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Chapter 6.1: Direct Methods For Solving Linear
Systems

Operations
E1 : a11x1 + a12x2 + · · ·+ a1nxn = b1,
E2 : a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
En : an1x1 + an2x2 + · · ·+ annxn = bn.

is a linear system with given constants aij , for each i, j = 1, 2, . . . , n, and bi ,
for each i = 1, 2, . . . , n, and we need to determine the unknowns x1, . . . , xn.

1. Equation Ei can be multiplied by any nonzero constant � with the
resulting equation used in place of Ei . This operation is denoted
(�Ei) ! (Ei).

2. Equation Ej can be multiplied by any constant � and added to equation
Ei with the resulting equation used in place of Ei . This operation is
denoted (Ei + �Ej) ! (Ei).

3. Equations Ei and Ej can be transposed in order. This operation is
denoted (Ei) $ (Ej).
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Chapter 6.1: Direct Methods For Solving Linear
Systems

Definition (6.1)
An n ⇥ m (n by m) matrix is a rectangular array of elements
with n rows and m columns in which not only is the value of an
element important, but also its position in the array.

The notation for an n ⇥ m matrix will be a capital letter such as
A for the matrix and lowercase letters with double subscripts,
such as aij , to refer to the entry at the intersection of the i th row
and j th column; that is,

A = [aij ] =

2

6664

a11 a12 · · · a1m
a21 a22 · · · a2m

...
...

...
an1 an2 · · · anm

3

7775
.
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Chapter 6.1: Direct Methods For Solving Linear
Systems

An n ⇥ (n + 1) matrix can be used to represent the linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,
...

...
an1x1 + an2x2 + · · ·+ annxn = bn,

by constructing the augmented matrix

[A,b] =

2

6664

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
an1 an2 · · · ann bn

3

7775
.

.
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Chapter 6.1: Linear Systems of Equations

Gaussian elimination with backward substitution
Through a sequential procedure for i = 2, 3, . . . , n � 1 we perform the
operation

(Ej � (aji/aii)Ei) ! (Ej) for each j = i + 1, i + 2, . . ., n,

provided aii 6= 0. This eliminates (changes the coefficient to zero) xi in each
row below the i th for all values of i = 1, 2, . . . , n � 1. The resulting matrix has
the form:

˜̃A =

2

6664

a11 a12 · · · a1n a1,n+1

0 a22 · · · a2n a2,n+1
...

...
...

0 · · · 0 ann an,n+1

3

7775
,

where, except in the first row, the values of aij are not expected to agree with
those in the original matrix Ã = [A, b]. The matrix ˜̃A represents a linear
system with the same solution set as the original system .
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Chapter 6.1: Linear Systems of Equations

Algorithm 6.1: GAUSSIAN ELIMINATION WITH
BACKSUB
To solve the n ⇥ n linear system

E1 : a11x1 + a12x2 + · · · + a1nxn = a1,n+1
E2 : a21x1 + a22x2 + · · · + a2nxn = a2,n+1

...
...

...
...

...
En : an1x1 + an2x2 + · · · + annxn = an,n+1

INPUT number of unknowns and equations n; augmented matrix
A = [aij ], where 1  i  n and 1  j  n + 1.

OUTPUT solution x1, x2, . . . , xn or message that the linear system has
no unique solution.
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Chapter 6.1: Linear Systems of Equations

Algorithm 6.1: GAUSSIAN ELIMINATION WITH
BACKSUB
Step 1 For i = 1, . . . , n � 1 do Steps 2–4. (Elimination process.)

Step 2 Let p be the smallest integer with i  p  n and api 6= 0.
If no integer p can be found

then OUTPUT (‘no unique solution exists’); STOP.
Step 3 If p 6= i then perform (Ep) $ (Ei).
Step 4 For j = i + 1, . . . , n do Steps 5 and 6.

Step 5 Set mji = aji/aii .
Step 6 Perform (Ej � mjiEi) ! (Ej);

Step 7 If ann = 0 then OUTPUT (‘no unique solution exists’); STOP.
Step 8 Set xn = an,n+1/ann. (Start backward substitution.)

Step 9 For i = n � 1, . . . , 1 set xi =
h
ai,n+1 �

Pn
j=i+1 aijxj

i�
aii .

Step 10 OUTPUT (x1, . . . , xn); (Procedure completed successfully.)
STOP.
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Chapter 6.1: Linear Systems of Equations

Operation Counts
Both the amount of time required to complete calculations and the
subsequent round-off error depend on the number of floating-point
arithmetic operations needed to solve a routine problem.

