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Chapter 6.1: Direct Methods For Solving Lineg

)

Ei: anxi+ aixa+ -+ ainxn = by,
Eo: axiXxqi+ a@xoXo+ -+ anXn = bo,

En: amxy+ amXe + -+ -+ annXn = bn.

is a linear system with given constants ag;, foreach /,j =1,2,...,n, and b;,
foreachi=1,2,...,n, and we need to determine the unknowns xi, ..., Xx.

1. Equation E; can be multiplied by any nonzero constant \ with the
resulting equation used in place of E;. This operation is denoted
()\E/) — (E,)

2. [Equation E; can be multiplied by any constant A and added to equation
E; with the resulting equation used in place of E;. This operation is
denoted (E; + A\Ej) — (Ei).

3. Equations E; and E; can be transposed in order. This operation is
denoted (E;) + (E)).

v
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Chapter 6.1: Direct Methods For Solving Lineg

)}

Definition (6.1)

An n x m (n by m) matrix is a rectangular array of elements
with n rows and m columns in which not only is the value of an
element important, but also its position in the array.

The notation for an n x m matrix will be a capital letter such as
A for the matrix and lowercase letters with double subscripts,
such as aj;, to refer to the entry at the intersection of the /th row
and jth column; that is,

a1 a2 - dim
dp1 do2 -+ dom
A= [a,-j] —
. dm dn2 - dnm _

v
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Chapter 6.1: Direct Methods For Solving Lineg
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An n x (n+ 1) matrix can be used to represent the linear system
ai1X1 + aieXo + -+ aipnXn = by,
ap1Xy + @pXo + - -+ @nXn = by,
amX1 + mXo + -+ + nnXn = bl’h
by constructing the augmented matrix
(a1 a2 -+ an b1 |
a1 @z -+ ap b
[Av b] —
_an1 dn2 '+ dpn bn_
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Chapter 6.1: Linear Systems of Equations

Gaussian elimination with backward substitution

Through a sequential procedure for i = 2,3,...,n — 1 we perform the
operation

(Ej — (@ji/ai)Ei) — (Ej) foreachj=i+1,i+2,...,n,

provided a; # 0. This eliminates (changes the coefficient to zero) x; in each

row below the ith for all values of i = 1,2,...,n— 1. The resulting matrix has
the form:
a1 @2 - @in @it |
= 0 dop -+ dop as nt1
A= :
| 0 0 ann dn,n+1 |

where, except in the first row, the values of a; are not expected to agree with

those in the original matrix A = [A, b]. The matrix A represents a linear
system with the same solution set as the original system .

y
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Chapter 6.1: Linear Systems of Equations

To solve the n x nlinear system

Ei: aiixi + apXxe + - 4+ ainXn = &1 n+
Eo: amXxi + awXe + -+ 4+  @npXn = anii
En: amxi + amXe + -+ +  @wmXn = annit

INPUT number of unknowns and equations n; augmented matrix
A=agj],where1 <i<nand1<;<n+1.

OUTPUT solution x4, xo, . .., X, or message that the linear system has
no unique solution.

v
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Chapter 6.1: Linear Systems of Equations

Step1 Fori=1,...,n—1do Steps 2-4. (Elimination process.)
Step 2 Let p be the smallest integer with / < p < nand a,; # 0.
If no integer p can be found
then OUTPUT (‘no unique solution exists’); STOP.
Step 3 If p # i then perform (Ep) < (E;).
Step4 Forj=i+1,...,ndo Steps 5 and 6.
Step 5 Set mj — a,-,-/a,-,-.
Step 6 Perform (E; — m;E;) — (E));
Step 7 If a,, = 0 then OUTPUT (‘no unique solution exists’); STOP.
Step 8 Set x, = annt1/ann.  (Start backward substitution.)

Step9Fori=n—1,...,1setx; = |ain1 —Z}LH a,-,-x,} /a,-,-.

Step 10 OUTPUT (x4, ..., xn); (Procedure completed successfully.)
STOP.

v
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Chapter 6.1: Linear Systems of Equations \y\
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Operation Counts

Both the amount of time required to complete calculations and the
subsequent round-off error depend on the number of floating-point
arithmetic operations needed to solve a routine problem.

