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Chapter 4.1: Numerical Differentiation

Three-Point Formulas
THREE-POINT ENDPOINT FORMULA

f ′(x0) =
1

2h
[−3f (x0) + 4f (x0 + h)− f (x0 + 2h)] +

h2

3
f (3)(ξ0),

where ξ0 lies between x0 and x0 + 2h.

THREE-POINT MIDPOINT FORMULA

f ′(x0) =
1

2h
[f (x0 + h)− f (x0 − h)]− h2

6
f (3)(ξ1),

where ξ1 lies between x0 − h and x0 + h.
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Chapter 4.1: Numerical Differentiation

Five-Point Formulas
FIVE-POINT MIDPOINT FORMULA

f ′(x0) =
1

12h
[f (x0 − 2h)− 8f (x0 − h) + 8f (x0 + h)− f (x0 + 2h)] +

h4

30
f (5)(ξ),

where ξ lies between x0 − 2h and x0 + 2h.

FIVE-POINT ENDPOINT FORMULA

f ′(x0) =
1

12h
[−25f (x0) + 48f (x0 + h)− 36f (x0 + 2h)

+ 16f (x0 + 3h)− 3f (x0 + 4h)] +
h4

5
f (5)(ξ),

where ξ lies between x0 and x0 + 4h.
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Chapter 4.1: Numerical Differentiation

SECOND DERIVATIVE MIDPOINT FORMULA

f ′′(x0) =
1
h2 [f (x0 − h)− 2f (x0) + f (x0 + h)]− h2

12
f (4)(ξ),

for some ξ, where x0 − h < ξ < x0 + h. If f (4) is continuous on
[x0 − h, x0 + h] it is also bounded, and the approximation is
O(h2).

NOTE: It is particularly important to pay attention to round-off
error when approximating derivatives.
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Chapter 4.1: Numerical Differentiation

ERROR - INSTABILITY
The total error in the approximation,

f ′(x0)−
f̃ (x0 + h)− f̃ (x0 − h)

2h
=

e(x0 + h)− e(x0 − h)
2h

− h2

6
f (3)(ξ1),

is due both to round-off error, the first part, and to truncation error. If we
assume that the round-off errors e(x0 ± h) are bounded by some number
ε > 0 and that the third derivative of f is bounded by a number M > 0, then∣∣∣∣∣f ′(x0)−

f̃ (x0 + h)− f̃ (x0 − h)
2h

∣∣∣∣∣ ≤ ε

h
+

h2

6
M.

To reduce the truncation error, h2M/6, we need to reduce h. But as h is
reduced, the round-off error ε/h grows. In practice, then, it is seldom
advantageous to let h be too small, because in that case the round-off error
will dominate the calculations.
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Chapter 4.2: Richardson’s Extrapolation

Richardson’s extrapolation is used to generate high-accuracy
results while using low-order formulas.

Extrapolation can be applied whenever it is known that an
approximation technique has an error term with a predictable
form, one that depends on a parameter, usually the step size h.

Richardson’s Extrapolation
The YouTube video developed by Douglas Harder can serve as
a good illustration of the Richardson’s Extrapolation for
students. Richardson’s Extrapolation Video

| Numerical Analysis 10E

https://www.youtube.com/embed/stJ0rYor-kA


6

Chapter 4.3: Elements of Numerical Integration

The need often arises for evaluating the definite integral of a
function that has no explicit antiderivative or whose
antiderivative is not easy to obtain. The basic method involved
in approximating

∫ b
a f (x) dx is called numerical quadrature. It

uses a sum
∑n

i=0 ai f (xi) to approximate
∫ b

a f (x) dx .

| Numerical Analysis 10E
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Chapter 4.3: Elements of Numerical Integration

Trapezoidal Rule∫ b

a
f (x) dx =

h
2
[f (x0) + f (x1)]−

h3

12
f ′′(ξ).

This is called the Trapezoidal rule because when f is a function
with positive values,

∫ b
a f (x) dx is approximated by the area in a

trapezoid, as shown in the figure below.

y

xa 5 x0 x1 5 b

y 5 f (x)

y 5 P1(x)
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Chapter 4.3: Elements of Numerical Integration

Trapezoidal Rule
The YouTube video developed by Mathispower4u can serve as
a good illustration of the Trapezoidal Rule for students.

