Numerical Analysis

10th ed

R L Burden, J D Faires, and A M Burden

Beamer Presentation Slides Prepared by Dr. Annette M. Burden Youngstown State University

September 7, 2015

Definition (7.1)

A vector norm on \mathbb{R}^n is a function, $\|\cdot\|$, from \mathbb{R}^n into \mathbb{R} with the following properties:

(i) $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$,

(ii)
$$\|\mathbf{x}\| = 0$$
 if and only if $\mathbf{x} = \mathbf{0}$,

(iii) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$,

(iv) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}$

Definition (7.2)

The I_2 and I_{∞} norms for the vector $\mathbf{x} = (x_1, x_2, \dots, x_n)^t$ are defined by

$$\|\mathbf{x}\|_2 = \left\{\sum_{i=1}^n x_i^2\right\}^{1/2}$$
 and $\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$

Theorem (7.3: Cauchy-Bunyakovsky-Schwarz inequality)

For each $\mathbf{x} = (x_1, x_2, ..., x_n)^t$ and $\mathbf{y} = (y_1, y_2, ..., y_n)^t$ in \mathbb{R}^n ,

$$\mathbf{x}^{t}\mathbf{y} = \sum_{i=1}^{n} x_{i}y_{i} \leq \left\{\sum_{i=1}^{n} x_{i}^{2}\right\}^{1/2} \left\{\sum_{i=1}^{n} y_{i}^{2}\right\}^{1/2} = \|\mathbf{x}\|_{2} \cdot \|\mathbf{y}\|_{2}.$$

Definition (7.4)

If $\mathbf{x} = (x_1, x_2, \dots, x_n)^t$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)^t$ are vectors in \mathbb{R}^n , the I_2 and I_∞ distances between \mathbf{x} and \mathbf{y} are defined by

$$\|\mathbf{x} - \mathbf{y}\|_2 = \left\{\sum_{i=1}^n (x_i - y_i)^2\right\}^{1/2}$$
 and $\|\mathbf{x} - \mathbf{y}\|_{\infty} = \max_{1 \le i \le n} |x_i - y_i|.$

Definition (7.5)

A sequence $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty}$ of vectors in \mathbb{R}^n is said to **converge** to **x** with respect to the norm $\|\cdot\|$ if, given any $\varepsilon > 0$, there exists an integer $N(\varepsilon)$ such that

$$\|\mathbf{x}^{(k)} - \mathbf{x}\| < \varepsilon$$
, for all $k \ge N(\varepsilon)$.

Theorem (7.6)

The sequence of vectors $\{\mathbf{x}^{(k)}\}$ converges to \mathbf{x} in \mathbb{R}^n with respect to the I_{∞} norm if and only if $\lim_{k\to\infty} x_i^{(k)} = x_i$, for each i = 1, 2, ..., n.

Theorem (7.7)

```
For each \mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_2 \le \sqrt{n} \|\mathbf{x}\|_{\infty}.
```

Definition (7.8)

A **matrix norm** on the set of all $n \times n$ matrices is a real-valued function, $\|\cdot\|$, defined on this set, satisfying for all $n \times n$ matrices A and B and all real numbers α :

(i)
$$||A|| \ge 0;$$

(ii) ||A|| = 0, if and only if A is O, the matrix with all 0 entries;

(iii)
$$\|\alpha A\| = |\alpha| \|A\|;$$

(iv) $||A + B|| \le ||A|| + ||B||;$

(v) $||AB|| \le ||A|| ||B||.$

Theorem (7.9)

If $|| \cdot ||$ is a vector norm on \mathbb{R}^n , then $||A|| = \max_{||\mathbf{x}||=1} ||A\mathbf{x}||$ is a matrix norm.

Corollary (7.10)

For any vector $\mathbf{z} \neq \mathbf{0}$, matrix A, and any natural norm $\|\cdot\|$, we have

 $\|\mathbf{A}\mathbf{z}\| \leq \|\mathbf{A}\| \cdot \|\mathbf{z}\|.$

Theorem (7.11)

If
$$A = (a_{ij})$$
 is an $n \times n$ matrix, then $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$.