Multiplications/divisions
The total number of multiplications and divisions in Algorithm 6.1

2P +3n"—-5n nP+n n® 5, n
= — +n ——.
6 2 3 3

Additions/subtractions

The total number of additions and subtractions in Algorithm 6.1

+ 5

nP-n nP—-n n
3

B n  5n
3 2 2
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Chapter 6.2: Pivoting Strategies

Partial Pivoting

The simplest strategy is to select an element in the same
column that is below the diagonal and has the largest absolute
value; specifically, we determine the smallest p > k such that

(k) (k)
a;,’'| = max |a
2k | kﬁién’ |

and perform (Ex) <+ (Ep). In this case no interchange of
columns is used.
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Chapter 6.2: Pivoting Strategies

To solve the n x nlinear system

Ei: anxs + apxe + - 4+ @nXn = ant
E>x: axxi 4+ awXxXo + -+ 4+  anXn = a2ntf
E,: an X - ano Xo + 060 + AnnXn — an,n+1

INPUT number of unknowns and equations n; augmented matrix A = [aj]
where1 <i<nand1<j<n+1.

OUTPUT solution xy, ..., X, or message that the linear system has no unique
solution.

Step1 Fori=1,...,nset NROW(i) =i. (Initialize row pointer.)

y
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Chapter 6.2: Pivoting Strategies

Step2Fori=1,...,n—1do Steps 3—6. (Elimination process.)
Step 3 Let p be the smallest integer with i < p < nand
a(NROW(p), i)| = max;<j<, |a(NROW(j), i)|.
(Notation: a(NROW(i), j) = anrow, j-)
Step 4 If a(NROW(p), i) = 0 then OUTPUT (‘no unique solution exists’);
STOP.
Step 5 If NROW(i) # NROW(p) then set NCOPY = NROW(i);
NROW(i) = NROW(p);
NROW(p) = NCOPY.
(Simulated row interchange.)
Step6 Forj=i+1,...,ndo Steps 7 and 8.
Step 7 Set m(NROW(j), i) = a(NROW(j), i) /a(NROW(i), i).
Step 8 Perform (ENF?OW(j) — m(NFx’OW(;), I) . ENROW(/)) — (ENF?OW(j))
Step 9 If a(NROW(n), n) = 0 then OUTPUT (‘no unique solution exists’);
STOP.

v




Chapter 6.2: Pivoting Strategies

Step 10 Set x, = a(NROW(n),n+ 1)/a(NROW(n), n).
(Start backward substitution.)
Step11 Fori=n—1,...,1
a(NROW(i),n+ 1) — Zj'.’:,.+1 a(NROW(i),j) - X;
a(NROW(i), i) '
Step 12 OUTPUT (x1,...,Xxn); (Procedure completed successfully.)
STOP.

set x; =
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Chapter 6.2: Pivoting Strategies

The only steps in this algorithm that differ from those of
Algorithm 6.2 are:

Step 1 Fori=1,...,nsets; =maxi<j<n|ajl;
if s; = 0 then OUTPUT (‘no unique solution exists’);
STOP.

set NROW(i) = I.
Step2Fori=1,...,n—1do Steps 3—6. (Elimination process.)
Step 3 Let p be the smallest integer with / < p < n and
a(NROW(p). )|~ |a(NROW()), )
s(NROW(p)) ~—  ~'=" s(NROW())) °
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Chapter 6.2: Pivoting Strategies

COMPLETE PIVOTING

Pivoting can incorporate interchange of both rows and columns.
Complete (or maximal) pivoting at the kth step searches all the
entries g, fori =k, k+1,...,nandj =k, k+1,...,n, to find the
entry with the largest magnitude. Both row and column interchanges
are performed to bring this entry to the pivot position. The total
additional time required to incorporate complete pivoting into
Gaussian elimination is

~ 2 4 _ n(n—1)(2n+5)
;(k 1) s

comparisons. Complete pivoting is the strategy recommended only
for systems where accuracy is essential and the amount of execution
time needed for this method can be justified.

v
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Chapter 6.3: Linear Algebra and Matrix Invers; 3\
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Definition (6.2)

Two matrices A and B are equal if they have the same number of
rows and columns, say n x m, and if a; = b;, foreach /i =1,2,...,n
andj=1,2,...,m.