Trapezoidal Rule Video

| Numerical Analysis 10E
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Chapter 4.3: Elements of Numerical Integration

Simpson’s Rule
Simpson’s rule results from integrating over [a,b] the second
Lagrange polynomial with equally-spaced nodes x0 = a,
x2 = b, and x1 = a + h, where h = (b − a)/2.∫ x2

x0

f (x) dx =
h
3
[f (x0) + 4f (x1) + f (x2)]−

h5

90
f (4)(ξ).

y

xa 5 x0 x2 5 bx1

y 5 f (x)

y 5 P2(x)
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Chapter 4.3: Elements of Numerical Integration

Simpson’s Rule
The error term in Simpson’s rule involves the fourth derivative
of f , so it gives exact results when applied to any polynomial of
degree three or less.

The YouTube video developed by Exam Solutions can serve as
a good illustration of the Simpson’s Rule for students.

Simpson’s Rule Video

| Numerical Analysis 10E
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Chapter 4.3: Elements of Numerical Integration

Definition
4.1 The degree of accuracy, or precision, of a quadrature
formula is the largest positive integer n such that the formula is
exact for xk , for each k = 0,1, . . . ,n.

I Definition 4.1 implies that the Trapezoidal and Simpson’s rules
have degrees of precision one and three, respectively.

I The degree of precision of a quadrature formula is n if and only if
the error is zero for all polynomials of degree k = 0,1, . . . ,n, but
is not zero for some polynomial of degree n + 1.

I The Trapezoidal and Simpson’s rules are examples of a class of
methods known as Newton-Cotes formulas. There are two types
of Newton-Cotes formulas, open and closed.

| Numerical Analysis 10E
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Chapter 4.3: Elements of Numerical Integration

Closed Newton-Cotes Formulas
The (n + 1)-point closed Newton-Cotes formula uses nodes
xi = x0 + ih, for i = 0,1, . . . ,n, where x0 = a, xn = b and
h = (b − a)/n. (See Figure) It is called closed because the
endpoints of the closed interval [a,b] are included as nodes.

y

xxn21a 5 x0 x1 x2 xn 5 b

y = Pn(x)

y = f (x)
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Chapter 4.3: Elements of Numerical Integration

Theorem (4.2: Closed Newton-Cotes Formulas)
Suppose that

∑n
i=0 ai f (xi) denotes the (n + 1)-point closed Newton-Cotes

formula with x0 = a, xn = b, and h = (b − a)/n. There exists ξ ∈ (a, b) for
which∫ b

a
f (x) dx =

n∑
i=0

ai f (xi) +
hn+3f (n+2)(ξ)

(n + 2)!

∫ n

0
t2(t − 1) · · · (t − n) dt ,

if n is even and f ∈ Cn+2[a, b], and∫ b

a
f (x) dx =

n∑
i=0

ai f (xi) +
hn+2f (n+1)(ξ)

(n + 1)!

∫ n

0
t(t − 1) · · · (t − n) dt ,

if n is odd and f ∈ Cn+1[a, b].
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Chapter 4.3: Elements of Numerical Integration

Common Closed Newton-Cotes Formulas
I n = 1: Trapezoidal rule where x0 < ξ < x1∫ x1

x0

f (x) dx =
h
2
[f (x0) + f (x1)]−

h3

12
f ′′(ξ).

I n = 2: Simpson’s rule where x0 < ξ < x2∫ x2

x0

f (x) dx =
h
3
[f (x0) + 4f (x1) + f (x2)]−

h5

90
f (4)(ξ).

I n = 3: Simpson’s Three-Eighths where x0 < ξ < x3∫ x3

x0

f (x) dx =
3h
8
[f (x0) + 3f (x1) + 3f (x2) + f (x3)]−

3h5

80
f (4)(ξ).

