Numerical Analysis

10th ed

R L Burden, J D Faires, and A M Burden

Beamer Presentation Slides Prepared by Dr. Annette M. Burden Youngstown State University

June 21, 2015

Chapter 2.1: Solutions: Eqs. in 1 Var

Algorithm 2.1: BISECTION

```
To find a solution to f(x) = 0 given the continuous function f on the interval [a, b],
where f(a) and f(b) have opposite signs:
```
1

```
INPUT endpoints a, b; tolerance TOL; maximum number of iterations N_0.
OUTPUT approximate solution p or message of failure.
Step 1 Set i = 1;
          FA = f(a).Step 2 While i < N_0 do Steps 3–6.
     Step 3 Set p = a + (b - a)/2; (Compute p<sub>i</sub>.)
                FP = f(p).
     Step 4 If FP = 0 or (b - a)/2 < TOL then
              OUTPUT (p); (Procedure completed successfully.)
              STOP
     Step 5 Set i = i + 1.
     Step 6 If FA \cdot FP > 0 then set a = p; (Compute a_i, b_i.)
                                   FA = FPelse set b = p. (FA is unchanged.)
Step 7 OUTPUT ('Method failed after N_0 iterations, N_0 = N_0);
       (The procedure was unsuccessful.)
       STOP.
```
Bisection Illustration

2

Figure: Figure 2.1

Theorem (2.1)

Suppose that $f \in C[a, b]$ *and* $f(a) \cdot f(b) < 0$. The Bisection *method generates a sequence* {*pn*}[∞] *n*=1 *approximating a zero p of f with*

$$
|p_n-p|\leq \frac{b-a}{2^n}, \quad \text{when} \quad n\geq 1.
$$

Chapter 2.2: Solutions:Fixed-Point

Definition (2.2)

The number *p* is a **fixed point** for a given function *g* if $g(p) = p$.

4

NOTES:

Given a root-finding problem $f(p) = 0$, we can define functions *g* with a fixed point at *p* in a number of ways, for example, as

$$
g(x) = x - f(x) \quad \text{or as} \quad g(x) = x + 3f(x).
$$

^I Conversely, if the function *g* has a fixed point at *p*, then the function defined by

$$
f(x)=x-g(x)
$$

has a zero at *p*.

Chapter 2.2: Solutions: Fixed-Point

Theorem (2.3)

(**i)** *If g* ∈ *C*[*a*, *b*] *and g*(*x*) ∈ [*a*, *b*] *for all x* ∈ [*a*, *b*]*, then g has at least one fixed point in* [*a*, *b*]*.*

5

 (iii) If, in addition, $g'(x)$ exists on (a, b) and a positive constant $k < 1$ exists *with* $|g'(x)| \leq k$, *for all* $x \in (a, b)$, *then there is exactly one fixed point in* [*a*, *b*]*. (See Figure 2.3.)*

Figure: Figure 2.3

Algorithm 2.2: FIXED-POINT ITERATION

To find a solution to $p = q(p)$ given an initial approximation p_0 :

```
INPUT initial approximation p_0; tolerance TOL; max # of iterations N_0.
OUTPUT approximate solution p or message of failure.
Step 1 Set i = 1.
Step 2 While i < N_0 do Steps 3–6.
     Step 3 Set p = g(p_0). (Compute p<sub>i</sub>.)
     Step 4 If |p - p_0| < TOL then
              OUTPUT (p); (The procedure was successful.)
              STOP.
     Step 5 Set i = i + 1.
     Step 6 Set p_0 = p. (Update p<sub>0</sub>.)
Step 7 OUTPUT ('The method failed after N_0 iterations, N_0 = N_0);
       (The procedure was unsuccessful.)
       STOP.
```
Fixed-Point Illustration

7

This YouTube video developed by Oscar Veliz can serve as a good illustration of the Fixed-Point Method for students.

[Fixed-Point Video](https://www.youtube.com/embed/OLqdJMjzib8)

Theorem (2.4: Fixed-Point Theorem)

Let g \in *C*[*a*, *b*] *be such that g*(*x*) \in [*a*, *b*], *for all x in* [*a*, *b*]. *Suppose, in addition, that g*⁰ *exists on* (*a*, *b*) *and that a constant* 0 < *k* < 1 *exists with*

9

$$
|g'(x)| \leq k, \quad \text{for all } x \in (a, b).
$$

Then for any number p_0 *in* [a, b], the sequence defined by

$$
p_n=g(p_{n-1}),\quad n\geq 1,
$$

converges to the unique fixed point p in [*a*, *b*]*.*

Corollary (2.5)

If g satisfies the hypotheses of Theorem 2.4, then bounds for the error involved in using pⁿ to approximate p are given by

$$
|p_n - p| \le k^n \max\{p_0 - a, b - p_0\}
$$
 (1)