Multiplications/divisions
The total number of multiplications and divisions in Algorithm 6.1

2n3 + 3n2 � 5n
6

+
n2 + n

2
=

n3

3
+ n2 � n

3
.

Additions/subtractions
The total number of additions and subtractions in Algorithm 6.1

n3 � n
3

+
n2 � n

2
=

n3

3
+

n2

2
� 5n

6
.
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Chapter 6.2: Pivoting Strategies

Partial Pivoting
The simplest strategy is to select an element in the same
column that is below the diagonal and has the largest absolute
value; specifically, we determine the smallest p � k such that

|a(k)
pk | = max

kin
|a(k)

ik |

and perform (Ek ) $ (Ep). In this case no interchange of
columns is used.
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Chapter 6.2: Pivoting Strategies

Algorithm 6.2: GAUSSIAN ELIMINATION WITH PARTIAL
PIVOTING
To solve the n ⇥ n linear system

E1 : a11x1 + a12x2 + · · · + a1nxn = a1,n+1

E2 : a21x1 + a22x2 + · · · + a2nxn = a2,n+1
...

...
En : an1x1 + an2x2 + · · · + annxn = an,n+1

INPUT number of unknowns and equations n; augmented matrix A = [aij ]
where 1  i  n and 1  j  n + 1.

OUTPUT solution x1, . . . , xn or message that the linear system has no unique
solution.

Step 1 For i = 1, . . . , n set NROW(i) = i . (Initialize row pointer.)
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Chapter 6.2: Pivoting Strategies

Algorithm 6.2: GAUSSIAN ELIMINATION WITH PARTIAL
PIVOTING
Step 2 For i = 1, . . . , n � 1 do Steps 3–6. (Elimination process.)

Step 3 Let p be the smallest integer with i  p  n and
|a(NROW(p), i)| = maxijn |a(NROW(j), i)|.
(Notation: a(NROW(i), j) ⌘ aNROW i ,j .)

Step 4 If a(NROW(p), i) = 0 then OUTPUT (‘no unique solution exists’);
STOP.

Step 5 If NROW(i) 6= NROW(p) then set NCOPY = NROW(i);
NROW(i) = NROW(p);
NROW(p) = NCOPY.

(Simulated row interchange.)
Step 6 For j = i + 1, . . . , n do Steps 7 and 8.

Step 7 Set m(NROW(j), i) = a(NROW(j), i)/a(NROW(i), i).
Step 8 Perform (ENROW (j) � m(NROW(j), i) · ENROW (i)) ! (ENROW (j)).

Step 9 If a(NROW(n), n) = 0 then OUTPUT (‘no unique solution exists’);
STOP.
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Chapter 6.2: Pivoting Strategies

Algorithm 6.2: GAUSSIAN ELIMINATION WITH PARTIAL
PIVOTING
Step 10 Set xn = a(NROW(n), n + 1)/a(NROW(n), n).

(Start backward substitution.)
Step 11 For i = n � 1, . . . , 1

set xi =
a(NROW(i), n + 1)�

Pn
j=i+1 a(NROW(i), j) · xj

a(NROW(i), i)
.

Step 12 OUTPUT (x1, . . . , xn); (Procedure completed successfully.)
STOP.
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Chapter 6.2: Pivoting Strategies

Algorithm 6.3: GAUSSIAN ELIMINATION WITH SCALED
PIVOTING
The only steps in this algorithm that differ from those of
Algorithm 6.2 are:

Step 1 For i = 1, . . . , n set si = max1jn |aij |;
if si = 0 then OUTPUT (‘no unique solution exists’);

STOP.
set NROW(i) = i .

Step 2 For i = 1, . . . , n � 1 do Steps 3–6. (Elimination process.)
Step 3 Let p be the smallest integer with i  p  n and

|a(NROW(p), i)|
s(NROW(p))

= maxijn
|a(NROW(j), i)|

s(NROW(j))
.
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Chapter 6.2: Pivoting Strategies

COMPLETE PIVOTING
Pivoting can incorporate interchange of both rows and columns.
Complete (or maximal) pivoting at the k th step searches all the
entries aij , for i = k , k + 1, . . . , n and j = k , k + 1, . . . , n, to find the
entry with the largest magnitude. Both row and column interchanges
are performed to bring this entry to the pivot position. The total
additional time required to incorporate complete pivoting into
Gaussian elimination is

nX

k=2

(k2 � 1) =
n(n � 1)(2n + 5)

6

comparisons. Complete pivoting is the strategy recommended only
for systems where accuracy is essential and the amount of execution
time needed for this method can be justified.
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Chapter 6.3: Linear Algebra and Matrix Inversion

Definition (6.2)
Two matrices A and B are equal if they have the same number of
rows and columns, say n ⇥ m, and if aij = bij , for each i = 1, 2, . . . , n
and j = 1, 2, . . . ,m.