I n = 4: where x0 < ξ < x4∫ x4

x0

f (x) dx =
2h
45

[7f (x0) + 32f (x1) + 12f (x2) + 32f (x3) + 7f (x4)]−
8h7

945
f (6)(ξ).
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Chapter 4.3: Elements of Numerical Integration

Open Newton-Cotes Formulas
The open Newton-Cotes formulas do not include the endpoints
of [a,b] as nodes. They use the nodes xi = x0 + ih, for each
i = 0,1, . . . ,n, where h = (b − a)/(n + 2) and x0 = a + h. This
implies that xn = b − h, so we label the endpoints by setting
x−1 = a and xn+1 = b, as shown in the figure. Open formulas
contain all the nodes used for the approximation within the
open interval (a,b).

y

xa 5 x
21 xn11 5 bx0 x1 x2 xn

y = Pn(x)

y = f (x)
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Chapter 4.3: Elements of Numerical Integration

Common Open Newton-Cotes Formulas

I n = 0: Midpoint rule
∫ x1

x−1
f (x) dx = 2hf (x0) +

h3

3
f ′′(ξ), x−1 < ξ < x1.

I n = 1:
∫ x2

x−1
f (x) dx =

3h
2
[f (x0) + f (x1)] +

3h3

4
f ′′(ξ), x−1 < ξ < x2.

I n = 2:∫ x3

x−1

f (x) dx =
4h
3
[2f (x0)− f (x1) + 2f (x2)] +

14h5

45
f (4)(ξ),

x−1 < ξ < x3.

I n = 3: ∫ x4

x−1

f (x) dx =
5h
24

[11f (x0) + f (x1) + f (x2) + 11f (x3)]

+
95

144
h5f (4)(ξ), x−1 < ξ < x4.

| Numerical Analysis 10E



17

Chapter 4.3: Elements of Numerical Integration

Theorem (4.3)
Suppose that

∑n
i=0 ai f (xi) denotes the (n + 1)-point open

Newton-Cotes formula with x−1 = a, xn+1 = b, and
h = (b − a)/(n + 2). There exists ξ ∈ (a,b) for which∫ b

a
f (x) dx =

n∑
i=0

ai f (xi) +
hn+3f (n+2)(ξ)

(n + 2)!

∫ n+1

−1
t2(t − 1) · · · (t − n) dt ,

if n is even and f ∈ Cn+2[a,b], and∫ b

a
f (x) dx =

n∑
i=0

ai f (xi) +
hn+2f (n+1)(ξ)

(n + 1)!

∫ n+1

−1
t(t − 1) · · · (t − n) dt ,

if n is odd and f ∈ Cn+1[a,b].
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Chapter 4.4: Composite Numerical Integration

Theorem (4.4)

Let f ∈ C4[a,b], n be even, h = (b − a)/n, and xj = a + jh, for
each j = 0,1, . . . ,n. There exists a µ ∈ (a,b) for which the
Composite Simpson’s rule for n subintervals can be written
with its error term as

∫ b

a
f (x) dx =

h
3

f (a) + 2
(n/2)−1∑

j=1

f (x2j ) + 4
n/2∑
j=1

f (x2j−1) + f (b)

− b − a
180

h4f (4)(µ).
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Chapter 4.4: Composite Numerical Integration

Choose an even integer n. Subdivide the interval [a,b] into n
subintervals, and apply Simpson’s rule on each consecutive
pair of subintervals. (See Figure 4.7)

y

xa 5 x0 x2 b 5 xn

y 5 f (x)

x2j22 x2j21 x2j

Figure: Figure 4.7
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Chapter 4.4: Composite Numerical Integration

The error term for the Composite Simpson’s rule is O(h4),
whereas it was O(h5) for the standard Simpson’s rule.
However, these rates are not comparable because for standard
Simpson’s rule we have h fixed at h = (b − a)/2, but for
Composite Simpson’s rule we have h = (b− a)/n, for n an even
integer. This permits us to considerably reduce the value of h.

| Numerical Analysis 10E
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Chapter 4.4: Composite Numerical Integration

Algorithm 4.1: COMPOSITE SIMPSON’S RULE

To approximate the integral I =
∫ b

a f (x)dx :

INPUT endpoints a,b; even positive integer n.
OUTPUT approximation XI to I.
Step 1 Set h = (b − a)/n.
Step 2 Set XI0 = f (a) + f (b);

XI1 = 0; (Summation of f (x2i−1).)
XI2 = 0. (Summation of f (x2i).)

