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Chapter 5.1: Elementary Theory of Initial-Value
Problems

Definition (5.1)
A function f (t , y) is said to satisfy a Lipschitz condition in the
variable y on a set D ⊂ <2 if a constant L > 0 exists with

|f (t , y1)− f (t , y2, )| ≤ L|y1 − y2|,

whenever (t , y1) and (t , y2) are in D. The constant L is called a
Lipschitz constant for f .
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Chapter 5.1: Elementary Theory of Initial-Value
Problems

Definition (5.2)

A set D ⊂ <2 is said to be convex if whenever (t1, y1) and
(t2, y2) belong to D, then ((1− λ)t1 + λt2, (1− λ)y1 + λy2) also
belongs to D for every λ in [0,1].

(t1, y1)

(t1, y1)(t2, y2)

(t2, y2)

Convex Not convex
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Chapter 5.1: Elementary Theory of Initial-Value
Problems

Theorem (5.3)

Suppose f (t , y) is defined on a convex set D ⊂ <2. If a
constant L > 0 exists with∣∣∣∣ ∂f

∂y
(t , y)

∣∣∣∣ ≤ L, for all (t , y) ∈ D,

then f satisfies a Lipschitz condition on D in the variable y with
Lipschitz constant L.
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Chapter 5.1: Elementary Theory of Initial-Value
Problems

Theorem (5.4)
Suppose that D = { (t , y) | a ≤ t ≤ b and −∞ < y <∞} and
that f (t , y) is continuous on D. If f satisfies a Lipschitz condition
on D in the variable y, then the initial-value problem

y ′(t) = f (t , y), a ≤ t ≤ b, y(a) = α,

has a unique solution y(t) for a ≤ t ≤ b.

| Numerical Analysis 10E



5

Chapter 5.1: Elementary Theory of Initial-Value
Problems

Definition (5.5)
The initial-value problem

dy
dt

= f (t , y), a ≤ t ≤ b, y(a) = α,

is said to be a well-posed problem if:
I A unique solution, y(t), to the problem exists, and
I There exist constants ε0 > 0 and k > 0 such that for any ε, in (0, ε0),

whenever δ(t) is continuous with |δ(t)| < ε for all t in [a, b], and when
|δ0| < ε, the initial-value problem (perturbed problem)

dz
dt

= f (t , z) + δ(t), a ≤ t ≤ b, z(a) = α+ δ0,

has a unique solution z(t) that satisfies

|z(t)− y(t)| < kε for all t in [a, b].
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Chapter 5.1: Elementary Theory of Initial-Value
Problems

Theorem (5.6)
Suppose D = { (t , y) | a ≤ t ≤ b and −∞ < y <∞}. If f is
continuous and satisfies a Lipschitz condition in the variable y
on the set D, then the initial-value problem

dy
dt

= f (t , y), a ≤ t ≤ b, y(a) = α

is well-posed.
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Chapter 5.2: Euler’s Method

The object of Euler’s method is to obtain approximations to the
well-posed initial-value problem

dy
dt

= f (t , y), a ≤ t ≤ b, y(a) = α.

A continuous approximation to the solution y(t) will not be
obtained; instead, approximations to y will be generated at
various values, called mesh points, in the interval [a,b]. Once
the approximate solution is obtained at the points, the
approximate solution at other points in the interval can be found
by interpolation.
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Chapter 5.2: Euler’s Method

For equally distributed mesh points throughout the interval
[a,b], choose a positive integer N and select the mesh points

ti = a + ih, for each i = 0,1,2, . . . ,N.

The common distance between the points
h = (b − a)/N = ti+1 − ti is called the step size. Euler’s
method constructs wi ≈ y(ti) = y(ti) + hf ((ti , y(ti)) + h2

2 y ′′(ξi),
for each i = 1,2, . . . ,N, by deleting the remainder term.
Euler’s method is w0 = α, with difference equation

wi+1 = wi + hf (ti ,wi), for each i = 0,1, . . . ,N − 1.
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Chapter 5.2: Euler’s Method

Algorithm 5.1: EULER’S METHOD
To approximate the solution of the initial-value problem

y ′ = f (t , y), a ≤ t ≤ b, y(a) = α,

at (N + 1) equally spaced numbers in the interval [a,b]:

INPUT endpoints a,b; integer N; initial condition α.

OUTPUT approximation w to y at the (N + 1) values of t .

Step 1 Set h = (b − a)/N; t = a; w = α;
OUTPUT (t ,w).

Step 2 For i = 1,2, . . . ,N do Steps 3, 4.
Step 3 Set w = w + hf (t ,w); (Compute wi .)

t = a + ih. (Compute ti .)
Step 4 OUTPUT (t ,w).

Step 5 STOP.
| Numerical Analysis 10E
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Chapter 5.2: Euler’s Method

Lemma (5.7)
For all x ≥ −1 and any positive m, we have 0 ≤ (1+ x)m ≤ emx .