Definition (6.3)

If Aand B are both n x m matrices, then the sum of A and B,
denoted A + B, is the n x m matrix whose entries are a;; + bj;, for
eachi=1,2,...,nandj=1,2,...,m.

Definition (6.4)

If Ais an n x m matrix and X is a real number, then the scalar
multiplication of A and A, denoted \A, is the n x m matrix whose
entries are \g;, foreachi=1,2,...,nandj=1,2,...,m.

| Numerical Analysis 10E
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Chapter 6.3: Linear Algebra and Matrix Inversgs
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We let O denote a matrix all of whose entries are 0.

Theorem (6.5)

Let A, B, and C be n x m matrices and \ and . be real numbers. The
following properties of addition and scalar multiplication hold:

(i) A+B=B+A, (i) (A+B)+C=A+(B+0),
(i) A+O=0+A=A (iv) A+ (-A)=-A+A=0,
(V) MA+B)=\A+)AB, (Vi) (A +p)A=NA+ uA,

(Vi) A(pA) = A, (viii) 1A= A.

All these properties follow from similar results concerning the real
numbers.

| Numerical Analysis 10E
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Chapter 6.3: Linear Algebra and Matrix Inversgs

Definition (6.6)

Let A be an n x m matrix and b an m-dimensional column vector. The
matrix-vector product of A and b, denoted Ab, is an n-dimensional
column vector given by

p— — p— — p— m —
ay a2 - am| | b 2_j—1 a1ibj
m
a1 dp - am| | b i @2ibi
Ab = | . . | = .
| dnt dnp2 ' dnm] _bm_ _27;1 anj bi_

NOTE: For this product to be defined the number of columns of the
matrix A must match the number of rows of the vector b, and the
result is another column vector with the number of rows matching the
number of rows in the matrix.
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Chapter 6.3: Linear Algebra and Matrix Invers; 3\
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Definition (6.7)

Let Abe an n x m matrix and B an m x p matrix. The matrix product of A
and B, denoted AB, is an n x p matrix C whose entries c¢; are

m
Cij = Z aikbkj = ainbij + aipboj + - - - + Aimbmj,
k=1

foreachi=1,2,...n,andj=1,2,...,p.

Theorem (6.8)

Let A be an n x m matrix, B be an m x k matrix, C be a k x p matrix, D be an
m x k matrix, and A be a real number. The following properties hold:

(a) A(BC) = (AB)C; (b) A(B+ D)= AB+ AD;
(€) A(AB) = (\A)B = A(\B).

| Numerical Analysis 10E




Chapter 6.3: Linear Algebra and Matrix Inversj

Definition (6.9)
(1) A square matrix has the same number of rows as columns.
(i) A diagonal matrix D = [dj] is a square matrix with d; = 0 whenever
I # J.
(iii) The identity matrix of order n, I, = [0;], is a diagonal matrix whose
diagonal entries are all 1s. When the size of /, is clear, this matrix is

N

)

)

generally written simply as /. ]
Definition (6.10)
An upper-triangular n x n matrix U = [u;] has, foreachj=1,2,... n, the
entries
ui=0, foreachi=j+1,j+2,...,n;
and a lower-triangular matrix L = [/;] has, foreachj=1,2,...,n, the
entries

lj =0, foreachi=1,2,...,j—1.

o
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Chapter 6.3: Linear Algebra and Matrix Invers; ’y
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Definition (6.11)

An n x n matrix A is said to be nonsingular (or invertible) if an n x n
matrix A~ exists with AA~' = A=A = |. The matrix A~ is called the
inverse of A. A matrix without an inverse is called singular (or
noninvertible).

Theorem (6.12)

For any nonsingular n x n matrix A:
(i) A~ is unique.
(ii) A~ is nonsingular and (A=1)~1 = A.

