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Chapter 3.1: Interpolation and Lagrange Poly »

Weierstrass Theorem lllustration
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Figure: Figure 3.1
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Chapter 3.1: Interpolation and Lagrange Poly y
Z

Theorem (3.1 Weierstrass Approximation Theorem)

Suppose that f is defined and continuous on [a, b]. For each
e > 0, there exists a polynomial P(x), with the property that

lf(x) — P(x)| <€, forallxin]a,b].
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Chapter 3.1: Interpolation and Lagrange Poly »

Theorem (3.2: n Lagrange Interpolating Polynomial)

If X0, X1, ..., Xn are n+ 1 distinct numbers and f is a function whose values are given at
these numbers, then a unique polynomial P(x) of degree at most n exists with

f(xx) = P(xx), foreachk=0,1,...,n

This polynomial is given by
P(x) = f(%0)Ln,0(X) + - - - + F(Xn)Ln,n( Z F(xk) L e (X

where, foreachk =0,1,....,n,

Lo k() = (X =x0)(Xx = X1) - (X = X 1) (X = Xk1) - (X = Xn) :ﬁ(x—xi)
e (= X0) (% = x1) -+ (X = Xe—1) (X = Xir1) -+ (X = xn) g (X = Xi)
ik

4
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Chapter 3.1: Interpolation and Lagrange Poly £\

/‘

The YouTube video developed by Oscar Veliz can serve as a
good illustration of the Lagrange Interpolating Polynomial for
students.
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https://www.youtube.com/embed/GtJKUIG9KXI

Chapter 3.1: Interpolation and Lagrange Poly

Theorem (3.3)

Suppose xy, X1, . . ., Xp are distinct numbers in the interval [a, b]
and f € C"t1[a, b]. Then, for each x in [a, b], a number &(x)
(generally unknown) between min{xgp, X1, ..., Xn}, and the
max{xp, X1, ..., Xp}and hence in (a, b), exists with

D ((x))

) = PO+~ 543,

(X —Xx0)(X — X1) -+ (X — Xn),

where P(x) is the interpolating polynomial given in Theorem
3.2.
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Chapter 3.2: Data Approx and Neville’s Methq

Definition (3.4)

Let f be a function defined at xg, X1, Xo, . . ., X5, and suppose
that mqy, mo, ..., my are k distinct integers, with 0 < m; < n for
each i. The Lagrange polynomial that agrees with f(x) at the k
poINts Xm, , Xm,, - - -, Xm, is denoted Pm, m,.... m,(X).

Theorem (3.5)

Let f be defined at xy, X1, . .., Xk, and let x; and x; be two distinct
numbers in this set. Then

P(x) = (X =X)Por,...j—1j+1,..k(X) = (X = X)) Po1,....im1,i+1,....k(X)
(xi — x)
is the kth Lagrange polynomial that interpolates f at the k + 1 points
X0, X1y -y Xk-

4
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Chapter 3.2: Data Approx and Neville’s Methq

To evaluate the interpolating polynomial P on the n+ 1 distinct
numbers Xy, ..., X, at the number x for the function f:

INPUT numbers x, xo, X1, . .., Xp; values f(xp), f(X1), ..., f(Xn)
as first column Qg g, Q1 0, ..., Qno of Q.
OUTPUT the table Q with P(x) = Qp p.
Step1 Fori=1,2,...,n
forj=1,2,...,i
(X = Xi)Qij1 — (X = X) Qi1
Xi — X,'_j .

set Q;. j=

Step 2 OUTPUT (Q);
STOP.
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Chapter 3.2: Data Approx and Neville’s Methq

The YouTube video developed by Alissa Granger can serve as
a good illustration of the Neville’s Iterated Interpolation for
students.
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https://www.youtube.com/embed/c_m5mElHLEg

Chapter 3.3: Divided Differences

To obtain the divided-difference coefficients of the interpolatory polynomial P
on the (n+ 1) distinct numbers X, X1, . . ., X, for the function f:

INPUT Xo, X1, ..., Xn, values f(Xo), f(X1)7 200 f(Xn) as F(){y()7 F17()7 0oog Fn,O-
OUTPUT the numbers Fo, 0 Fi1,...,Fnnwhere

i—1
FOO*ZF“H x=x). (Fiiisflx,x,...,x])

Step1 Fori=1,2,.