Lemma (5.8)

If s and t are positive real numbers, {ai}ki=0 is a sequence
satisfying a0 ≥ −t/s, and

ai+1 ≤ (1 + s)ai + t , for each i = 0,1,2, . . . , k − 1,

then

ai+1 ≤ e(i+1)s
(

a0 +
t
s

)
− t

s
.
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Chapter 5.2: Euler’s Method

Theorem (5.9)
Suppose f is continuous and satisfies a Lipschitz condition with constant L on

D = { (t , y) | a ≤ t ≤ b and −∞ < y <∞}

and that a constant M exists with

|y ′′(t)| ≤ M, for all t ∈ [a, b],

where y(t) denotes the unique solution to the initial-value problem

y ′ = f (t , y), a ≤ t ≤ b, y(a) = α.

Let w0,w1, . . . ,wN be the approximations generated by Euler’s method for
some positive integer N. Then, for each i = 0, 1, 2, . . . ,N,

|y(ti)− wi | ≤
hM
2L

[
eL(ti−a) − 1

]
.
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Chapter 5.2: Euler’s Method

Theorem (5.10)
Let y(t) denote the unique solution to the initial-value problem

y ′ = f (t , y), a ≤ t ≤ b, y(a) = α

and u0,u1, . . . ,uN be the approximations obtained using

u0 = α+ δ0,

ui+1 = ui + hf (ti ,ui) + δi+1, for each i = 0,1, . . . ,N − 1,

. If |δi | < δ for each i = 0,1, . . . ,N and the hypotheses of Theorem
5.9 hold for (5.12), then

|y(ti)− ui | ≤
1
L

(
hM
2

+
δ

h

)
[eL(ti−a) − 1] + |δ0|eL(ti−a),

for each i = 0,1, . . . ,N.
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Chapter 5.3: Higher Order Taylor Methods

Definition (5.11)
The difference method

w0 = α

wi+1 = wi + hφ(ti ,wi), for each i = 0,1, . . . ,N − 1,

has local truncation error

τi+1(h) =
yi+1 − (yi + hφ(ti , yi))

h
=

yi+1 − yi

h
− φ(ti , yi),

for each i = 0,1, . . . ,N − 1, where yi and yi+1 denote the
solution of the differential equation at ti and ti+1, respectively.
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Chapter 5.3: Higher Order Taylor Methods

Taylor method of order n
The difference method

w0 = α

wi+1 = wi + hφ(ti ,wi), for each i = 0,1, . . . ,N − 1,

has local truncation error

τi+1(h) =
yi+1 − (yi + hφ(ti , yi))

h
=

yi+1 − yi

h
− φ(ti , yi),

for each i = 0,1, . . . ,N − 1, where yi and yi+1 denote the
solution of the differential equation at ti and ti+1, respectively.
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Chapter 5.3: Higher Order Taylor Methods

Theorem (5.12)
If Taylor’s method of order n is used to approximate the solution
to

y ′(t) = f (t , y(t)), a ≤ t ≤ b, y(a) = α,

with step size h and if y ∈ Cn+1[a,b], then the local truncation
error is O(hn).
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Chapter 5.4 Runge-Kutta Methods

Theorem (5.13)
Suppose that f (t , y) and all its partial derivatives of order less than or equal
to n + 1 are continuous on D = { (t , y) | a ≤ t ≤ b, c ≤ y ≤ d }, and let
(t0, y0) ∈ D. For every (t , y) ∈ D, there exists ξ between t and t0 and µ
between y and y0 with f (t , y) = Pn(t , y) + Rn(t , y) , where

Pn(t, y) = f (t0, y0) +

[
(t − t0)

∂f

∂t
(t0, y0) + (y − y0)

∂f

∂y
(t0, y0)

]

+

[
(t − t0)

2

2

∂2f

∂t2
(t0, y0) + (t − t0)(y − y0)

∂2f

∂t∂y
(t0, y0)

+
(y − y0)

2

2

∂2f

∂y2
(t0, y0)

]
+ · · ·

+

 1

n!

n∑
j=0

(n

j

)
(t − t0)

n−j (y − y0)
j ∂n f

∂tn−j∂y j
(t0, y0)


and

Rn(t, y) =
1

(n + 1)!

n+1∑
j=0

(n + 1

j

)
(t − t0)

n+1−j (y − y0)
j ∂n+1f

∂tn+1−j∂y j
(ξ, µ).
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Chapter 5.4 Runge-Kutta Methods

Midpoint Method

w0 = α,

wi+1 = wi + hf
(

ti +
h
2
,wi +

h
2

f (ti ,wi)

)
, for i = 0, . . . ,N − 1.