Step 3 For i = 1, . . . ,n − 1 do Steps 4 and 5.
Step 4 Set X = a + ih.
Step 5 If i is even then set XI2 = XI2 + f (X )

else set XI1 = XI1 + f (X ).
Step 6 Set XI = h(XI0 + 2 · XI2 + 4 · XI1)/3.
Step 7 OUTPUT (XI);

STOP.
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Chapter 4.4: Composite Numerical Integration

Theorem (4.5)
Let f ∈ C2[a, b], h = (b − a)/n, and xj = a + jh, for each j = 0, 1, . . . , n.
There exists a µ ∈ (a, b) for which the Composite Trapezoidal rule for n
subintervals can be written with its error term as∫ b

a
f (x) dx =

h
2

f (a) + 2
n−1∑
j=1

f (xj) + f (b)

− b − a
12

h2f ′′(µ).

y

xa 5 x0 b 5 xn

y 5 f (x)

xj21 xjx1 xn21

Figure: Figure 4.8| Numerical Analysis 10E



23

Chapter 4.4: Composite Numerical Integration

Theorem (4.6)
Let f ∈ C2[a, b], n be even, h = (b − a)/(n + 2), and xj = a + (j + 1)h for
each j = −1, 0, . . . , n + 1. There exists a µ ∈ (a, b) for which the Composite
Midpoint rule(see also composite midpoint rule) for n + 2 subintervals can
be written with its error term as∫ b

a
f (x) dx = 2h

n/2∑
j=0

f (x2j) +
b − a

6
h2f ′′(µ).

x

y

a 5 x
21 x0 x1 xnx2j21 xn21x2j x2j11 b 5 xn11

y 5 f (x)

Figure: Figure 4.8
| Numerical Analysis 10E
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Chapter 4.5: Romberg Integration

Recall from Section 4.2 that Richardson extrapolation can be
performed on any approximation procedure whose truncation error is
of the form

m−1∑
j=1

Kjhαj + O(hαm),

for a collection of constants Kj and when α1 < α2 < α3 < · · · < αm. In
that section we gave demonstrations to illustrate how effective this
techniques is when the approximation procedure has a truncation
error with only even powers of h, that is, when the truncation error
has the form.

m−1∑
j=1

Kjh2j + O(h2m).

Because the Composite Trapezoidal rule has this form, it is an
obvious candidate for extrapolation. This results in a technique known
as Romberg integration.

| Numerical Analysis 10E
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Chapter 4.5: Romberg Integration

To approximate the integral
∫ b

a f (x)dx we use the results of the
Composite Trapezoidal Rule with n = 1,2,4,8,16, . . ., and denote the
resulting approximations, respectively, by R1,1, R2,1, R3,1, etc. We
then apply extrapolation in the manner given in Section 4.2, that is,
we obtain O(h4) approximations R2,2, R3,2, R4,2, etc, by

Rk,2 = Rk,1 +
1
3
(Rk,1 − Rk−1,1), for k = 2,3, . . .

Then O(h6) approximations R3,3, R4,3, R5,3, etc, by

Rk,3 = Rk,2 +
1

15
(Rk,2 − Rk−1,2), for k = 3,4, . . ..

In general, after the appropriate Rk,j−1 approximations have been
obtained, we determine the O(h2j) approximations from

Rk,j = Rk,j−1 +
1

4j−1 − 1
(Rk,j−1 − Rk−1,j−1), for k = j , j + 1, . . .

| Numerical Analysis 10E
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Chapter 4.5: Romberg Integration

y

x

yy

y 5 f (x)
R1,1 R2,1

a b a b a bx x

R3,1

y 5 f (x) y 5 f (x)

Figure: Figure 4.10 and Table 4.10

k O
(
h2

k
)

O
(
h4

k
)

O
(
h6

k

)
O
(
h8

k

)
O
(
h2n

k
)

1 R1,1

2 R2,1 R2,2

3 R3,1 R3,2 R3,3

4 R4,1 R4,2 R4,3 R4,4
...

...
...

...
...

. . .
n Rn,1 Rn,2 Rn,3 Rn,4 · · · Rn,n
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Chapter 4.5: Romberg Integration

Algorithm 4.2: ROMBERG INTEGRATION

To approximate the integral I =
∫ b

a
f (x) dx , select an integer n > 0.