Chapter 7.2: Eigenvalues and Eigenvectors

Definition (7.12)

If *A* is a square matrix, the **characteristic polynomial** of *A* is defined by

 $p(\lambda) = \det(A - \lambda I).$

Definition (7.13)

If *p* is the characteristic polynomial of the matrix *A*, the zeros of *p* are called **eigenvalues**, or characteristic values, of the matrix *A*. If λ is an eigenvalue of *A* and $\mathbf{x} \neq \mathbf{0}$ satisfies $(A - \lambda I)\mathbf{x} = \mathbf{0}$, then **x** is an **eigenvector**, or characteristic vector, of *A* corresponding to the eigenvalue λ .

Chapter 7.2: Eigenvalues and Eigenvectors

Definition (7.14)

The **spectral radius** $\rho(A)$ of a matrix *A* is defined by

 $\rho(A) = \max |\lambda|$, where λ is an eigenvalue of A.

(For complex $\lambda = \alpha + \beta i$, we define $|\lambda| = (\alpha^2 + \beta^2)^{1/2}$.)

Theorem (7.15)

If A is an $n \times n$ matrix, then

(i)
$$||A||_2 = [\rho(A^t A)]^{1/2}$$
,

(ii) $\rho(A) \leq ||A||$, for any natural norm $||\cdot||$.

Chapter 7.2: Eigenvalues and Eigenvectors

Definition (7.16)

We call an $n \times n$ matrix A convergent if

$$\lim_{k \to \infty} (A^k)_{ij} = 0$$
, for each $i = 1, 2, ..., n$ and $j = 1, 2, ..., n$.

Theorem (7.17)

The following statements are equivalent.

- (i) A is a convergent matrix.
- (ii) $\lim_{n\to\infty} ||A^n|| = 0$, for some natural norm.
- (iii) $\lim_{n\to\infty} ||A^n|| = 0$, for all natural norms.

(iv)
$$\rho(A) < 1$$
.

(v) $\lim_{n\to\infty} A^n \mathbf{x} = \mathbf{0}$, for every \mathbf{x} .

The **Jacobi iterative method** is obtained by solving the *i*th equation in $A\mathbf{x} = \mathbf{b}$ for x_i to obtain (provided $a_{ii} \neq 0$)

$$x_i = \sum_{\substack{j=1 \ j \neq i}}^n \left(-\frac{a_{ij}x_j}{a_{ii}} \right) + \frac{b_i}{a_{ii}}, \quad \text{for } i = 1, 2, \dots, n.$$

For each $k \ge 1$, generate the components $x_i^{(k)}$ of $\mathbf{x}^{(k)}$ from the components of $\mathbf{x}^{(k-1)}$ by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1 \ j \neq i}}^n \left(-a_{ij} x_j^{(k-1)} \right) + b_i \right], \quad \text{for } i = 1, 2, \dots, n.$$

Algorithm 7.1: JACOBI ITERATIVE TECHNIQUE

To solve $A\mathbf{x} = \mathbf{b}$ given an initial approximation $\mathbf{x}^{(0)}$:

INPUT the number of equations and unknowns *n*; the entries a_{ij} , $1 \le i, j \le n$ of the matrix *A*; the entries b_i , $1 \le i \le n$ of **b**; the entries XO_i , $1 \le i \le n$ of **XO** = **x**⁽⁰⁾; tolerance *TOL*; maximum number of iterations *N*.

OUTPUT the approximate solution x_1, \ldots, x_n or a message that the number of iterations was exceeded.

Algorithm 7.1: JACOBI ITERATIVE TECHNIQUE

```
Step 1 Set k = 1.
Step 2 While (k \leq N) do Steps 3–6.
      Step 3 For i = 1, ..., n
                   set x_i = \frac{1}{a_{ii}} \left[ -\sum_{\substack{j=1\\ j\neq i}}^n (a_{ij} X O_j) + b_i \right].
      Step 4 If ||\mathbf{x} - \mathbf{XO}|| < TOL then OUTPUT (x_1, \ldots, x_n);
               STOP. (Procedure successful.)
      Step 5 Set k = k + 1.
      Step 6 For i = 1, \ldots, n set XO_i = x_i.
Step 7 OUTPUT ('Maximum number of iterations exceeded');
         (The procedure was successful.)
         STOP.
```