(iii) /f B is also a nonsingular n x n matrix, then
(AB)~1' =B 1A, []

| Numerical Analysis 10E




Chapter 6.3: Linear Algebra and Matrix Inversj

Definition (6.13)

The transpose of an n x m matrix A = [a;] is the m x n matrix
A! = [a;], where for each i, the ith column of A’ is the same as the
ith row of A. A square matrix A is called symmetric if A = A’

Theorem (6.14)

The following operations involving the transpose of a matrix hold
whenever the operation is possible:

(i) (ADf = A, (i) (AB)! = BIA,

. . _1 .
i) (A+B) = A+ B! (iv) ifA~" exists, then
( ) ( ) (A—1)t _ (At)_1,

| Numerical Analysis 10E




Chapter 6.4: The Determinant of a Matrix fw)\
Z
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Z

Definition (6.15)
Suppose that A is a square matrix.
(i) IfA=][alisa1 x 1 matrix, then detA = a.

(if) If Ais an n x n matrix, with n > 1 the minor Mj is the determinant of the
(n—1) x (n— 1) submatrix of A obtained by deleting the ith row and jth
column of the matrix A.

(iii) The cofactor A; associated with M; is defined by A; = (—1)"M;.
(iv) The determinant of the n x n matrix A, when n > 1, is given either by

n n
detA=> ajA;=> (-1)"aM;, foranyi=1,2,....n,
j=1 j=1

or by

n n
detA=) ajA;=> (—1)"a;M;, foranyj=1,2,...,n

=1 =1

v
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Chapter 6.4: The Determinant of a Matrix (w)\
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Z

Theorem (6.16)

Suppose A is an n x n matrix:
(1) Ifany row or column of A has only zero entries, then det A = 0.
(1) If A has two rows or two columns the same, then det A = 0.
(i) If Z\Nis obtained from A by the operation (E;) < (E;), with i # j, then

detA = —det A.
(iv) If A is obtained from A by the operation (\E;) — (E;), then
det A = \det A.

(v) IfAis obtained from A by the operation (E; + \Ej) — (E;) with i # ],
then det A = det A.

(vi) IfBis also an n x n matrix, then det AB = det Adet B.
(vii) detA' = det A.
(viii) When A~" exists, detA~' = (det A)~".

(ix) If A is an upper triangular, lower triangular, or diagonal matrix, then
det A = H7:1 daijj.




Chapter 6.4: The Determinant of a Matrix ﬂ»\
)
Theorem (6.17)

The following statements are equivalent for any n x n matrix A:
(1) The equation Ax = 0 has the unique solution x = 0.

(i) The system Ax = b has a unique solution for any n-dimensional
column vector b.

(iiif)y The matrix A is nonsingular; that is, A~ exists.
(iv) det A+ 0.

(v) Gaussian elimination with row interchanges can be performed
on the system Ax = b for any n-dimensional column vectorb.

y

Corollary (6.18)

Suppose that A and B are both n x n matrices with either AB = | or
BA=1 ThenB=A"" (andA=B").

v
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Chapter 6.5: Matrix Factorization fy
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Theorem (6.19)

If Gaussian elimination can be performed on the linear system
Ax = b without row interchanges, then the matrix A can be factored
into the product of a lower-triangular matrix L and an upper-triangular

matrix U, that is, A= LU, where m; = 3,('/) /ath

i’

[ (1) (1) 1 i
dyy  djp agn) C 10 0"
0 3(2)
U= 22 candL = | M2 1
(n—1)
an—1,n Mpq m 11
0 0 &P | . e -
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Chapter 6.5: Matrix Factorization

To factor the n x n matrix A = [a;] into the product of the
lower-triangular matrix L = [/;] and the upper-triangular matrix

U = [u;]; that is, A = LU, where the main diagonal of either L or U
consists of all ones:

INPUT dimension n; the entries a;, 1 < i,j < n of A; the diagonal
li1 =--- =l =1 0of L orthe diagonal uy1 =--- = up, = 1 of U.

OUTPUT the entries [, 1 <j < i, 1 <i < nof L and the entries, uj,
I<j<n1<i<nofU.