INPUT endpoints a, b; integer n.
OUTPUT an array R. (Compute R by rows; only the last 2 rows are saved in storage.)
Step 1 Set h = b − a;

R1,1 = h
2 (f (a) + f (b)).

Step 2 OUTPUT (R1,1).
Step 3 For i = 2, . . . , n do Steps 4–8.

Step 4 Set R2,1 =
1
2

[
R1,1 + h

∑2i−2

k=1 f (a + (k − 0.5)h)
]
.

(Approximation from Trapezoidal method.)
Step 5 For j = 2, . . . , i

set R2,j = R2,j−1 +
R2,j−1 − R1,j−1

4 j−1 − 1
. (Extrapolation.)

Step 6 OUTPUT (R2,j for j = 1, 2, . . . , i).
Step 7 Set h = h/2.
Step 8 For j = 1, 2, . . . , i set R1,j = R2,j . (Update row 1 of R.)

Step 9 STOP.
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Chapter 4.6: Adaptive Quadrature

I Composite formulas very effective in most situations, but
suffer occasionally from requirement of equally-spaced
nodes.

I Inappropriate when integrating a function on an interval
containing regions with both large and small functional
variation.

I How can we determine what technique should be applied
on various portions of the interval of integration

I How accurate can we expect the final approximation to be?

An efficient technique for this type of problem should predict the
amount of functional variation and adapt the step size as
necessary. These methods are called Adaptive quadrature
methods.

| Numerical Analysis 10E
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Chapter 4.6: Adaptive Quadrature

Algorithm 4.3: ADAPTIVE QUADRATURE

To approximate the integral I =
∫ b

a
f (x) dx to within a given tolerance:

INPUT endpoints a, b; tolerance TOL; limit N to number of levels.
OUTPUT approximation APP or message that N is exceeded.
Step 1 Set APP = 0;

i = 1;
TOLi = 10 TOL; ai = a; hi = (b − a)/2; FAi = f (a); FCi = f (a + hi );
FBi = f (b);
Si = hi (FAi + 4FCi + FBi )/3; (Approx. from Simpson’s for entire interval)
Li = 1.

Step 2 While i > 0 do Steps 3–5.
Step 3 Set FD = f (ai + hi/2);

FE = f (ai + 3hi/2);
S1 = hi (FAi + 4FD + FCi )/6; (Approximations from Simpson’s

method for halves of subintervals.)
S2 = hi (FCi + 4FE + FBi )/6; v1 = ai ; (Save data at this level.)
v2 = FAi ; v3 = FCi ; v4 = FBi ; v5 = hi ; v6 = TOLi ; v7 = Si ; v8 = Li .

Step 4 Set i = i − 1. (Delete the level.)

| Numerical Analysis 10E
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Chapter 4.6: Adaptive Quadrature

Algorithm 4.3: ADAPTIVE QUADRATURE CONTINUED
Step 5 If |S1 + S2− v7| < v6

then set APP = APP + (S1 + S2)
else

if (v8 ≥ N)
then

OUTPUT (‘LEVEL EXCEEDED’); (Procedure fails.)
STOP.

else (Add one level.)
set i = i + 1; (Data for right half subinterval.)

ai = v1 + v5; FAi = v3; FCi = FE; FBi = v4;
hi = v5/2; TOLi = v6/2;
Si = S2; Li = v8 + 1;

set i = i + 1; (Data for left half subinterval.)
ai = v1;
FAi = v2; FCi = FD; FBi = v3;
hi = hi−1; TOLi = TOLi−1;
Si = S1; Li = Li−1.