Modified Euler Method

w0 = α,

wi+1 = wi +
h
2
[f (ti ,wi) + f (ti+1,wi + hf (ti ,wi))], i = 0, . . . ,N − 1.
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Chapter 5.4 Runge-Kutta Methods

Runge-Kutta Order Four

w0 = α,

k1 = hf (ti ,wi),

k2 = hf
(

ti +
h
2
,wi +

1
2

k1

)
,

k3 = hf
(

ti +
h
2
,wi +

1
2

k2

)
,

k4 = hf (ti+1,wi + k3),

wi+1 = wi +
1
6
(k1 + 2k2 + 2k3 + k4),

for each i = 0, 1, . . . ,N − 1. This method has local truncation error O(h4),
provided the solution y(t) has five continuous derivatives. We introduce the
notation k1, k2, k3, k4 into the method to eliminate the need for successive
nesting in the second variable of f (t , y).
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Chapter 5.4 Runge-Kutta Methods

Algorithm 5.2: RUNGE-KUTTA METHOD (order four)
To approximate the solution of the initial-value problem

y ′ = f (t , y), a ≤ t ≤ b, y(a) = α,

at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; integer N; initial condition α.

OUTPUT approximation w to y at the (N + 1) values of t .

Step 1 Set h = (b − a)/N; t = a; w = α; OUTPUT (t ,w).
Step 2 For i = 1, 2, . . . ,N do Steps 3–5.

Step 3 Set K1 = hf (t ,w); K2 = hf (t + h/2,w + K1/2);
K3 = hf (t + h/2,w + K2/2); K4 = hf (t + h,w + K3).

Step 4 Set w = w + (K1 + 2K2 + 2K3 + K4)/6; (Compute wi .)
t = a + ih. (Compute ti .)

Step 5 OUTPUT (t ,w).
Step 6 STOP.
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Chapter 5.4 Runge-Kutta Methods

Computational Comparisons: Table 5.9

Evaluations
per step 2 3 4 5 ≤ n ≤ 7 8 ≤ n ≤ 9 10 ≤ n

Best local
trunc. error O(h2) O(h3) O(h4) O(hn−1) O(hn−2) O(hn−3)
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Chapter 5.5 Error Control and Runge-Kutta-
Fehlberg Method

Algorithm 5.3: RUNGE-KUTTA-FEHLBERG METHOD
To approximate the solution of the initial-value problem

y ′ = f (t , y), a ≤ t ≤ b, y(a) = α,

with local truncation error within a given tolerance:

INPUT endpoints a,b; initial condition α; tolerance TOL; maximum
step size hmax ; minimum step size hmin.

OUTPUT t ,w ,h where w approximates y(t) and the step size h was
used, or a message that the minimum step size was exceeded.

Step 1 Set t = a;
w = α;
h = hmax;
FLAG = 1;
OUTPUT (t ,w).
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Chapter 5.5 Error Control and Runge-Kutta-
Fehlberg Method

Algorithm 5.3: RUNGE-KUTTA-FEHLBERG METHOD
CONT.
Step 2 While (FLAG = 1) do Steps 3–11.

Step 3 Set K1 = hf (t ,w);
K2 = hf

(
t + 1

4 h,w + 1
4 K1
)
;

K3 = hf
(
t + 3

8 h,w + 3
32 K1 +

9
32 K2

)
;

K4 = hf
(
t + 12

13 h,w + 1932
2197 K1 − 7200

2197 K2 +
7296
2197 K3

)
;

K5 = hf
(
t + h,w + 439

216 K1 − 8K2 +
3680
513 K3 − 845

4104 K4
)
;

K6 = hf
(
t + 1

2 h,w − 8
27 K1 + 2K2 − 3544

2565 K3 +
1859
4104 K4 − 11

40 K5
)
.

Step 4 Set R = 1
h |

1
360 K1 − 128

4275 K3 − 2197
75240 K4 +

1
50 K5 +

2
55 K6|.

(Note: R = 1
h |w̃i+1 − wi+1| ≈ |τi+1(h)|.)

Step 5 If R ≤ TOL then do Steps 6 and 7.
Step 6 Set t = t + h; (Approximation accepted.)

w = w + 25
216 K1 +

1408
2565 K3 +

2197
4104 K4 − 1

5 K5.
Step 7 OUTPUT (t ,w , h). (End Step 5)
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Chapter 5.5 Error Control and Runge-Kutta-
Fehlberg Method

Algorithm 5.3: RUNGE-KUTTA-FEHLBERG METHOD
CONT.

Step 8 Set δ = 0.84(TOL/R)1/4.
Step 9 If δ ≤ 0.1 then set h = 0.1h

else if δ ≥ 4 then set h = 4h
else set h = δh. (Calculate new h.)

Step 10 If h > hmax then set h = hmax.
Step 11 If t ≥ b then set FLAG = 0

else if t + h > b then set h = b − t
else if h < hmin then

set FLAG = 0;
OUTPUT (‘minimum h exceeded ’).

(Procedure unsuccessful.)(End Step 3)
Step 12 (The procedure is complete.)