Forj: 1,2,...,i
setFy= bt = Fitimt p e
Xi — Xi—j
Step 2 OUTPUT (Fo.0, Fi.1, ..., Fan);
STOP.
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Chapter 3.3: Divided Differences

The YouTube video developed by Sujoy Krishna Das can serve
as a good illustration of the Newton’s Divided Difference
Formula.

Theorem (3.6)

Suppose that f € C"[a, b] and xg, X1, . . ., Xp are distinct
numbers in [a, b]. Then a number ¢ exists in (a, b) with

) (¢)

n!

flx0, X1, .., Xn] =
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https://www.youtube.com/embed/be/9xLqHDlwdj0?list=PLHGJFOxCJ5Iwm8kTk52LAQ-_T0IMwZZHD

Chapter 3.3: Divided Differences

Newton’s Forward-Difference Formula

Py( f(xo0) +Z<>Ak Xo).

Definition (3.7)
Given the sequence {p}5 ), define the backward difference
Vpn (read nabla pp) by

Vpn=pn—Pn-1, forn>1.

Higher powers are defined recursively by

Vo, = V(VE'p,), fork > 2.

v
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Chapter 3.3: Divided Differences

Newton’s Backward-Difference Formula

= f[x,] + Z ( >vk f(xn)

The YouTube video developed by Umasankar Dhulipalla can
serve as a good illustration of the Backward Divided Difference
Formula.

The YouTube video developed by Umasankar Dhulipalla can
serve as a good illustration of the Forward Divided Difference
Formula.
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https://www.youtube.com/embed/f9s6p9f-v1g
https://www.youtube.com/embed/EyRQXA56asI

Chapter 3.3: Divided Differences

Newton’s forward and backward difference formulas are not
appropriate for approximating f(x) when x lies near the center
of the table since neither permits the highest-order difference to
have x; close to x. A number of divided-difference formulas are
available for this case. These methods are known as
centered-difference formulas. We consider only one
Centered-difference formula, Stirling’s method.
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Chapter 3.3: Divided Differences

Definition (Centered Difference: Stirling’s Formula)

sh
Pn(X) = P2m+1(X) = f[Xo] aF E(f[X,hXo] aF f[Xo,X1])
2 1 hS
+82hPF[X_1, X0, X1] + %f[x,g, X_1, X0, X1]
+ f[x_1, X0, X1, X2]) + - -
+8%(s2 —1)(s> —4)--- (s> — (M= 1)2 )PP f[X_p, .

882*1 327m2 h2m+1
+ ( ) (2 ) (f[X—m—1»~--7Xm]

+ f[X_m s 7Xm+1])7

X

if n=2m-+1is odd. If n=2mis even, we use the same formula but
delete the last line.
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Chapter 3.3: Divided Differences

Ifn=2m+1isodd. If n=2mis even, we use the same formula but
delete the last line. The entries used for this formula are underlined in
Table 3.13. The entries used for Stirling’s formula are underlined in

this table.
Table 3.12
First Second Third Fourth
divided divided divided divided
X f(x) differences differences differences differences
X_2 fix_2]
flx_2, x_1]
X_1 flx_1] flx—2,x_1, %]
fx—1, %] flx—2,X_1, %0, X1
Xo Xl flx—1, %0, X1] flx_2,X_1, X0, X1, Xe]
flxo, x1] flx—1, X0, X1, %]
X flx4] flxo, X1, X2]
fx1, %]
X2 fx]
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Chapter 3.4: Hermite Interpolation

Definition (3.8)

Let xo, X1, - . ., X, be n+ 1 distinct numbers in [a, b] and for
i=0,1,...,nlet m; be a nonnegative integer. Suppose that

f € C"|a, b], where m = maxo<j<n m;.

The osculating polynomial approximating f is the polynomial
P(x) of least degree such that

d"P(x;)  dXf(x ;
dx(kl) = d)gkl),foreach/:0,1,~--7”a”dk:0’17""”7"‘

y
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Chapter 3.4: Hermite Interpolation

Theorem (3.9)

Iff € C'[a, b] and x, - . ., xn € [a, b] are distinct, the unique polynomial of least degree
agreeing with f and " at X, . . . , X is the Hermite polynomial of degree at most 2n + 1
given by

Hapiq(x Zf X;)Hn j( )Jer/(Xj)/:/n,j(X):

j=0
where, for L, j(x) denoting the jth Lagrange coefficient polynomial of degree n, we
have

Hpj(x) = [1 = 2(x — X)Ly ;(x)IL5 ;(x) - and  Hpj(x) = (x = X;)L5 ;(X).

Moreover, if f € C?"+2|a, b], then

(X — x0)% ... (X — xn)?