10

and

$$
|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0|, \quad \text{for all} \quad n \ge 1. \tag{2}
$$

To find a solution to $f(x) = 0$ given an initial approximation p_0 :

```
INPUT initial approximation p0; tolerance TOL; maximum
number of iterations N_0.
OUTPUT approximate solution p or message of failure.
Step 1 Set i = 1.
Step 2 While i < N_0 do Steps 3–6.
     Step 3 Set p = p_0 - f(p_0)/f'(p_0). (Compute p<sub>i</sub>.)
     Step 4 If |p - p_0| < TOL then
              OUTPUT (p); (The procedure was successful.)
               STOP.
     Step 5 Set i = i + 1.
     Step 6 Set p_0 = p. (Update p<sub>0</sub>.)
Step 7 OUTPUT ('The method failed after N_0 iterations, N_0 = N_0);
       (The procedure was unsuccessful.)
       STOP.
```
Newton's Illustration

12

| [Numerical Analysis 10E](#page-0-0)

This YouTube video developed by MIT Open Courseware can serve as a good illustration of the Newton's Method for students • [Newton's Method Video](https://www.youtube.com/embed/ER5B_YBFMJo)

13

Theorem (2.6)

 \mathcal{L} et $f \in C^2[a,b]$ *. If* $p \in (a,b)$ *is such that f* $(p) = 0$ *and f* $'(p) \neq 0$ *, then there exists a* δ > 0 *such that Newton's method generates a sequence* {*pn*}[∞] *n*=1 *converging to p for any initial approximation* $p_0 \in [p - \delta, p + \delta]$ *.*

To find a solution to $f(x) = 0$ given initial approximations p_0 and p_1 :

```
INPUT initial approximations p_0, p_1; tolerance TOL; maximum number of iterations N_0.
OUTPUT approximate solution p or message of failure.
Step 1 Set i = 2;
           q_0 = f(p_0);q_1 = f(p_1).
Step 2 While i < N<sub>0</sub> do Steps 3–6.
     Step 3 Set p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0). (Compute p<sub>i</sub>.)
     Step 4 If |p - p_1| < TOL then
               OUTPUT (p); (The procedure was successful.)
              STOP.
     Step 5 Set i = i + 1.
     Step 6 Set p_0 = p_1; (Update p_0, q_0, p_1, q_1.)
                 q_0 = q_1;p_1 = p;
                 q_1 = f(p).
Step 7 OUTPUT ('The method failed after N_0 iterations, N_0 = N_0);
       (The procedure was unsuccessful.)
       STOP.
```


This YouTube video developed by Oscar Veliz can serve as a good illustration of the Secant Method for students.

▶ [Secant Method Video](https://www.youtube.com/embed/_MfjXOLUnyw)

To find a solution to $f(x) = 0$ given the continuous function *f* on the interval $[p_0, p_1]$ where $f(p_0)$ and $f(p_1)$ have opposite signs:

17

```
INPUT initial approximations p_0, p_1; tolerance TOL; maximum number of iterations N_0.
OUTPUT approximate solution p or message of failure.
Step 1 Set i = 2:
            q_0 = f(p_0);q_1 = f(p_1).
Step 2 While i < N_0 do Steps 3–7.
     Step 3 Set p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0). (Compute p<sub>i</sub>.)
     Step 4 If |p - p_1| < \text{TOL} then
              OUTPUT (p); (The procedure was successful.)
              STOP
     Step 5 Set i = i + 1;
                q = f(p).
     Step 6 If q \cdot q_1 < 0 then set p_0 = p_1;
                                    q_0 = q_1.
     Step 7 Set p_1 = p;
                q_1 = q.
Step 8 OUTPUT ('Method failed after N_0 iterations, N_0 = N_0);
       (The procedure unsuccessful.)
       STOP
```


This YouTube video developed by Jacob Bishop can serve as a good illustration of the False Position Method for students.

► [False Position Method Video](https://www.youtube.com/embed/jDdaI4D6Qrw)

Secant - Method of False Position Illustration

Definition (2.7: Order of Convergence)

Suppose $\{p_n\}_{n=0}^\infty$ is a sequence that converges to p , with $p_n \neq p$ for all *n*. If positive constants λ and α exist with

$$
\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}}=\lambda,
$$

then $\{ \rho_n \}_{n=0}^{\infty}$ converges to \boldsymbol{p} of order $\alpha,$ with asymptotic **error constant** λ.