STOP.

| Numerical Analysis 10E



24

Chapter 5.6: Multistep Methods

Definition (5.14)
An m-step multistep method for solving the initial-value problem

y ′ = f (t , y), a ≤ t ≤ b, y(a) = α,

has a difference equation for finding the approximation wi+1 at the mesh point
ti+1 represented by the following equation, where m is an integer greater than
1:

wi+1 = am−1wi + am−2wi−1 + · · ·+ a0wi+1−m

+ h[bmf (ti+1,wi+1) + bm−1f (ti ,wi)

+ · · ·+ b0f (ti+1−m,wi+1−m)],

for i = m − 1,m, . . . ,N − 1, where h = (b − a)/N, the a0, a1, . . . , am−1 and
b0, b1, . . . , bm are constants, and the starting values

w0 = α, w1 = α1, w2 = α2, . . . , wm−1 = αm−1

are specified.
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Chapter 5.6: Multistep Methods

Definition (5.15)
If y(t) is the solution to the initial-value problem

y ′ = f (t , y), a ≤ t ≤ b, y(a) = α,

and

wi+1 = am−1wi + am−2wi−1 + · · ·+ a0wi+1−m

+ h[bmf (ti+1,wi+1) + bm−1f (ti ,wi) + · · ·+ b0f (ti+1−m,wi+1−m)]

is the (i + 1)st step in a multistep method, the local truncation error at this
step is

τi+1(h) =
y(ti+1)− am−1y(ti)− · · · − a0y(ti+1−m)

h
− [bmf (ti+1, y(ti+1)) + · · ·+ b0f (ti+1−m, y(ti+1−m))],

for each i = m − 1,m, . . . ,N − 1.
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Chapter 5.6: Multistep Methods

Definition (Adams-Bashforth Two-Step Explicit Method)

w0 = α, w1 = α1,

wi+1 = wi +
h
2
[3f (ti ,wi)− f (ti−1,wi−1)],

where i = 1, 2, . . . ,N − 1. The local truncation error is τi+1(h) = 5
12 y ′′′(µi)h2,

for some µi ∈ (ti−1, ti+1).

Definition (Adams-Bashforth Three-Step Explicit Method)

w0 = α, w1 = α1, w2 = α2,

wi+1 = wi +
h
12

[23f (ti ,wi)− 16f (ti−1,wi−1) + 5f (ti−2,wi−2)],

where i = 2, 3, . . . ,N − 1. The local truncation error is τi+1(h) = 3
8 y (4)(µi)h3,

for some µi ∈ (ti−2, ti+1).
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Chapter 5.6: Multistep Methods

Definition (Adams-Bashforth Four-Step Explicit Method)

w0 = α, w1 = α1, w2 = α2, w3 = α3,

wi+1 = wi +
h
24

[55f (ti ,wi)− 59f (ti−1,wi−1) + 37f (ti−2,wi−2)

− 9f (ti−3,wi−3)],

where i = 3,4, . . . ,N − 1. The local truncation error is
τi+1(h) = 251

720 y (5)(µi)h4, for some µi ∈ (ti−3, ti+1).
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Chapter 5.6: Multistep Methods

Definition (Adams-Bashforth Five-Step Explicit Method)

w0 = α, w1 = α1, w2 = α2, w3 = α3, w4 = α4,

wi+1 = wi +
h

720
[1901f (ti ,wi)− 2774f (ti−1,wi−1)

+ 2616f (ti−2,wi−2)− 1274f (ti−3,wi−3) + 251f (ti−4,wi−4)],

where i = 4,5, . . . ,N − 1. The local truncation error is
τi+1(h) = 95

288 y (6)(µi)h5, for some µi ∈ (ti−4, ti+1).
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Chapter 5.6: Multistep Methods

Definition (Adams-Moulton Two-Step Implicit Method)

w0 = α, w1 = α1,

wi+1 = wi +
h
12

[5f (ti+1,wi+1) + 8f (ti ,wi)− f (ti−1,wi−1)],

where i = 1, 2, . . . ,N − 1. The local truncation error is
τi+1(h) = − 1

24 y (4)(µi)h3, for some µi ∈ (ti−1, ti+1).

Definition (Adams-Moulton Three-Step Implicit Method)

w0 = α, w1 = α1, w2 = α2,

wi+1 = wi +
h
24

[9f (ti+1,wi+1) + 19f (ti ,wi)− 5f (ti−1,wi−1) + f (ti−2,wi−2)],

where i = 2, 3, . . . ,N − 1. The local truncation error is
τi+1(h) = − 19

720 y (5)(µi)h4, for some µi ∈ (ti−2, ti+1).
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Chapter 5.6: Multistep Methods

Definition (Adams-Moulton Four-Step Implicit Method)

w0 = α, w1 = α1, w2 = α2, w3 = α3,

wi+1 = wi +
h

720
[251f (ti+1,wi+1) + 646f (ti ,wi)

− 264f (ti−1,wi−1) + 106f (ti−2,wi−2)

−19f (ti−3,wi−3)],

where i = 3,4, . . . ,N − 1. The local truncation error is

τi+1(h) = −
3

160
y (6)(µi)h5,

for some µi ∈ (ti−3, ti+1).
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Chapter 5.6: Multistep Methods

Algorithm 5.4: ADAMS FOURTH-ORDER
PREDICTOR-CORRECTOR
To approximate the solution of the initial-value problem

y ′ = f (t , y), a ≤ t ≤ b, y(a) = α,

at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; integer N; initial condition α.