By AE),

F(x) = Honp1 (X) +

for some (generally unknown) £(x) in the interval (a, b).
w
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Chapter 3.4: Hermite Interpolation

To obtain the coefficients of the Hermite interpolating polynomial H(x) on the (n + 1) distinct numbers xg, . . . , Xp
for the function f:

INPUT numbers xg, X, . . . , Xn; values f(xg), - . . , f(xa) and ' (xo), - - ., I’ (Xn).
OUTPUT the numbers Qp o, Q1 1, - - -, Qopp1,2n41 Where
H(x) = Q0,0 + Q1 1(x = X0) + @, 2(x — x0)? + Qg 3(x — X0)2(x — x1)

+ Qg a(x = x0)P(x = xq)2 + - - -

+ Qonit 2051 (X — X0)2(x — X1)2 -+ - (X = Xq—1)2(X — Xn).

Step1 Fori=0,1,...,ndo Steps 2 and 3.
Step 2 Set zp; = X;;
22i41 = Xis
Qi 0 = f(X));
Qi1,0 = f(X));

Q1,1 = F/(X).
Step 3 If i # 0 then set

Qojo — Qoj—
sz _ 21,0 2i—1,0

22j — 22j—1
Step4 Fori=2,3,...,2n+1

Qij—1— Q_qj—

forj=2,3,... isetQ = —J=L— “=Li=T,
i —2zj_j

Step 5 OUTPUT (Qo.0, Q1,1 - - - » Qany1,2n41)s

STOP

v
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Algorithm 3.4: HERMITE INTERPOLATION

The YouTube video developed by NPTEL can serve as a good
illustration of the Forward Divided Difference Formula.
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https://www.youtube.com/embed/CaOeHNRqo

Chapter 3.5: Cubic Spline Interpolation

Definition (3.10)

Given a function f defined on [a, b] and a set of nodes
a=Xxp < x1 <---< Xp = b, a cubic spline interpolant S for f is a function
that satisfies the following conditions:

(a) S(x) is a cubic polynomial, denoted S;(x), on the subinterval [x;, x;;+] for
eachj=0,1,...,n—1;
(b) Si(x) = f(x;) and Sj(xj11) = f(X;11) foreach j=0,1,...,n—1;
(€) Sj+1(X+1) = Sj(xj+1) foreach j=0,1,...,n—2; (Implied by (b).)
(d) Sii(x:1) = Sj(xj41) foreachj=0,1,...,n—2;
(€) Sii(x+1) = S/ (X+1) foreach j=0,1,...,n—2;
(f) One of the following sets of boundary conditions is satisfied:
(i) S’(x0)=S"(xn) =0 (natural (or free) boundary);
(i) S'(x)="f(x) and S'(x;)=f'(x,) (clamped
boundary).

4
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Chapter 3.5: Cubic Spline Interpolation

Theorem (3.11)

Iffisdefinedata=xg < x4 <---<Xp=Db, thenf has a
unique natural spline interpolant S on the nodes Xy, X1, - . ., Xn;
that is, a spline interpolant that satisfies the natural boundary
conditions S"(a) = 0 and S"(b) = 0.

| Numerical Analysis 10E



Chapter 3.5: Cubic Spline Interpolation

To construct the cubic spline interpolant S for the function f, defined at the numbers
Xo < X1 < -+ < Xp, satisfying S”(xp) = S”(xn) = 0:

INPUT n; X0, X1,-.-,Xn; 89 = f(Xo),a1 = f(X1),‘ ..,an = f(Xn).
OUTPUT a;, by, ¢j, dj for j = 0,1,...,n—1.

(Note: S(x) = Si(x) = a; + bj(x — X;) + ¢i(x — x;)? + di(x — x;)® for x; < x < Xj;1.)

Step1 Fori=0,1,...,n—1set hy = X1 — X.
Step2Fori=1,2,...,n—1seta; = %(am —aj) — hi(a,v —aj_1)-
i i—1
Step3Setlh =1; ugp =0; zg =0. (Steps 3-5, & part of 6 solve tridiagonal
linear system by method in Algorithm 6.7.)
Step4 Fori=1,2,...,n—1
set i =2(Xji1 — Xi—1) — hi—1pi—1;
wi = hi/li; zi = (i — hi—12Zj1)/l;.
Step5Set/h =1, zy=0; ch = 0.
Step6Forj=n—1,n—2,...,0
set ¢ =z — ,ujC/+1 b; = (aj+1 — &)/ hj — hj(cit1 + 2¢;)/3;
bj = (aj+1 — &)/ hj — hj (C/+1 +2¢))/3;
Step 7 OUTPUT (aj, bj, ¢j, dj for j = 0, 1,...,n—1);
STOP.