Possible improvement in Algorithm 7.1 can be seen by reconsidering the formula for $\mathbf{x}_i^{(k)}$ from the Jacobi iterative method. The components of $\mathbf{x}^{(k-1)}$ are used to compute all the components $x_i^{(k)}$ of $\mathbf{x}^{(k)}$. But, for i > 1, the components $x_1^{(k)}, \ldots, x_{i-1}^{(k)}$ of $\mathbf{x}^{(k)}$ have already been computed and are expected to be better approximations to the actual solutions x_1, \ldots, x_{i-1} than are $x_1^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$. It seems reasonable, then, to compute $x_i^{(k)}$ using these most recently calculated values. That is, to use

$$x_i^{(k)} = rac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij} x_j^{(k)}) - \sum_{j=i+1}^n (a_{ij} x_j^{(k-1)}) + b_i
ight],$$

for each i = 1, 2, ..., n, instead of Eq. (7.5). This modification is called the **Gauss-Seidel iterative technique**

Algorithm 7.2: GAUSS-SEIDEL ITERATIVE TECHNIQUE

To solve $A\mathbf{x} = \mathbf{b}$ given an initial approximation $\mathbf{x}^{(0)}$:

INPUT the number of equations and unknowns *n*; the entries a_{ij} , $1 \le i, j \le n$ of the matrix *A*; the entries b_i , $1 \le i \le n$ of **b**; the entries XO_i , $1 \le i \le n$ of **XO** = **x**⁽⁰⁾; tolerance *TOL*; maximum number of iterations *N*.

OUTPUT the approximate solution x_1, \ldots, x_n or a message that the number of iterations was exceeded.

Algorithm 7.2: GAUSS-SEIDEL ITERATIVE TECHNIQUE

Step 1 Set k = 1. Step 2 While ($k \le N$) do Steps 3–6. Step 3 For i = 1, ..., nset $x_i = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} a_{ij} x_j - \sum_{j=i+1}^n a_{ij} X O_j + b_i \right].$ Step 4 If $||\mathbf{x} - \mathbf{XO}|| < TOL$ then OUTPUT (x_1, \ldots, x_n) ; STOP. (*Procedure successful*.) Step 5 Set k = k + 1. Step 6 For $i = 1, \ldots, n$ set $XO_i = x_i$. Step 7 OUTPUT ('Maximum number of iterations exceeded'); (The procedure was successful.) STOP.

Lemma (7.18)

If the spectral radius satisfies $\rho(T) < 1$, then $(I - T)^{-1}$ exists, and

$$(I - T)^{-1} = I + T + T^2 + \dots = \sum_{j=0}^{\infty} T^j$$

Theorem (7.19)

For any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}, \quad \text{for each } k \ge 1,$$

converges to the unique solution of $\mathbf{x} = T\mathbf{x} + \mathbf{c}$ if and only if $\rho(T) < 1$.

Corollary (7.20)

If ||T|| < 1 for any natural matrix norm and **c** is a given vector, then the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by $\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$ converges, for any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, to a vector $\mathbf{x} \in \mathbb{R}^n$, with $\mathbf{x} = T\mathbf{x} + \mathbf{c}$, and the following error bounds hold: (i) $||\mathbf{x} - \mathbf{x}^{(k)}|| \le ||T||^k ||\mathbf{x}^{(0)} - \mathbf{x}||$; (ii) $||\mathbf{x} - \mathbf{x}^{(k)}|| \le \frac{||T||^k}{1 - ||T||} ||\mathbf{x}^{(1)} - \mathbf{x}^{(0)}||$.

Theorem (7.21)

If A is strictly diagonally dominant, then for any choice of $\mathbf{x}^{(0)}$, both the Jacobi and Gauss-Seidel methods give sequences $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ that converge to the unique solution of $A\mathbf{x} = \mathbf{b}$.

