and a
positive constant k < 1 exists with

|g′(x)| ≤ k , for all x ∈ (a,b).

If g′(p) 6= 0, then for any number p0 6= p in [a,b], the sequence

pn = g(pn−1), for n ≥ 1,

converges only linearly to the unique fixed point p in [a,b].
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Chapter 2.4: Error Analysis

Theorem (2.9)
Let p be a solution of the equation x = g(x). Suppose that
g′(p) = 0 and g′′ is continuous with |g′′(x)| < M on an open
interval I containing p. Then there exists a δ > 0 such that, for
p0 ∈ [p− δ, p + δ], the sequence defined by pn = g(pn−1), when
n ≥ 1, converges at least quadratically to p. Moreover, for
sufficiently large values of n,

|pn+1 − p| < M
2
|pn − p|2.
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Chapter 2.4: Error Analysis

Definition (2.10: Multiplicity)
A solution p of f (x) = 0 is a zero of multiplicity m of f if for
x 6= p, we can write f (x) = (x − p)mq(x), where
limx→p q(x) 6= 0.

Theorem (2.11)

The function f ∈ C1[a,b] has a simple zero at p in (a,b) if and
only if f (p) = 0, but f ′(p) 6= 0.

Theorem (2.12)
The function f ∈ Cm[a,b] has a zero of multiplicity m at p in
(a,b) if and only if

0 = f (p) = f ′(p) = f ′′(p) = · · · = f (m−1)(p), but f (m)(p) 6= 0.
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Chapter 2.5: Accelerating Convergence

Aitken’s ∆2 Method
Aitken’s ∆2 method is based on the assumption that the
sequence {p̂n}∞n=0, defined by

p̂n = pn −
(pn+1 − pn)2

pn+2 − 2pn+1 + pn
,

converges more rapidly to p than does the original sequence
{pn}∞n=0.
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Chapter 2.5: Accelerating Convergence

Definition (2.13)
For a given sequence {pn}∞n=0, the forward difference ∆pn
(read “delta pn”) is defined by

∆pn = pn+1 − pn, for n ≥ 0.

Higher powers of the operator ∆ are defined recursively by

∆kpn = ∆(∆k−1pn), for k ≥ 2.
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Chapter 2.5: Accelerating Convergence

Theorem (2.14)
Suppose that {pn}∞n=0 is a sequence that converges linearly to
the limit p and that

lim
n→∞

pn+1 − p
pn − p

< 1.

Then the Aitken’s ∆2 sequence {p̂n}∞n=0 converges to p faster
than {pn}∞n=0 in the sense that

lim
n→∞

p̂n − p
pn − p

= 0.
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Chapter 2.5: Accelerating Convergence

Algorithm 2.6: STEFFENSEN’S METHOD
To find a solution to p = g(p) given an initial approximation p0:

INPUT initial approximation p0; tolerance TOL; maximum number of iterations N0.
OUTPUT approximate solution p or message of failure.
Step 1 Set i = 1.
Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p1 = g(p0); (Compute p(i−1)
1 .)

p2 = g(p1); (Compute p(i−1)
2 .)

p = p0 − (p1 − p0)
2/(p2 − 2p1 + p0). (Compute p(i)

0 .)
Step 4 If |p − p0| < TOL then

OUTPUT (p); (Procedure completed successfully.)
STOP.

Step 5 Set i = i + 1.
Step 6 Set p0 = p. (Update p0.)

Step 7 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(Procedure completed unsuccessfully.)
STOP.
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Chapter 2.5: Accelerating Convergence
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Table: Table 2.11
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Chapter 2.5: Accelerating Convergence

Theorem (2.15)
Suppose that x = g(x) has the solution p with g′(p) 6= 1. If
there exists a δ > 0 such that g ∈ C3[p − δ, p + δ], then
Steffensen’s method gives quadratic convergence for any
p0 ∈ [p − δ, p + δ].
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Chapter 2.6: Zeros of Poly.; Müller’s Method

Theorem (2.16: Fundamental Theorem of Algebra)
If P(x) is a polynomial of degree n ≥ 1 with real or complex
coefficients, then P(x) = 0 has at least one (possibly complex)
root.