Step 1 Select l11 and uq1 satisfying li1ui1 = aqq.
If 11u11 = 0 then OUTPUT (‘Factorization impossible’);
STOP.
Step2 Forj=2,...,nset uy; = ayj/lh1; (Firstrowof U.)
i1 = aj1/ur1.  (First column of L.)

v
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Chapter 6.5: TMatrix Factorization

Step3Fori=2,...,n—1 do Steps 4 and 5.
Step 4 Select /,',' and Ui satisfying /,','U,',' = dajj — ;(_:11 lik Uk;.
If [;u; = 0 then OUTPUT (‘Factorization impossible’);
STOP.
StepS5Forj=i+1,...,n

set uj = 1 |aj — i /,-kuk,-i; (ith row of U.)

/j_i

1S (ith column of L.)

i—1
8ji — > 1 likUki|-

Step 6 Select I, and un, satistying lhaUnn = ann — Z;} ok Ukn.-

(Note: If I,nun, = 0, then A = LU but A is singular.)

Step 7 OUTPUT ([ forj=1,....iandi=1,...,n);
OUTPUT (ujforj=1i,...,nandi=1,..., n);
STOP.
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Chapter 6.5: Matrix Factorization Kw\
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Permutation matrix

An n x n permutation matrix P = [p;] is a matrix obtained by
rearranging the rows of /,, the identity matrix. This gives a
matrix with precisely one nonzero entry in each row and in
each column, and each nonzero entry is a 1.

NOTE: Any nonsingular matrix A can be factored into
A= PILU. )

| Numerical Analysis 10E



Chapter 6.6: Special Types of Matrices ﬂ\
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Definition (6.20)

The n x nmatrix A is said to be diagonally dominant when

n
ai| > "|ay| holds foreachi=1,2,...n.
=1,
J#I

A diagonally dominant matrix is said to be strictly diagonally
dominant when the inequality in (6.10) is strict for each n, that is,
when

n
aij| > |a;| holds foreachi=1,2,....n.

J=1,
7
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Chapter 6.6: Special Types of Matrices ﬂ\
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Theorem (6.21)

A strictly diagonally dominant matrix A is nonsingular.
Moreover, in this case, Gaussian elimination can be performed
on any linear system of the form Ax = b to obtain its unique
solution without row or column interchanges, and the
computations will be stable with respect to the growth of
round-off errors.

Definition (6.22)

A matrix A is positive definite if it is symmetric and if x!Ax > 0
for every n-dimensional vector x # 0.

| Numerical Analysis 10E



Chapter 6.6: Special Types of Matrices ﬁ\

Theorem (6.23)

If A is an n x n positive definite matrix, then
(1) A has an inverse; () a; >0, foreachi=1,2,...,n,

(iii) maxi<xj<nla| < (iv) (aj)? < ajaj, foreachi +# j.
maxi<j<n | i,

Definition (6.24)

A leading principal submatrix of a matrix A is a matrix of the form

air a2 - Ak
do1 d22 - A2k
Ay = . L . :
| 8k1 @k2 - 8kk

forsome 1 < k < n.

4
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Chapter 6.6: Special Types of Matrices

Theorem (6.25)

A symmetric matrix A is positive definite if and only if each of its
leading principal submatrices has a positive determinant.

o

Theorem (6.26)

The symmetric matrix A is positive definite if and only if
Gaussian elimination without row interchanges can be
performed on the linear system Ax = b with all pivot elements
positive. Moreover, in this case, the computations are stable
with respect to the growth of round-off errors.

| Numerical Analysis 10E



Chapter 6.6: Special Types of Matrices

Corollary (6.27)

The matrix A is positive definite if and only if A can be factored
in the form LDL!, where L is lower triangular with 1s on its
diagonal and D is a diagonal matrix with positive diagonal
entries.

Corollary (6.28)

The matrix A is positive definite if and only if A can be factored
in the form LLt, where L is lower triangular with nonzero
diagonal entries.

| Numerical Analysis 10E



Chapter 6.6: Special Types of Matrices

To factor the positive definite n x n matrix A into the form LDL!, where
L is a lower triangular matrix with 1s along the diagonal and D is a
diagonal matrix with positive entries on the diagonal:

INPUT the dimension n; entries aj;, for 1 </, j < nof A.

OUTPUT the entries /j, for 1 <j<iand 1 </ < nof L, and d, for
1 <i<nofD.