Theorem (2.8)

Let g \in *C*[*a*, *b*] *be such that g*(*x*) \in [*a*, *b*], *for all x* \in [*a*, *b*]. *Suppose, in addition, that g*⁰ *is continuous on* (*a*, *b*) *and a positive constant k* < 1 *exists with*

$$
|g'(x)| \leq k, \quad \text{for all } x \in (a, b).
$$

20

If $g'(\rho) \neq 0$, then for any number $p_0 \neq \rho$ in [a, b], the sequence

$$
p_n=g(p_{n-1}), \quad \text{for } n\geq 1,
$$

converges only linearly to the unique fixed point p in [*a*, *b*]*.*

Theorem (2.9)

Let p be a solution of the equation $x = q(x)$ *. Suppose that* $g'(p) = 0$ *and g*" *is continuous with* $|g''(x)| < M$ *on an open interval I containing p. Then there exists a* δ > 0 *such that, for* $p_0 \in [p - \delta, p + \delta]$, the sequence defined by $p_n = g(p_{n-1})$, when *n* ≥ 1*, converges at least quadratically to p. Moreover, for sufficiently large values of n,*

$$
|p_{n+1}-p|<\frac{M}{2}|p_n-p|^2.
$$

Definition (2.10: Multiplicity)

A solution p of $f(x) = 0$ is a **zero of multiplicity** m of f if for $x \neq p$, we can write $f(x) = (x - p)^m q(x)$, where $\lim_{x\to p} q(x) \neq 0$.

22

Theorem (2.11)

The function f \in $C^1[a,b]$ *has a simple zero at p in* (a,b) *if and only if* $f(p) = 0$ *, but* $f'(p) \neq 0$ *.*

Theorem (2.12)

The function $f \in C^m[a, b]$ *has a zero of multiplicity m at p in* (*a*, *b*) *if and only if*

$$
0 = f(p) = f'(p) = f''(p) = \cdots = f^{(m-1)}(p), \text{ but } f^{(m)}(p) \neq 0.
$$

Aitken's ∆² Method

Aitken's Δ^2 method is based on the assumption that the sequence $\{\hat{p}_n\}_{n=0}^\infty$, defined by

$$
\hat{p}_n=p_n-\frac{(p_{n+1}-p_n)^2}{p_{n+2}-2p_{n+1}+p_n},
$$

23

converges more rapidly to *p* than does the original sequence ${p_n}_{n=0}^{\infty}$.

Definition (2.13)

For a given sequence $\{ \rho_n \}_{n=0}^{\infty}$, the **forward difference** $\Delta \rho_n$ (read "delta *pn*") is defined by

$$
\Delta p_n = p_{n+1} - p_n, \quad \text{for } n \geq 0.
$$

24

Higher powers of the operator Δ are defined recursively by

$$
\Delta^k p_n = \Delta(\Delta^{k-1} p_n), \quad \text{for } k \geq 2.
$$

Theorem (2.14)

Suppose that {*pn*}[∞] *n*=0 *is a sequence that converges linearly to the limit p and that*

25

$$
\lim_{n\to\infty}\frac{p_{n+1}-p}{p_n-p}<1.
$$

Then the Aitken's Δ^2 *sequence* $\{\hat{p}_n\}_{n=0}^{\infty}$ *converges to p faster than* $\{p_n\}_{n=0}^{\infty}$ *in the sense that*

$$
\lim_{n\to\infty}\frac{\hat{p}_n-p}{p_n-p}=0.
$$

To find a solution to $p = g(p)$ given an initial approximation p_0 :

INPUT initial approximation p_0 ; tolerance *TOL*; maximum number of iterations N_0 . OUTPUT approximate solution *p* or message of failure. Step 1 Set $i = 1$. Step 2 While *i* < *N*₀ do Steps 3–6. Step 3 Set $p_1 = g(p_0)$; (*Compute* $p_{j_{i-1},j}^{(i-1)}$) $p_2 = g(p_1);$ (*Compute* $p_2^{(i-1)}.$ $p = p_0 - (p_1 - p_0)^2/(p_2 - 2p_1 + p_0)$. (*Compute* $p_0^{(i)}$.) Step 4 If $|p - p_0|$ < *TOL* then OUTPUT (*p*); (*Procedure completed successfully*.) STOP. Step 5 Set $i = i + 1$. Step 6 Set $p_0 = p$. (*Update* p_0 .) Step 7 OUTPUT ('Method failed after N_0 iterations, $N_0 = N_0$); (*Procedure completed unsuccessfully*.) STOP.