OUTPUT approximation w to y at the (N + 1) values of t .

Step 1 Set h = (b − a)/N; t0 = a; w0 = α; OUTPUT (t0,w0).
Step 2 For i = 1, 2, 3, do Steps 3–5.

(Compute starting values using Runge-Kutta method.)
Step 3 Set K1 = hf (ti−1,wi−1);

K2 = hf (ti−1 + h/2,wi−1 + K1/2);
K3 = hf (ti−1 + h/2,wi−1 + K2/2);
K4 = hf (ti−1 + h,wi−1 + K3).
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Chapter 5.6: Multistep Methods

Algorithm 5.4: ADAMS FOURTH-ORDER
PREDICTOR-CORRECTOR

Step 4 Set wi = wi−1 + (K1 + 2K2 + 2K3 + K4)/6;
ti = a + ih.

Step 5 OUTPUT (ti ,wi ).
Step 6 For i = 4, . . . ,N do Steps 7–10.

Step 7 Set t = a + ih;
w = w3 + h[55f (t3,w3)− 59f (t2,w2) + 37f (t1,w1)
− 9f (t0,w0)]/24; (Predict wi .)

w = w3 + h[9f (t ,w) + 19f (t3,w3)− 5f (t2,w2)
+ f (t1,w1)]/24. (Correct wi .)

Step 8 OUTPUT (t ,w).
Step 9 For j = 0, 1, 2

set tj = tj+1; (Prepare for next iteration.)
wj = wj+1.

Step 10 Set t3 = t ;
w3 = w .

Step 11 STOP.
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Chapter 5.7: Variable Step-Size Multistep Meth-
ods

Algorithm 5.5: ADAMS VARIABLE STEP-SIZE
PREDICTOR-CORRECTOR
To approximate the solution of the initial-value problem

y ′ = f (t , y), a ≤ t ≤ b, y(a) = α

with local truncation error within a given tolerance:

INPUT endpoints a, b; initial condition α; tolerance TOL; maximum step size hmax ;
minimum step size hmin.

OUTPUT i, ti ,wi , h where at the i th step wi approximates y(ti ) and the step size h was
used, or a message that the minimum step size was exceeded.

Step 1 Set up a subalgorithm for the Runge-Kutta fourth-order method to be called
RK 4(h, v0, x0, v1, x1, v2, x2, v3, x3) that accepts as input a step size h and
starting values v0 ≈ y(x0) and returns {(xj , vj ) | j = 1, 2, 3} defined by the
following: for j = 1, 2, 3 set
K1 = hf (xj−1, vj−1); K2 = hf (xj−1 + h/2, vj−1 + K1/2)
K3 = hf (xj−1 + h/2, vj−1 + K2/2); K4 = hf (xj−1 + h, vj−1 + K3)
vj = vj−1 + (K1 + 2K2 + 2K3 + K4)/6; xj = x0 + jh.
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Chapter 5.7: Variable Step-Size Multistep Meth-
ods

Algorithm 5.5: ADAMS VARIABLE STEP-SIZE
PREDICTOR-CORRECTOR
Step 2 Set t0 = a;

w0 = α;
h = hmax ;
FLAG = 1; (FLAG will be used to exit the loop in Step 4.)
LAST = 0; (LAST will indicate when the last value is calculated.)

OUTPUT (t0,w0).
Step 3 Call RK 4(h,w0, t0,w1, t1,w2, t2,w3, t3);

Set NFLAG = 1; (Indicates computation from RK 4.)
i = 4; t = t3 + h.

Step 4 While (FLAG = 1) do Steps 5–20.

Step 5 Set WP = wi−1 +
h
24

[55f (ti−1,wi−1)− 59f (ti−2,wi−2)

+ 37f (ti−3,wi−3)− 9f (ti−4,wi−4)]; (Predict wi .)
WC = wi−1 + h

24 [9f (t ,WP) + 19f (ti−1,wi−1)
− 5f (ti−2,wi−2) + f (ti−3,wi−3)]; (Correct wi .)

σ = 19|WC −WP|/(270h).
Step 6 If σ ≤ TOL then do Steps 7–16 (Result accepted.)

else do Steps 17–19. (Result rejected.)
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Chapter 5.7: Variable Step-Size Multistep Meth-
ods

Algorithm 5.5: ADAMS VARIABLE STEP-SIZE
PREDICTOR-CORRECTOR

Step 7 Set wi = WC; (Result accepted.) ti = t .
Step 8 If NFLAG = 1 then for j = i − 3, i − 2, i − 1, i

OUTPUT (j, tj ,wj , h);
(Previous results also accepted.)

else OUTPUT (i, ti ,wi , h).
(Previous results already accepted.)