Definition (6.3)
If A and B are both n ⇥ m matrices, then the sum of A and B,
denoted A + B, is the n ⇥ m matrix whose entries are aij + bij , for
each i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

Definition (6.4)
If A is an n ⇥ m matrix and � is a real number, then the scalar

multiplication of � and A, denoted �A, is the n ⇥ m matrix whose
entries are �aij , for each i = 1, 2, . . . , n and j = 1, 2, . . . ,m.
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Chapter 6.3: Linear Algebra and Matrix Inversion

We let O denote a matrix all of whose entries are 0.

Theorem (6.5)
Let A, B, and C be n ⇥ m matrices and � and µ be real numbers. The
following properties of addition and scalar multiplication hold:

(i) A + B = B + A, (ii) (A + B) + C = A + (B + C),

(iii) A + O = O + A = A, (iv) A + (�A) = �A + A = 0,

(v) �(A + B) = �A + �B, (vi) (�+ µ)A = �A + µA,

(vii) �(µA) = (�µ)A, (viii) 1A = A.

All these properties follow from similar results concerning the real
numbers.
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Chapter 6.3: Linear Algebra and Matrix Inversion

Definition (6.6)
Let A be an n ⇥ m matrix and b an m-dimensional column vector. The
matrix-vector product of A and b, denoted Ab, is an n-dimensional
column vector given by

Ab =

2

6664

a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

an1 an2 · · · anm

3

7775

2

6664

b1
b2
...

bm

3

7775
=

2

6664

Pm
i=1 a1i biPm
i=1 a2i bi

...Pm
i=1 anibi

3

7775
.

NOTE: For this product to be defined the number of columns of the
matrix A must match the number of rows of the vector b, and the
result is another column vector with the number of rows matching the
number of rows in the matrix.
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Chapter 6.3: Linear Algebra and Matrix Inversion

Definition (6.7)
Let A be an n ⇥ m matrix and B an m ⇥ p matrix. The matrix product of A
and B, denoted AB, is an n ⇥ p matrix C whose entries cij are

cij =
mX

k=1

aik bkj = ai1b1j + ai2b2j + · · ·+ aimbmj ,

for each i = 1, 2, . . . n, and j = 1, 2, . . . , p.

Theorem (6.8)
Let A be an n ⇥m matrix, B be an m ⇥ k matrix, C be a k ⇥ p matrix, D be an
m ⇥ k matrix, and � be a real number. The following properties hold:

(a) A(BC) = (AB)C;
(c) �(AB) = (�A)B = A(�B).

(b) A(B + D) = AB + AD;
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Chapter 6.3: Linear Algebra and Matrix Inversion

Definition (6.9)
(i) A square matrix has the same number of rows as columns.

(ii) A diagonal matrix D = [dij ] is a square matrix with dij = 0 whenever
i 6= j .

(iii) The identity matrix of order n, In = [�ij ], is a diagonal matrix whose
diagonal entries are all 1s. When the size of In is clear, this matrix is
generally written simply as I.

Definition (6.10)
An upper-triangular n ⇥ n matrix U = [uij ] has, for each j = 1, 2, . . . , n, the
entries

uij = 0, for each i = j + 1, j + 2, . . . , n;

and a lower-triangular matrix L = [lij ] has, for each j = 1, 2, . . . , n, the
entries

lij = 0, for each i = 1, 2, . . . , j � 1.
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Chapter 6.3: Linear Algebra and Matrix Inversion

Definition (6.11)
An n ⇥ n matrix A is said to be nonsingular (or invertible) if an n ⇥ n
matrix A�1 exists with AA�1 = A�1A = I. The matrix A�1 is called the
inverse of A. A matrix without an inverse is called singular (or
noninvertible).

Theorem (6.12)
For any nonsingular n ⇥ n matrix A:

(i) A�1 is unique.

(ii) A�1 is nonsingular and (A�1)�1 = A.