Chapter 3.5: Cubic Spline Interpolation

The YouTube video developed by Oscar Veliz can serve as a
good illustration of the Cubic Spline.

Theorem (3.12)

Iff is defined ata = xg < X1 < --- < Xp = b and differentiable at
a and b, then f has a unique clamped spline interpolant S on

the nodes Xy, X1, . . ., Xn, that is, a spline interpolant that
satisfies the clamped boundary conditions S'(a) = f'(a) and
S'(b) = f'(b).
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https://www.youtube.com/embed/f4iNbNRKZKU

Chapter 3.5: Cubic Spline Interpolation

To construct the cubic spline interpolant S for the function f defined at the numbers Xy < x; < - - - < Xp, satisfying
S/ (x0) = '(x0) and 8’ (xn) = ' (xn):

INPUT n; X, Xq, - - - Xn; @ = f(X0), @ = f(X1), - . -y an = f(xn); FPO = f'(xg); FPN = f’ (xn).
OUTPUTaj,bj,cj,dforj:O 1, ,n—1.

(Note: S(x) = S, ()7a/+b(x—x)+cj(x—x) +d(x—x) forx; < x < Xji1.)

Step1Fori=0,1,...,n—1seth; = X1 — X

Step 2 Set 73(a1 — apg)/hy — 3FPO; ap 73FPN 3(an — apn—1)/hn—1.
an =8FPN —3(an — ap—1)/hp—1.

Step3Fori=1,2,...,n—1

set oy = n — (a1 — &) o (aj — aj—1)-
Step 4 Set [y = 2hg; o = 0.5; o = 040/’0 (Steps 4-6, & part of 7 solve a tridiagonal
linear system by method in Algorithm 6.7.)

Step5Fori=1,2,...,n—1

set i = 2(Xip1 — Xi—1) — hi—1pj—1; pj = hi/li; zj = (aj — hi—12j_1)/l;-
Step6 Setlp = hp_1(2 — pp—1)i Zn = (on — h —1Zn—1)//m Cn = Zp.
Step7Forj=n—1,n—2,...,0

soLg = 21— pOti by = (@s — 8)/M) — MG +26)/% o = (g1 = )/ (3.
StepSOUTPUT(aj,bj,c],djfor/ =0,1,...,n—1);

STOP.
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Chapter 3.5: Cubic Spline Interpolation @
7z

Theorem (3.13)

Let f € C*[a, b] with maxa<x<p | (x)| = M. If S is the unique
clamped cubic spline interpolant to f with respect to the nodes
a=xg<xy<---<xp=Db, then forall x in[a, b],

) = S| < 357 max (1 — x)"
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Chapter 3.6: Parametric Curves

To construct the cubic Bézier curves Cy, ..., C,_1 in parametric form, where C; is
represented by

Cat) i) = (&) + 8t + &2 + a8, B + bt + B2 + b)),

for 0 < t <1, as determined by the left endpoint (Xx;, y;), left guidepoint (x,.*,y,.*), right
endpoint (X1, ¥i+1), and right guidepoint (x,jr1 ,y,.jr1) foreachi=0,1,...,n—1:
INPUT n; (X07.y0)7 9009 (Xn:yn); (XJzyJ)z 9009 (X;r_1 vy:_1 )1 (X177.y17)7 paop (X;v.yr?)
OUTPUT coefficients {4, a", a3, al", b\, b7, b)), b, for 0 < i < n—1}.
Step 1 Foreach/i=0,1,...,n—1do Steps2and 3.

Step 2 Set a('_) = x;; b = y;; & = (X —x); b = 3(y — y);
azl,) =3(X; + Xy —2x"); bé’ =3(y; + ¥y — 2
ag') = Xipt1 — X +l3x,+’ — 3.Xi11? bé’)v =VYix1 — Vit 3}/,+ =3y

Step 3 OUTPUT (&, &, &), &, b0, b7, b, ).
Step 4 STOP.

v
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Chapter 3.6: Bézier Curve

The following website links to a Java applet that can serve as a
good illustration of the Bézier Curve. This applet works best in
Firefox. The URL may need to be added to the Java security
exceptions.

| Numerical Analysis 10E


http://www.doc.ic.ac.uk/~dfg/AndysSplineTutorial/Beziers.html