Step 9 If LAST = 1 then set FLAG = 0 (Next step is 20.)
else do Steps 10–16.

Step 10 Set i = i + 1;
NFLAG = 0.

Step 11 If σ ≤ 0.1 TOL or ti−1 + h > b then do Steps 12–16.
(Increase h if it is more accurate than required or decrease h to
include b as a mesh point.)

Step 12 Set q = (TOL/(2σ))1/4.
Step 13 If q > 4 then set h = 4h

else set h = qh.
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Chapter 5.7: Variable Step-Size Multistep Meth-
ods

Algorithm 5.5: ADAMS VARIABLE STEP-SIZE
PREDICTOR-CORRECTOR

Step 14 If h > hmax then set h = hmax .
Step 15 If ti−1 + 4h > b then

set h = (b − ti−1)/4;
LAST = 1.

Step 16 Call RK 4(h,wi−1, ti−1,wi , ti ,wi+1, ti+1,wi+2, ti+2);
Set NFLAG = 1;

i = i + 3. (True branch done; End Step 6; Next step 20.)
Step 17 Set q = (TOL/(2σ))1/4. (False branch of Step 6: Result rejected.)
Step 18 If q < 0.1 then set h = 0.1h

else set h = qh.
Step 19 If h < hmin then set FLAG = 0;

OUTPUT (‘hmin exceeded’) else
if NFLAG = 1 then set i = i − 3;
(Previous results also rejected.)
Call RK 4(h,wi−1, ti−1,wi , ti ,wi+1, ti+1,wi+2, ti+2);
set i = i + 3; NFLAG = 1.(End Step 6.)

Step 20 Set t = ti−1 + h.(End Step 4.)
Step 21 STOP.
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Chapter 5.8: Extrapolation Methods

Algorithm 5.6: EXTRAPOLATION
To approximate the solution of the initial-value problem

y ′ = f (t , y), a ≤ t ≤ b, y(a) = α,

with local truncation error within a given tolerance:

INPUT endpoints a, b; initial condition α; tolerance TOL; maximum step size hmax ;
minimum step size hmin.

OUTPUT T ,W , h where W approximates y(t) and step size h was used, or a message
that minimum step size was exceeded.

Step 1 Initialize the array NK = (2, 4, 6, 8, 12, 16, 24, 32).
Step 2 Set TO = a; WO = α;

h = hmax ; FLAG = 1. (FLAG is used to exit the loop in Step 4.)
Step 3 For i = 1, 2, . . . , 7

for j = 1, . . . , i
set Qi,j = (NKi+1/NKj )

2. (Note: Qi,j = h2
j /h2

i+1.)
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Chapter 5.8: Extrapolation Methods

Algorithm 5.6: EXTRAPOLATION
Step 4 While (FLAG = 1) do Steps 5–20.

Step 5 Set k = 1;
NFLAG = 0. (When desired accuracy is achieved, NFLAG is

set to 1.)
Step 6 While (k ≤ 8 and NFLAG = 0) do Steps 7–14.

Step 7 Set HK = h/NKk ; T = TO; W2 = WO;
W3 = W2 + HK · f (T ,W2); (Euler’s first step.)
T = TO + HK .

Step 8 For j = 1, . . . ,NKk − 1
set W1 = W2; W2 = W3;

W3 = W1 + 2HK · f (T ,W2); (Midpoint method.)
T = TO + (j + 1) · HK .

Step 9 Set yk = [W3 + W2 + HK · f (T ,W3)]/2.
(Endpoint correction to compute yk,1.)

Step 10 If k ≥ 2 then do Steps 11–13.
(Note: yk−1 ≡ yk−1,1, yk−2 ≡ yk−2,2, . . . , y1 ≡ yk−1,k−1 since only
the previous row of the table is saved.)

Step 11 Set j = k ;
v = y1. (Save yk−1,k−1.)
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Chapter 5.8: Extrapolation Methods

Algorithm 5.6: EXTRAPOLATION
Step 12 While (j ≥ 2) do set yj−1 = yj +

yj−yj−1
Qk−1,j−1−1 ;

(Extrapolation to compute yj−1 ≡ yk,k−j+2.)(
Note: yj−1 =

h2
j−1yj−h2

k yj−1

h2
j−1−h2

k
.); j = j − 1.

Step 13 If |y1 − v | ≤ TOL then set NFLAG = 1.
(y1is accepted as the neww .)