(iii) If B is also a nonsingular n ⇥ n matrix, then
(AB)�1 = B�1A�1.
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Chapter 6.3: Linear Algebra and Matrix Inversion

Definition (6.13)
The transpose of an n ⇥ m matrix A = [aij ] is the m ⇥ n matrix
At = [aji ], where for each i , the i th column of At is the same as the
i th row of A. A square matrix A is called symmetric if A = At .

Theorem (6.14)
The following operations involving the transpose of a matrix hold
whenever the operation is possible:

(i) (At)t = A,

(ii) (A + B)t = At + Bt ,

(iii) (AB)t = BtAt ,

(iv) if A�1 exists, then
(A�1)t = (At)�1.
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Chapter 6.4: The Determinant of a Matrix

Definition (6.15)
Suppose that A is a square matrix.

(i) If A = [a] is a 1 ⇥ 1 matrix, then det A = a.

(ii) If A is an n ⇥ n matrix, with n > 1 the minor Mij is the determinant of the
(n � 1)⇥ (n � 1) submatrix of A obtained by deleting the i th row and j th
column of the matrix A.

(iii) The cofactor Aij associated with Mij is defined by Aij = (�1)i+jMij .

(iv) The determinant of the n ⇥ n matrix A, when n > 1, is given either by

det A =
nX

j=1

aijAij =
nX

j=1

(�1)i+j aijMij , for any i = 1, 2, . . . , n,

or by

det A =
nX

i=1

aijAij =
nX

i=1

(�1)i+j aijMij , for any j = 1, 2, . . . , n.
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Chapter 6.4: The Determinant of a Matrix

Theorem (6.16)
Suppose A is an n ⇥ n matrix:

(i) If any row or column of A has only zero entries, then det A = 0.

(ii) If A has two rows or two columns the same, then det A = 0.

(iii) If Ã is obtained from A by the operation (Ei) $ (Ej), with i 6= j , then
det Ã = � det A.

(iv) If Ã is obtained from A by the operation (�Ei) ! (Ei), then
det Ã = � det A.

(v) If Ã is obtained from A by the operation (Ei + �Ej) ! (Ei) with i 6= j ,
then det Ã = det A.

(vi) If B is also an n ⇥ n matrix, then det AB = det A det B.

(vii) det At = det A.

(viii) When A�1 exists, det A�1 = (det A)�1.

(ix) If A is an upper triangular, lower triangular, or diagonal matrix, then
det A =

Qn
i=1 aii .
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Chapter 6.4: The Determinant of a Matrix

Theorem (6.17)
The following statements are equivalent for any n ⇥ n matrix A:

(i) The equation Ax = 000 has the unique solution x = 000.

(ii) The system Ax = b has a unique solution for any n-dimensional
column vector b.

(iii) The matrix A is nonsingular; that is, A�1 exists.

(iv) det A 6= 0.

(v) Gaussian elimination with row interchanges can be performed
on the system Ax = b for any n-dimensional column vector b.

Corollary (6.18)
Suppose that A and B are both n ⇥ n matrices with either AB = I or
BA = I. Then B = A�1 (and A = B�1).
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Chapter 6.5: Matrix Factorization

Theorem (6.19)
If Gaussian elimination can be performed on the linear system
Ax = b without row interchanges, then the matrix A can be factored
into the product of a lower-triangular matrix L and an upper-triangular
matrix U, that is, A = LU, where mji = a(i)

ji /a(i)
ii ,

U =

2

666664

a(1)
11 a(1)

12 a(1)
1n

0 a(2)
22

a(n�1)
n�1,n

0 0 a(n)
nn

3

777775
, and L =

2

664

1 0 0
m21 1

0
mn1 mn,n�1 1

3

775 .
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Chapter 6.5: Matrix Factorization

Algorithm 6.4: LU FACTORIZATION
To factor the n ⇥ n matrix A = [aij ] into the product of the
lower-triangular matrix L = [lij ] and the upper-triangular matrix
U = [uij ]; that is, A = LU, where the main diagonal of either L or U
consists of all ones:

INPUT dimension n; the entries aij , 1  i , j  n of A; the diagonal
l11 = · · · = lnn = 1 of L or the diagonal u11 = · · · = unn = 1 of U.

OUTPUT the entries lij , 1  j  i , 1  i  n of L and the entries, uij ,
i  j  n, 1  i  n of U.