Step 6 OUTPUT (APP); (APP approximates I to within TOL.)
STOP.

| Numerical Analysis 10E
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Chapter 4.7: Gaussian Quadrature

Consider the Trapezoidal rule applied to determine the integrals
of the functions whose graphs are shown in Figure 4.15.
The Trapezoidal rule approximates the integral of the function
by integrating the linear function that joins the endpoints of the
graph of the function.

y

x

yy

xa 5 x1 a 5 x1 a 5 x1x2 5 b x2 5 b x2 5 bx

y 5 f (x)
y 5 f (x)

y 5 f (x)

Figure: Figure 4.15

| Numerical Analysis 10E



32

Chapter 4.7: Gaussian Quadrature

But this is not likely the best line for approximating the integral.
Lines such as those shown in Figure 4.16 would likely give
much better approximations in most cases.

yyy

x x xa x1 bx2 a x1 bx2 a x1 bx2

y 5 f (x)

y 5 f (x)
y 5 f (x)

Figure: Figure 4.16

| Numerical Analysis 10E
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Chapter 4.7: Gaussian Quadrature

In Gaussian quadrature the points for evaluation are chosen in
an optimal, rather than equally-spaced, way. The nodes
x1, x2, . . . , xn in the interval [a,b] and coefficients c1, c2, . . . , cn,
are chosen to minimize the expected error obtained in the
approximation ∫ b

a
f (x) dx ≈

n∑
i=1

ci f (xi).

The YouTube video developed by Wen Shen can serve as a
good illustration of the introduction to Gaussian Quadrature for
students. Illustration Introducing Gaussian Quadrature

| Numerical Analysis 10E
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Chapter 4.7: Gaussian Quadrature

The nodes x1, x2, . . . , xn needed to produce an integral approximation
formula that gives exact results for any polynomial of degree less than
2n are the roots of the nth-degree Legendre polynomial. (See
Theorem 4.7.)

Theorem (4.7)
Suppose that x1, x2, . . . , xn are the roots of the nth Legendre
polynomial Pn(x) and that for each i = 1,2, . . . ,n, the numbers ci are
defined by

ci =

∫ 1

−1

n∏
j=1
j 6=i

x − xj

xi − xj
dx .

If P(x) is any polynomial of degree less than 2n, then∫ 1

−1
P(x) dx =

n∑
i=1

ciP(xi).

| Numerical Analysis 10E
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Chapter 4.8: Multiple Integrals

Algorithm 4.4: SIMPSON’S DOUBLE INTEGRAL
To approximate the integral I =

∫ b
a
∫ d(x)

c(x) f (x, y) dy dx :

INPUT endpoints a, b: even positive integers m, n.
OUTPUT approximation J to I.
Step 1 Set h = (b − a)/n;

J1 = 0; (End terms.) J2 = 0; (Even terms.) J3 = 0. (Odd terms.)
Step 2 For i = 0, 1, . . . , n do Steps 3–8.

Step 3 Set x = a + ih; (Composite Simpson’s method for x .)
HX = (d(x)− c(x))/m;
K1 = f (x, c(x)) + f (x, d(x)); (End terms.)
K2 = 0; (Even terms.) K3 = 0. (Odd terms.)

Step 4 For j = 1, 2, . . . ,m − 1 do Step 5 and 6.
Step 5 Set y = c(x) + jHX; Q = f (x, y).
Step 6 If j is even then set K2 = K2 + Q else set K3 = K3 + Q.

Step 7 Set L = (K1 + 2K2 + 4K3)HX/3.(
L ≈

∫ d(xi )
c(xi )

f (xi , y) dy by the Composite Simpson’s method.
)

Step 8 If i = 0 or i = n then set J1 = J1 + L
else if i is even set J2 = J2 + L
else set J3 = J3 + L. (End Step 2)

Step 9 Set J = h(J1 + 2J2 + 4J3)/3.
Step 10 OUTPUT (J);

STOP.
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Chapter 4.8: Multiple Integrals

Algorithm 4.5: GAUSSIAN DOUBLE INTEGRAL
INPUT endpoints a, b; positive integers m, n.

(The roots ri,j and coefficients ci,j need to be available for i = max{m, n}
and for 1 ≤ j ≤ i .)

OUTPUT approximation J to I.
Step 1 Set h1 = (b − a)/2;

h2 = (b + a)/2;
J = 0.

Step 2 For i = 1, 2, . . . ,m do Steps 3–5.
Step 3 Set JX = 0;

x = h1rm,i + h2; d1 = d(x); c1 = c(x);
k1 = (d1 − c1)/2; k2 = (d1 + c1)/2.