Step 14 Set k = k + 1. (End Step 6)
Step 15 Set k = k − 1. (Part of Step 4)
Step 16 If NFLAG = 0 then do Steps 17 and 18 (Result rejected.)

else do Steps 19 and 20. (Result accepted.)
Step 17 Set h = h/2. (New value for w rejected, decrease h.)
Step 18 If h < hmin then OUTPUT (‘hmin exceeded’);

Set FLAG = 0. (End Step 16)
(True branch completed, next step is back to Step 4.)

Step 19 Set WO = y1; (New value for w accepted.)
TO = TO + h; (TO,WO, h).
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Chapter 5.8: Extrapolation Methods

Algorithm 5.6: EXTRAPOLATION
Step 20 If TO ≥ b then set FLAG = 0

(Procedure completed successfully.)
else if TO + h > b then set h = b − TO
(Terminate at t = b.)
else if (k ≤ 3 and h < 0.5(hmax) set h = 2h.
(Increase step size if possible.) (End of Step 4 and 16)

Step 21 STOP.
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Chapter 5.9: Higher-Order Equations & Systems
of Differential Equations

Definition (5.16)
The function f (t , y1, . . . , ym), defined on the set

D = { (t ,u1, . . . ,um) | a ≤ t ≤ b;−∞ < ui <∞, for each i = 1, . . . ,m }

is said to satisfy a Lipschitz condition on D in the variables
u1,u2, . . . ,um if a constant L > 0 exists with

|f (t ,u1, . . . ,um)− f (t , z1, . . . , zm)| ≤ L
m∑

j=1

|uj − zj |,

for all (t ,u1, . . . ,um) and (t , z1, . . . , zm) in D.
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Chapter 5.9: Higher-Order Equations & Systems
of Differential Equations

Theorem (5.17)
Suppose that

D = { (t ,u1, . . . ,um) | a ≤ t ≤ b;−∞ < ui <∞, for each i = 1, . . . ,m }

and let fi(t ,u1, . . . ,um), for each i = 1,2, . . . ,m, be continuous
and satisfy a Lipschitz condition on D. The system of first-order
differential equations (5.45), subject to the initial conditions
(5.46), has a unique solution u1(t), . . . ,um(t), for a ≤ t ≤ b.
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Chapter 5.9: Higher-Order Equations & Systems
of Differential Equations

Algorithm 5.7: RUNGE-KUTTA METHOD FOR SYSTEMS
OF DE
Step 1 Set h = (b − a)/N; t = a.
Step 2 For j = 1, 2, . . . ,m set wj = αj .
Step 3 OUTPUT (t ,w1,w2, . . . ,wm).
Step 4 For i = 1, 2, . . . ,N do steps 5–11.

Step 5 For j = 1, 2, . . . ,m set
k1,j = hfj (t ,w1,w2, . . . ,wm).

Step 6 For j = 1, 2, . . . ,m set
k2,j = hfj

(
t + h

2 ,w1 + 1
2 k1,1,w2 + 1

2 k1,2, . . . ,wm + 1
2 k1,m

)
.

Step 7 For j = 1, 2, . . . ,m set
k3,j = hfj

(
t + h

2 ,w1 + 1
2 k2,1,w2 + 1

2 k2,2, . . . ,wm + 1
2 k2,m

)
.

Step 8 For j = 1, 2, . . . ,m set
k4,j = hfj (t + h,w1 + k3,1,w2 + k3,2, . . . ,wm + k3,m).

Step 9 For j = 1, 2, . . . ,m set
wj = wj + (k1,j + 2k2,j + 2k3,j + k4,j )/6.

Step 10 Set t = a + ih.
Step 11 OUTPUT (t ,w1,w2, . . . ,wm).

Step 12 STOP.
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Chapter 5.10: Stability

Definition (5.18)
A one-step difference-equation method with local truncation error τi(h) at the
i th step is said to be consistent with the differential equation it approximates
if

lim
h→0

max
1≤i≤N

|τi(h)| = 0.

Definition (5.19)
A one-step difference-equation method is said to be convergent with respect
to the differential equation it approximates if

lim
h→0

max
1≤i≤N

|wi − y(ti)| = 0,

where y(ti) denotes the exact value of the solution of the differential equation
and wi is the approximation obtained from the difference method at the i th
step.
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Chapter 5.10: Stability

Theorem (5.20)
Suppose the initial-value problem y ′ = f (t , y), a ≤ t ≤ b, y(a) = α, is
approximated by a one-step difference method in the form

w0 = α, wi+1 = wi + hφ(ti ,wi , h).

Suppose also that a number h0 > 0 exists and that φ(t ,w , h) is continuous and
satisfies a Lipschitz condition in the variable w with Lipschitz constant L on the set

D = { (t ,w , h) | a ≤ t ≤ b and −∞ < w <∞, 0 ≤ h ≤ h0 }.