Theorem (7.22)

If $a_{ij} \leq 0$, for each $i \neq j$ and $a_{ii} > 0$, for each i = 1, 2, ..., n, then one and only one of the following statements holds:

(i) $0 \le \rho(T_g) < \rho(T_j) < 1;$ (ii) $1 < \rho(T_j) < \rho(T_g);$

(iii) $\rho(T_j) = \rho(T_g) = 0;$ (iv) $\rho(T_j) = \rho(T_g) = 1.$

Definition (7.23)

Suppose $\tilde{\mathbf{x}} \in \mathbb{R}^n$ is an approximation to the solution of the linear system defined by $A\mathbf{x} = \mathbf{b}$. The **residual vector** for $\tilde{\mathbf{x}}$ with respect to this system is $\mathbf{r} = \mathbf{b} - A\tilde{\mathbf{x}}$.

If we modify the Gauss-Seidel procedure, to

$$\boldsymbol{x}_{i}^{(k)} = \boldsymbol{x}_{i}^{(k-1)} + \omega \frac{\boldsymbol{r}_{ii}^{(k)}}{\boldsymbol{a}_{ii}}$$

where

$$r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} - a_{ii} x_i^{(k-1)},$$

then for certain choices of positive ω the norm of the residual vector can be reduced and we obtain significantly faster convergence.

Methods involving the equation

$$x_{i}^{(k)} = x_{i}^{(k-1)} + \omega \frac{r_{ii}^{(k)}}{a_{ii}},$$

are called **relaxation methods**.

For choices of ω with $0 < \omega < 1$, the procedures are called **under-relaxation methods**. We will be interested in choices of ω with $1 < \omega$, and these are called **over-relaxation methods**. They are used to accelerate the convergence for systems that are convergent by the Gauss-Seidel technique. The methods are abbreviated **SOR**, for **Successive Over-Relaxation**, and are particularly useful for solving the linear systems that occur in the numerical solution of certain partial-differential equations.

Theorem (7.24 (Kahan))

If $a_{ii} \neq 0$, for each i = 1, 2, ..., n, then $\rho(T_{\omega}) \ge |\omega - 1|$. This implies that the SOR method can converge only if $0 < \omega < 2$.

Theorem (7.25 (Ostrowski-Reich))

If A is a positive definite matrix and $0 < \omega < 2$, then the SOR method converges for any choice of initial approximate vector $\mathbf{x}^{(0)}$.

Theorem (7.26)

If A is positive definite and tridiagonal, then $\rho(T_g) = [\rho(T_j)]^2 < 1$, and the optimal choice of ω for the SOR method is

$$\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_j)]^2}}$$

With this choice of ω , we have $\rho(T_{\omega}) = \omega - 1$.

| Numerical Analysis 10E

Algorithm 7.3: SOR

To solve $A\mathbf{x} = \mathbf{b}$ given the parameter ω and an initial approximation $\mathbf{x}^{(0)}$:

INPUT the number of equations and unknowns *n*; the entries a_{ij} , $1 \le i, j \le n$, of the matrix A; the entries b_i , $1 \le i \le n$, of **b**; the entries XO_i , $1 \le i \le n$, of **XO** = **x**⁽⁰⁾; the parameter ω ; tolerance *TOL*; maximum number of iterations *N*.

OUTPUT the approximate solution x_1, \ldots, x_n or a message that the number of iterations was exceeded.

Algorithm 7.3: SOR

```
Step 1 Set k = 1.
Step 2 While (k \leq N) do Steps 3–6.
      Step 3 For i = 1, \ldots, n set
       x_i = (1 - \omega) X O_i + \frac{1}{a_{ii}} \left[ \omega \left( - \sum_{j=1}^{i-1} a_{ij} x_j - \sum_{j=i+1}^n a_{ij} X O_j + b_i \right) \right].
      Step 4 If ||\mathbf{x} - \mathbf{XO}|| < TOL then OUTPUT (x_1, \ldots, x_n);
                                               (The procedure was successful.)
                                                STOP
      Step 5 Set k = k + 1.
      Step 6 For i = 1, \ldots, n set XO_i = x_i.
Step 7 OUTPUT ('Maximum number of iterations exceeded');
         (The procedure was successful.)
         STOP.
```

Theorem (7.27)