Step 4 For j = 1, 2, . . . , n do
set y = k1rn,j + k2;

Q = f (x , y);
JX = JX + cn,j Q.

Step 5 Set J = J + cm,i k1JX . (End Step 2)
Step 6 Set J = h1J.
Step 7 OUTPUT (J);

STOP.
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Chapter 4.8: Multiple Integrals

Algorithm 4.6: GAUSSIAN TRIPLE INTEGRAL
To approximate the integral

∫ b
a
∫ d(x)

c(x)
∫ β(x,y)
α(x,y) f (x, y, z) dz dy dx :

INPUT endpoints a, b; positive integers m, n, p.
(The roots ri,j and coefficients ci,j need to be available for i = max{n,m, p}
and for 1 ≤ j ≤ i .)

OUTPUT approximation J to I.
Step 1 Set h1 = (b − a)/2; h2 = (b + a)/2; J = 0.
Step 2 For i = 1, 2, . . . ,m do Steps 3–8.

Step 3 Set JX = 0;
x = h1rm,i + h2; d1 = d(x); c1 = c(x);
k1 = (d1 − c1)/2; k2 = (d1 + c1)/2.

Step 4 For j = 1, 2, . . . , n do Steps 5–7.
Step 5 Set JY = 0;

y = k1rn,j + k2; β1 = β(x, y); α1 = α(x, y);
l1 = (β1 − α1)/2; l2 = (β1 + α1)/2.

Step 6 For k = 1, 2, . . . , p do
set z = l1rp,k + l2; Q = f (x, y, z); JY = JY + cp,k Q.

Step 7 Set JX = JX + cn,j l1JY. (End Step 4)
Step 8 Set J = J + cm,i k1JX. (End Step 2)

Step 9 Set J = h1J.
Step 10 OUTPUT (J);

STOP.
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Chapter 4.9: Improper Integrals

Left Endpoint Singularity
Consider the situation when the integrand is unbounded at the left
endpoint of the interval of integration, as shown in Figure 4.25. In this
case we say that f has a singularity at the endpoint a. We will then
show how other improper integrals can be reduced to problems of this
form.

x

y 5 f (x)

y

a b

Figure: Figure 4.25
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Chapter 4.9: Improper Integrals

Left Endpoint Singularity
It is shown in calculus that the improper integral with a
singularity at the left endpoint,∫ b

a

dx
(x − a)p ,

converges if and only if 0 < p < 1, and in this case, we define∫ b

a

1
(x − a)p dx = lim

M→a+

(x − a)1−p

1− p

∣∣∣∣x=b

x=M
=

(b − a)1−p

1− p
.
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Chapter 4.9: Improper Integrals

Right-Endpoint Singularity
To approximate the improper integral with a singularity at the
right endpoint, we could develop a similar technique but expand
in terms of the right endpoint b instead of the left endpoint a.
Alternatively, we can make the substitution

z = −x , dz = − dx

to change the improper integral into one of the form∫ b

a
f (x) dx =

∫ −a

−b
f (−z) dz,
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Chapter 4.9: Improper Integrals

Right-Endpoint Singularity
which has its singularity at the left endpoint. Then we can apply
the left endpoint singularity technique we have already
developed.

x z

y yFor  z 5 2x

y 5 f (2z)y 5 f (x)

a b 2a2b

Figure: Figure 4.26
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Chapter 4.9: Improper Integrals

Infinite Singularity
The other type of improper integral involves infinite limits of
integration. The basic integral of this type has the form∫ ∞

a

1
xp dx ,

for p > 1. This is converted to an integral with left endpoint
singularity at 0 by making the integration substitution

t = x−1, dt = −x−2 dx , so dx = −x2 dt = −t−2 dt .

Then ∫ ∞
a

1
xp dx =

∫ 0

1/a
− tp

t2 dt =
∫ 1/a

0

1
t2−p dt .
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Chapter 4.9: Improper Integrals

Infinite Singularity

In a similar manner, the variable change t = x−1 converts the
improper integral

∫∞
a f (x) dx into one that has a left endpoint

singularity at zero:∫ ∞
a

f (x) dx =

∫ 1/a

0
t−2f

(
1
t

)
dt .

It can now be approximated using a quadrature formula of the
type described earlier.
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