Corollary (2.17)
If P(x) is a polynomial of degree n ≥ 1 with real or complex
coefficients, then there exist unique constants x1, x2, . . ., xk ,
possibly complex, and unique positive integers m1, m2, . . ., mk ,
such that

∑k
i=1 mi = n and

P(x) = an(x − x1)m1(x − x2)m2 · · · (x − xk )mk .
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Chapter 2.6: Zeros of Poly.; Müller’s Method

Corollary (2.18)
Let P(x) and Q(x) be polynomials of degree at most n. If x1,
x2, . . . , xk , with k > n, are distinct numbers with P(xi) = Q(xi)
for i = 1,2, . . . , k, then P(x) = Q(x) for all values of x.
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Chapter 2.6: Zeros of Poly.; Müller’s Method

Theorem (2.19: Horner’s Method)
Let

P(x) = anxn + an−1xn−1 + · · ·+ a1x + a0.

Define bn = an and

bk = ak + bk+1x0, for k = n − 1,n − 2, . . . ,1,0.

Then b0 = P(x0). Moreover, if

Q(x) = bnxn−1 + bn−1xn−2 + · · ·+ b2x + b1,

then
P(x) = (x − x0)Q(x) + b0.
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Chapter 2.6: Zeros of Poly.; Müller’s Method

Algorithm 2.7: HORNER’S METHOD
To evaluate the polynomial

P(x) = anxn + an−1xn−1 + · · ·+ a1x + a0 = (x − x0)Q(x) + b0

and its derivative at x0:

INPUT degree n; coefficients a0,a1, . . . ,an; x0.
OUTPUT y = P(x0); z = P ′(x0).
Step 1 Set y = an; (Compute bn for P.)

z = an. (Compute bn−1 for Q.)
Step 2 For j = n − 1,n − 2, . . . ,1

set y = x0y + aj ; (Compute bj for P.)
z = x0z + y . (Compute bj−1 for Q.)

Step 3 Set y = x0y + a0. (Compute b0 for P.)
Step 4 OUTPUT (y , z);

STOP.
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Chapter 2.6: Zeros of Poly.; Müller’s Method

This YouTube video developed by We Teach Academy can
serve as a good illustration of the Horner’s Method for students.

False Position Method Video

Theorem (2.20)
If z = a + bi is a complex zero of multiplicity m of the
polynomial P(x) with real coefficients, then z = a− bi is also a
zero of multiplicity m of the polynomial P(x), and
(x2 − 2ax + a2 + b2)m is a factor of P(x).

| Numerical Analysis 10E
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Chapter 2.6: Zeros of Poly.; Müller’s Method

Algorithm 2.8: MÜLLER’S METHOD
To find a solution to f (x) = 0 given three approximations, p0, p1, and p2:

INPUT p0, p1, p2; tolerance TOL; maximum number of iterations N0.
OUTPUT approximate solution p or message of failure.
Step 1 Set h1 = p1 − p0; h2 = p2 − p1; δ1 = (f (p1)− f (p0))/h1;

δ2 = (f (p2)− f (p1))/h2; d = (δ2 − δ1)/(h2 + h1); i = 3.
Step 2 While i ≤ N0 do Steps 3–7.

Step 3 b = δ2 + h2d ; D = (b2 − 4f (p2)d)1/2. (May require complex arithmetic.)
Step 4 If |b − D| < |b + D| then set E = b + D

else set E = b − D.
Step 5 Set h = −2f (p2)/E ; p = p2 + h.
Step 6 If |h| < TOL then

OUTPUT (p); (The procedure was successful.)
STOP.

Step 7 Set p0 = p1; (Prepare for next iteration.)
p1 = p2; p2 = p; h1 = p1 − p0; h2 = p2 − p1; δ1 = (f (p1)− f (p0))/h1;
δ2 = (f (p2)− f (p1))/h2; d = (δ2 − δ1)/(h2 + h1); i = i + 1.

Step 8 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.
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Chapter 2.6: Zeros of Poly.; Müller’s Method

This YouTube video developed by Jacob Bishop can serve as a
good illustration of the Müller’s Method for students.

Müller’s Method Video

This website from the University of Waterloo provides students
with two numerical examples of Müller’s Method .

Müller’s Method Examples
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