Suppose that $\tilde{\mathbf{x}}$ is an approximation to the solution of $A\mathbf{x} = \mathbf{b}$, A is a nonsingular matrix, and **r** is the residual vector for $\tilde{\mathbf{x}}$. Then for any natural norm,

 $\|\mathbf{x} - \tilde{\mathbf{x}}\| \le \|\mathbf{r}\| \cdot \|\mathbf{A}^{-1}\|$

and if $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{b} \neq \mathbf{0}$,

$$\frac{\|\mathbf{x} - \widetilde{\mathbf{x}}\|}{\|\mathbf{x}\|} \le \|A\| \cdot \|A^{-1}\| \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}.$$

Definition (7.28)

The **condition number** of the nonsingular matrix *A* relative to a norm $\|\cdot\|$ is $K(A) = \|A\| \cdot \|A^{-1}\|$.

Iterative refinement, or *Iterative improvement*, consists of performing iterations on the system whose right-hand side is the residual vector for successive approximations until satisfactory accuracy results.

Algorithm 7.4: ITERATIVE REFINEMENT

To approximate the solution to the linear system $A\mathbf{x} = \mathbf{b}$:

INPUT the number of equations and unknowns *n*; the entries a_{ij} , $1 \le i, j \le n$ of the matrix *A*; the entries b_i , $1 \le i \le n$ of **b**; the maximum number of iterations *N*; tolerance *TOL*; number of digits of precision *t*.

OUTPUT the approximation $\mathbf{xx} = (xx_i, \dots, xx_n)^t$ or a message that the number of iterations was exceeded, and an approximation *COND* to $K_{\infty}(A)$.

Algorithm 7.4: ITERATIVE REFINEMENT

Step 0 Solve the system $A\mathbf{x} = \mathbf{b}$ for x_1, \ldots, x_n by Gaussian elimination saving multipliers m_{ji} , j = i + 1, i + 2, ..., n, i = 1, 2, ..., n - 1 and noting row interchanges. Step 1 Set k = 1. Step 2 While ($k \leq N$) do Steps 3–9. Step 3 For i = 1, 2, ..., n (*Calculate* **r**.) set $r_i = b_i - \sum_{j=1}^n a_{ij} x_j$. (Perform computations in double-precision arithmetic.) Step 4 Solve the linear system $A\mathbf{y} = \mathbf{r}$ by using Gaussian elimination in the same order as in Step 0. Step 5 For i = 1, ..., n set $xx_i = x_i + y_i$. Step 6 If k = 1 then set $COND = \frac{\|\mathbf{y}\|_{\infty}}{\|\mathbf{x}\mathbf{x}\|_{\infty}} \mathbf{10}^t$. Step 7 If $\|\mathbf{x} - \mathbf{x}\mathbf{x}\|_{\infty} < TOL$ then OUTPUT (**xx**);OUTPUT (*COND*); STOP. (Procedure successful.) Step 8 Set k = k + 1. Step 9 For $i = 1, \ldots, n$ set $x_i = xx_i$. Step 10 OUTPUT ('Max number iterations exceeded'); OUTPUT (COND); STOP. (Procedure unsuccessful.)

Theorem (7.29)

Suppose A is nonsingular and

$$\|\delta A\| < \frac{1}{\|A^{-1}\|}.$$

The solution $\tilde{\mathbf{x}}$ to $(\mathbf{A} + \delta \mathbf{A})\tilde{\mathbf{x}} = \mathbf{b} + \delta \mathbf{b}$ approximates the solution \mathbf{x} of $\mathbf{A}\mathbf{x} = \mathbf{b}$ with the error estimate

$$\frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|}{\|\mathbf{x}\|} \le \frac{K(A)\|A\|}{\|A\| - K(A)\|\delta A\|} \left(\frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|} + \frac{\|\delta A\|}{\|A\|}\right)$$

Theorem (7.30)

Let $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^* \mathbf{y}$ be the inner product notation. For any vectors \mathbf{x} , \mathbf{y} , and \mathbf{z} and any real number α , we have

- (a) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (b) $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$
- (c) $\langle \mathbf{x} + \mathbf{z}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{z}, \mathbf{y} \rangle$ (d) $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$
- (e) $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $\mathbf{x} = \mathbf{0}$