Step 1 For /i = 1,...,ndo Steps 2—4.
Step2Forj=1,...,i—1 setvj:/,-jdj.
Step 3 Set d; = a;j — Z’ ' iV,
Step4 Forj=i+1,. nset I,_(a,,— k 1 likvi)/a.
Step 5 OUTPUT (/; for j = 1, d—1andi=1,...,n);
OUTPUT (d; fori=1,...,n);
STOP.

v
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Chapter 6.6: Special Types of Matrices

Corollary (6.29)

Let A be a symmetric n x n matrix for which Gaussian
elimination can be applied without row interchanges. Then A
can be factored into LDL!, where L is lower triangular with 1s on

its diagonal and D is the diagonal matrix with a\\). ... a}) on
its diagonal.

| Numerical Analysis 10E



Chapter 6.6: Special Types of Matrices ﬂ\
/ 3

To factor the positive definite n x n matrix A into LL', where L is lower
triangular:

INPUT the dimension n; entries ag;, for 1 </, j < nof A.
OUTPUT the entries [, for1 <j <jand 1 < i< nof L. (The entries of
U=Lareuj=ljfori<j<nandi1<i<n.)

Step1 Set /11 = \/aii.
Step2Forj=2,...,n,setly = a1 /hi.
Step3Fori=2,...,n—1do Steps 4 and 5.

. 1/2
Step 4 Set [; = (él// — ;(_:11 /,i) )
Step 5 FOI’j =i+ 1, ..., Nn set /j,' = (aj,- — ;(_:11 Ijklik) //,','.
n—1 2 1/2
Step 6 Set /nn — (ann — k—1 lnk) .

Step 7 OUTPUT (fjforj=1,...;iandi=1,...,n);
STOP.

| Numerical Analysis 10




Chapter 6.6: Special Types of Matrices ﬂ\
/3

Definition (6.30)

An n x n matrix is called a band matrix if integers p and g, with 1 < p,
g < n, exist with the property that a; = 0 wheneverp <j—ijorg <i—j. The
band width of a band matrix is definedas w =p+ g — 1.

o

Matrices of bandwidth 3 occurring when p = g = 2 are called tridiagonal
because they have the form

ai1 aio 0 .. .. 0 7]
do1  dop dos
0 d3> dzz Ads4

0

an—1,n
| 0 c. c. 0 an.n—1 ann

y
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Chapter 6.6: Special Types of Matrices

To solve the n x nlinear system

Ey : ai Xy +  apxo = ant,
Es : a1Xy + axXo +  axnXs = 8o,
En_q: an—1,n-2Xn—2 + ap-1n-1Xn—1 T+ an-1nXn = an-1,n+1;
En: an,n—1Xn—1 +  a@nnXn = dapn+1,

which is assumed to have a unique solution:
INPUT the dimension n; the entries of A.
OUTPUT the solution x4, ..., Xp.

(Steps 1-3 set up and solve Lz = b.)

| Numerical Analysis 10E



Chapter 6.6: Special Types of Matrices

Step 1 Set 11 = ajq;
Uiz = aiz/hi;
Zy = at n+1/h1.
Step2Fori=2,...,n—1set ;1 =ajj—1; (ithrowof L.)
li = ai — lii—1Ui-1i;
Uiiv1 = aiiv1/li; ((I + 1)th column of U.)
zi = (@int1 — lii—12i—1)/li.
Step 3 Set I n—1 = a@nn—1; (nth row of L.)
Inn = ann — n,n—1Un—1 n.
Zn = (@n,nt1 — In.n—12n—1)/Inn.
(Steps 4 and 5 solve Ux = z.)
Step 4 Set x, = zj.

StepdFori=n—1,...,1setx; =2z — Ujjt1Xi41.
Step 6 OUTPUT (x1, ..., Xn);
STOP.
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Chapter 6.6: Special Types of Matrices

Theorem (6.31)

Suppose that A = |a;] is tridiagonal with a; j_1aj j+1 # 0, for
eachi=2,3,...,n—1. If|a11| > |ai2|, |ai| > |aii-1| + |@ii+1],
foreachi=2,3,...,n—1, and |ann| > |@nn-1|, then A s
nonsingular and the values of |;; described in the Crout
Factorization Algorithm are nonzero foreachi =1,2,...,n.
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