Step 1 Select l11 and u11 satisfying l11u11 = a11.
If l11u11 = 0 then OUTPUT (‘Factorization impossible’);

STOP.
Step 2 For j = 2, . . . , n set u1j = a1j/l11; (First row of U.)

lj1 = aj1/u11. (First column of L.)
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Chapter 6.5: TMatrix Factorization

Algorithm 6.4: LU FACTORIZATION
Step 3 For i = 2, . . . , n � 1 do Steps 4 and 5.

Step 4 Select lii and uii satisfying lii uii = aii �
Pi�1

k=1 lik uki .
If lii uii = 0 then OUTPUT (‘Factorization impossible’);

STOP.
Step 5 For j = i + 1, . . . , n

set uij =
1
lii

h
aij �

Pi�1
k=1 lik ukj

i
; (i th row of U.)

lji = 1
uii

h
aji �

Pi�1
k=1 ljk uki

i
. (i th column of L.)

Step 6 Select lnn and unn satisfying lnnunn = ann �
Pn�1

k=1 lnk ukn.
(Note: If lnnunn = 0, then A = LU but A is singular.)

Step 7 OUTPUT (lij for j = 1, . . . , i and i = 1, . . . , n);
OUTPUT (uij for j = i , . . . , n and i = 1, . . . , n);
STOP.
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Chapter 6.5: Matrix Factorization

Permutation matrix
An n ⇥ n permutation matrix P = [pij ] is a matrix obtained by
rearranging the rows of In, the identity matrix. This gives a
matrix with precisely one nonzero entry in each row and in
each column, and each nonzero entry is a 1.

NOTE: Any nonsingular matrix A can be factored into
A = PtLU.
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Chapter 6.6: Special Types of Matrices

Definition (6.20)
The n ⇥ n matrix A is said to be diagonally dominant when

|aii | �
nX

j=1,
j 6=i

|aij | holds for each i = 1, 2, . . . , n.

A diagonally dominant matrix is said to be strictly diagonally

dominant when the inequality in (6.10) is strict for each n, that is,
when

|aii | >
nX

j=1,
j 6=i

|aij | holds for each i = 1, 2, . . . , n.
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Chapter 6.6: Special Types of Matrices

Theorem (6.21)
A strictly diagonally dominant matrix A is nonsingular.
Moreover, in this case, Gaussian elimination can be performed
on any linear system of the form Ax = b to obtain its unique
solution without row or column interchanges, and the
computations will be stable with respect to the growth of
round-off errors.

Definition (6.22)
A matrix A is positive definite if it is symmetric and if x

tAx > 0
for every n-dimensional vector x 6= 0.
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Chapter 6.6: Special Types of Matrices

Theorem (6.23)
If A is an n ⇥ n positive definite matrix, then

(i) A has an inverse; (ii) aii > 0, for each i = 1, 2, . . . , n;

(iii) max1k,jn |akj | 
max1in |aii |;

(iv) (aij)2 < aiiajj , for each i 6= j .

Definition (6.24)
A leading principal submatrix of a matrix A is a matrix of the form

Ak =

2

6664

a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk

3

7775
,

for some 1  k  n.
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Chapter 6.6: Special Types of Matrices

Theorem (6.25)
A symmetric matrix A is positive definite if and only if each of its
leading principal submatrices has a positive determinant.

Theorem (6.26)
The symmetric matrix A is positive definite if and only if
Gaussian elimination without row interchanges can be
performed on the linear system Ax = b with all pivot elements
positive. Moreover, in this case, the computations are stable
with respect to the growth of round-off errors.
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Chapter 6.6: Special Types of Matrices

Corollary (6.27)
The matrix A is positive definite if and only if A can be factored
in the form LDLt , where L is lower triangular with 1s on its
diagonal and D is a diagonal matrix with positive diagonal
entries.

Corollary (6.28)
The matrix A is positive definite if and only if A can be factored
in the form LLt , where L is lower triangular with nonzero
diagonal entries.
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Chapter 6.6: Special Types of Matrices

Algorithm 6.5: LDLt FACTORIZATION
To factor the positive definite n ⇥ n matrix A into the form LDLt , where
L is a lower triangular matrix with 1s along the diagonal and D is a
diagonal matrix with positive entries on the diagonal:

INPUT the dimension n; entries aij , for 1  i , j  n of A.

OUTPUT the entries lij , for 1  j < i and 1  i  n of L, and di , for
1  i  n of D.

Step 1 For i = 1, . . . , n do Steps 2–4.
Step 2 For j = 1, . . . , i � 1, set vj = lij dj .
Step 3 Set di = aii �

Pi�1
j=1 lij vj .