Then

(i) The method is stable;

(ii) The difference method is convergent if and only if it is consistent, which is
equivalent to φ(t , y , 0) = f (t , y), for all a ≤ t ≤ b;

(iii) If a function τ exists and, for each i = 1, 2, . . . ,N, the local truncation error
τi (h) satisfies |τi (h)| ≤ τ(h) whenever 0 ≤ h ≤ h0, then
|y(ti )− wi | ≤

τ(h)
L eL(ti−a).
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Chapter 5.10: Stability

Theorem (5.21)
Suppose the initial-value problem y′ = f (t, y), a ≤ t ≤ b, y(a) = α, is approximated by an explicit Adams
predictor-corrector method with an m-step Adams-Bashforth predictor equation

wi+1 = wi + h[bm−1f (ti ,wi ) + · · · + b0f (ti+1−m,wi+1−m)],

with local truncation error τi+1(h), and an (m − 1)-step implicit Adams-Moulton corrector equation

wi+1 = wi + h
[
b̃m−1f (ti ,wi+1) + b̃m−2f (ti ,wi ) + · · · + b̃0f (ti+2−m,wi+2−m)

]
,

with local truncation error τ̃i+1(h). In addition, suppose that f (t, y) and fy (t, y) are continuous on
D = { (t, y) | a ≤ t ≤ b and−∞ < y <∞} and that fy is bounded. Then the local truncation error σi+1(h) of
the predictor-corrector method is σi+1(h) = τ̃i+1(h) + τi+1(h)b̃m−1

∂f
∂y (ti+1, θi+1), where θi+1 is a number

between zero and hτi+1(h). Moreover, there exist constants k1 and k2 such that

|wi − y(ti )| ≤
[

max
0≤j≤m−1

∣∣∣wj − y(tj )
∣∣∣ + k1σ(h)

]
ek2(ti−a)

,

where σ(h) = maxm≤j≤N |σj (h)|.
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Chapter 5.10: Stability

Definition (5.22)
Let λ1, λ2, . . . , λm denote the (not necessarily distinct) roots of the
characteristic equation

P(λ) = λm − am−1λ
m−1 − · · · − a1λ− a0 = 0

associated with the multistep difference method

w0 = α, w1 = α1, . . . , wm−1 = αm−1

wi+1 = am−1wi + am−2wi−1 + · · ·+ a0wi+1−m + hF (ti , h,wi+1,wi , . . . ,wi+1−m).

If |λi | ≤ 1, for each i = 1, 2, . . . ,m, and all roots with absolute value 1 are
simple roots, then the difference method is said to satisfy the root
condition.
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Chapter 5.10: Stability

Definition (5.23)
(i) Methods that satisfy the root condition and have

λ = 1 as the only root of the characteristic equation
with magnitude one are called strongly stable.

(ii) Methods that satisfy the root condition and have more
than one distinct root with magnitude one are called
weakly stable.

(iii) Methods that do not satisfy the root condition are
called unstable.
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Chapter 5.10: Stability

Theorem (5.24)
A multistep method of the form

w0 = α, w1 = α1, . . . , wm−1 = αm−1,

wi+1 = am−1wi + am−2wi−1 + · · ·+ a0wi+1−m + hF (ti , h,wi+1,wi , . . . ,wi+1−m)

is stable if and only if it satisfies the root condition. Moreover, if
the difference method is consistent with the differential
equation, then the method is stable if and only if it is
convergent.
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Chapter 5.10: Stiff Differential Equations

Definition (5.25)
The region R of absolute stability for a one-step method is
R = {hλ ∈ C | |Q(hλ)| < 1 }, and for a multistep method, it is
R = { hλ ∈ C | |βk | < 1, for all zeros βk of Q(z,hλ) }.
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Chapter 5.10: Stiff Differential Equations

Algorithm 5.8: TRAPEZOIDAL WITH NEWTON
ITERATION
To approximate the solution of the initial-value problem

y ′ = f (t , y), for a ≤ t ≤ b, with y(a) = α

at (N + 1) equally spaced numbers in the interval [a, b]:

NPUT endpoints a, b; integer N; initial condition α; tolerance TOL; maximum
number of iterations M at any one step.

OUTPUT approximation w to y at the (N + 1) values of t or a message of
failure.

Step 1 Set h = (b − a)/N;
t = a; w = α; OUTPUT (t ,w).

Step 2 For i = 1, 2, . . . ,N do Steps 3–7.
Step 3 Set k1 = w + h

2 f (t ,w); w0 = k1; j = 1; FLAG = 0.
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Chapter 5.10: Stiff Differential Equations

Algorithm 5.8: TRAPEZOIDAL WITH NEWTON
ITERATION

Step 4 While FLAG = 0 do Steps 5–6.

Step 5 Set w = w0 −
w0 −

h
2

f (t + h,w0)− k1

1− h
2

fy (t + h,w0)
.

Step 6 If |w − w0| < TOL then set FLAG = 1
else set j = j + 1;

w0 = w ;
if j > M then

OUTPUT (‘The maximum number of
iterations exceeded’);

STOP.
Step 7 Set t = a + ih;

OUTPUT (t ,w). End of Step 2
Step 8 STOP.
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