Chapter 2.5: Accelerating Convergence

Table: Table 2.11

Theorem (2.15)

Suppose that $x = g(x)$ *has the solution p with* $g'(p) \neq 1$ *. If there exists a* $\delta > 0$ *such that g* $\in C^3[p - \delta, p + \delta]$ *, then Steffensen's method gives quadratic convergence for any* $p_0 \in [p-\delta, p+\delta].$

Theorem (2.16: Fundamental Theorem of Algebra)

If $P(x)$ *is a polynomial of degree n* > 1 *with real or complex coefficients, then P*(*x*) = 0 *has at least one (possibly complex) root.*

29

Corollary (2.17)

If P(x) is a polynomial of degree $n \geq 1$ *with real or complex coefficients, then there exist unique constants x*1*, x*2*,* . . .*, x^k , possibly complex, and unique positive integers* m_1, m_2, \ldots, m_k *, such that* $\sum_{i=1}^{k} m_i = n$ and

$$
P(x) = a_n(x - x_1)^{m_1}(x - x_2)^{m_2} \cdots (x - x_k)^{m_k}.
$$

Corollary (2.18)

Let $P(x)$ and $Q(x)$ be polynomials of degree at most n. If x_1 , x_2, \ldots, x_k , with $k > n$, are distinct numbers with $P(x_i) = Q(x_i)$ *for i* = 1, 2, \dots , *k, then* $P(x) = Q(x)$ *for all values of x.*

Theorem (2.19: Horner's Method)

Let

$$
P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0.
$$

31

Define $b_n = a_n$ *and*

$$
b_k = a_k + b_{k+1}x_0
$$
, for $k = n - 1, n - 2, ..., 1, 0$.

Then $b_0 = P(x_0)$ *. Moreover, if*

$$
Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \cdots + b_2 x + b_1,
$$

then

$$
P(x) = (x - x_0)Q(x) + b_0.
$$

To evaluate the polynomial

$$
P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = (x - x_0) Q(x) + b_0
$$

32

and its derivative at x_0 :

INPUT degree *n*; coefficients a_0, a_1, \ldots, a_n ; x_0 . OUTPUT $y = P(x_0); z = P'(x_0)$. Step 1 Set $y = a_n$; (*Compute b_n for P*.) $z = a_n$. (*Compute b*_{n−1} *for Q*.) Step 2 For $j = n - 1, n - 2, \ldots, 1$ set $y = x_0y + a_j$; (*Compute b_j for P*.) $z = x_0 z + y$. (*Compute b*_{*j*−1} *for Q*.) Step 3 Set $y = x_0y + a_0$. (*Compute b*₀ for P.) Step 4 OUTPUT (*y*, *z*); STOP.

This YouTube video developed by We Teach Academy can serve as a good illustration of the Horner's Method for students.

33

▶ [False Position Method Video](https://www.youtube.com/embed/3LjFgqDFxHQ)

Theorem (2.20)

If z = *a* + *bi is a complex zero of multiplicity m of the polynomial P*(*x*) *with real coefficients, then z* = *a* − *bi is also a zero of multiplicity m of the polynomial P*(*x*)*, and* $(x^2 - 2ax + a^2 + b^2)^m$ *is a factor of P(x)*.

Algorithm 2.8: MÜLLER'S METHOD

To find a solution to $f(x) = 0$ given three approximations, p_0 , p_1 , and p_2 .

INPUT p_0, p_1, p_2 ; tolerance *TOL*; maximum number of iterations N_0 . OUTPUT approximate solution *p* or message of failure. Step 1 Set $h_1 = p_1 - p_0$; $h_2 = p_2 - p_1$; $\delta_1 = (f(p_1) - f(p_0))/h_1$; $\delta_2 = (f(p_2) - f(p_1))/h_2; \quad d = (\delta_2 - \delta_1)/(h_2 + h_1); \quad i = 3.$ Step 2 While $i \leq N_0$ do Steps 3–7. Step 3 $b = \delta_2 + h_2 d$; $D = (b^2 - 4f(p_2)d)^{1/2}$. (*May require complex arithmetic.*) Step 4 If $|b - D| < |b + D|$ then set $E = b + D$ $else$ set $F = b - D$. Step 5 Set $h = -2f(p_2)/E$; $p = p_2 + h$. Step 6 If |*h*| < *TOL* then OUTPUT (*p*); (*The procedure was successful*.) **STOP** Step 7 Set $p_0 = p_1$; (*Prepare for next iteration*.) $p_1 = p_2$; $p_2 = p$; $h_1 = p_1 - p_0$; $h_2 = p_2 - p_1$; $\delta_1 = (f(p_1) - f(p_0))/h_1$ $\delta_2 = (f(p_2) - f(p_1))/h_2$; $d = (\delta_2 - \delta_1)/(h_2 + h_1)$; $i = i + 1$. Step 8 OUTPUT ('Method failed after N_0 iterations, $N_0 = N_0$): (*The procedure was unsuccessful*.) STOP.

This YouTube video developed by Jacob Bishop can serve as a good illustration of the Müller's Method for students.

35

[Müller's Method Video](https://www.youtube.com/embed/3R8NY-trJwI)

This website from the University of Waterloo provides students with two numerical examples of Müller's Method .

[Müller's Method Examples](https://ece.uwaterloo.ca/~dwharder/NumericalAnalysis/10RootFinding/mueller/examples.html)