Step 4 For j = i + 1, . . . , n set lji = (aji �
Pi�1

k=1 ljk vk )/di .
Step 5 OUTPUT (lij for j = 1, . . . , i � 1 and i = 1, . . . , n);

OUTPUT (di for i = 1, . . . , n);
STOP.
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Chapter 6.6: Special Types of Matrices

Corollary (6.29)
Let A be a symmetric n ⇥ n matrix for which Gaussian
elimination can be applied without row interchanges. Then A
can be factored into LDLt , where L is lower triangular with 1s on
its diagonal and D is the diagonal matrix with a(1)

11 , . . . , a
(n)
nn on

its diagonal.
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Chapter 6.6: Special Types of Matrices

Algorithm 6.6: CHOLESKY FACTORIZATION
To factor the positive definite n ⇥ n matrix A into LLt , where L is lower
triangular:

INPUT the dimension n; entries aij , for 1  i , j  n of A.

OUTPUT the entries lij , for 1  j  i and 1  i  n of L. (The entries of
U = Lt are uij = lji , for i  j  n and 1  i  n.)

Step 1 Set l11 =
p

a11.
Step 2 For j = 2, . . . , n, set lj1 = aj1/l11.
Step 3 For i = 2, . . . , n � 1 do Steps 4 and 5.

Step 4 Set lii =
⇣

aii �
Pi�1

k=1 l2
ik

⌘1/2
.

Step 5 For j = i + 1, . . . , n set lji =
⇣

aji �
Pi�1

k=1 ljk lik
⌘
/lii .

Step 6 Set lnn =
⇣

ann �
Pn�1

k=1 l2
nk

⌘1/2
.

Step 7 OUTPUT (lij for j = 1, . . . , i and i = 1, . . . , n);
STOP.
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Definition (6.30)
An n ⇥ n matrix is called a band matrix if integers p and q, with 1 < p,
q < n, exist with the property that aij = 0 whenever p  j � i or q  i � j . The
band width of a band matrix is defined as w = p + q � 1.

Matrices of bandwidth 3 occurring when p = q = 2 are called tridiagonal

because they have the form

A =

2

66666666666664

a11 a12 0 · · · · · · 0

a21 a22 a23
. . . · · ·

...

0 a32 a33 a34
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . an�1,n

0 · · · · · · 0 an,n�1 ann

3

77777777777775

.
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Algorithm 6.7: CROUT FACTORIZATION TRI DIAG
To solve the n ⇥ n linear system

E1 : a11x1 + a12x2 = a1,n+1,
E2 : a21x1 + a22x2 + a23x3 = a2,n+1,
...

...
...

En�1 : an�1,n�2xn�2 + an�1,n�1xn�1 + an�1,nxn = an�1,n+1,
En : an,n�1xn�1 + annxn = an,n+1,

which is assumed to have a unique solution:
INPUT the dimension n; the entries of A.
OUTPUT the solution x1, . . . , xn.

(Steps 1–3 set up and solve Lz = b.)
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Algorithm 6.7: CROUT FACTORIZATION TRI DIAG
Step 1 Set l11 = a11;

u12 = a12/l11;
z1 = a1,n+1/l11.

Step 2 For i = 2, . . . , n � 1 set li,i�1 = ai,i�1; (i th row of L.)
lii = aii � li,i�1ui�1,i ;
ui,i+1 = ai,i+1/lii ; ((i + 1)th column of U.)
zi = (ai,n+1 � li,i�1zi�1)/lii .

Step 3 Set ln,n�1 = an,n�1; (nth row of L.)
lnn = ann � ln,n�1un�1,n.
zn = (an,n+1 � ln,n�1zn�1)/lnn.

(Steps 4 and 5 solve Ux = z.)
Step 4 Set xn = zn.
Step 5 For i = n � 1, . . . , 1 set xi = zi � ui,i+1xi+1.
Step 6 OUTPUT (x1, . . . , xn);

STOP.
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Theorem (6.31)
Suppose that A = [aij ] is tridiagonal with ai,i�1ai,i+1 6= 0, for
each i = 2, 3, . . . , n � 1. If |a11| > |a12|, |aii | � |ai,i�1|+ |ai,i+1|,
for each i = 2, 3, . . . , n � 1, and |ann| > |an,n�1|, then A is
nonsingular and the values of lii described in the Crout
Factorization Algorithm are nonzero for each i = 1, 2, . . . , n.
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