Theorem (7.31)

The vector \mathbf{x}^* is a solution to the positive definite linear system $A\mathbf{x} = \mathbf{b}$ if and only if \mathbf{x}^* produces the minimal value of

$$g(\mathbf{x}) = \langle \mathbf{x}, A\mathbf{x} \rangle - 2 \langle \mathbf{x}, \mathbf{b} \rangle.$$

Theorem (7.32)

For any vectors **x**, **y**, and **z** and any real number α , we have Let $\{\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}\}\$ be an A-orthogonal set of nonzero vectors $(\langle \mathbf{v}^{(i)}, A\mathbf{v}^{(j)} \rangle = 0, \text{ if } i \neq j.)$ associated with the positive definite matrix A, and let $\mathbf{x}^{(0)}$ be arbitrary. Define

$$t_k = \frac{\langle \mathbf{v}^{(k)}, \mathbf{b} - A\mathbf{x}^{(k-1)} \rangle}{\langle \mathbf{v}^{(k)}, A\mathbf{v}^{(k)} \rangle} \quad and \quad \mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} + t_k \mathbf{v}^{(k)},$$

for k = 1, 2, ..., n. Then, assuming exact arithmetic, $A\mathbf{x}^{(n)} = \mathbf{b}$.

Theorem (7.33)

The residual vectors $\mathbf{r}^{(k)}$, where k = 1, 2, ..., n, for a conjugate direction method, satisfy the equations

$$\langle {\bf r}^{(k)}, {\bf v}^{(j)} \rangle = 0$$
, for each $j = 1, 2, ..., k$.

Preconditioning replaces a given system with one having the same solutions but with better convergence characteristics.

Algorithm 7.5: PRECONDITIONED CONJUGATE GRADIENT

To solve $A\mathbf{x} = \mathbf{b}$ given the preconditioning matrix C^{-1} and the initial approximation $\mathbf{x}^{(0)}$:

INPUT the number of equations and unknowns *n*; the entries a_{ij} , $1 \le i, j \le n$ of the matrix *A*; the entries b_j , $1 \le j \le n$ of the vector **b**; the entries γ_{ij} , $1 \le i, j \le n$ of the preconditioning matrix C^{-1} , the entries x_i , $1 \le i \le n$ of the initial approximation $\mathbf{x} = \mathbf{x}^{(0)}$, the maximum number of iterations *N*; tolerance *TOL*.

OUTPUT the approximate solution $x_1, \ldots x_n$ and the residual $r_1, \ldots r_n$ or a message that the number of iterations was exceeded.

Preconditioning replaces a given system with one having the same solutions but with better convergence characteristics.

Algorithm 7.5: PRECONDITIONED CONJUGATE GRADIENT

Step 1 Set $\mathbf{r} = \mathbf{b} - A\mathbf{x}$; (Compute $\mathbf{r}^{(0)}$.) $\mathbf{w} = C^{-1}\mathbf{r}$; (Note: $\mathbf{w} = \mathbf{w}^{(0)}$) $\mathbf{v} = C^{-t}\mathbf{w}$; (Note: $\mathbf{v} = \mathbf{v}^{(1)}$) $\alpha = \sum_{j=1}^{n} w_j^2$. Step 2 Set k = 1. Step 3 While ($k \le N$) do Steps 4–7. Step 4 If $\|\mathbf{v}\| < TOL$, then OUTPUT ('Solution vector'; x_1, \dots, x_n); OUTPUT ('with residual'; r_1, \dots, r_n); STOP (The procedure was successful.)

Algorithm 7.5: PRECONDITIONED CONJUGATE GRADIENT

Step 5 Set $\mathbf{u} = A\mathbf{v}$; (*Note:* $\mathbf{u} = A\mathbf{v}^{(k)}$) $t = \frac{\alpha}{\sum_{i=1}^{n} v_i u_i}; (Note: t = t_k)$ x = x + tv; (*Note:* $x = x^{(k)}$) r = r - tu; (*Note:* $r = r^{(k)}$) $w = C^{-1}r;$ (*Note:* $w = w^{(k)}$) $\beta = \sum_{i=1}^{n} w_i^2$. (Note: $\beta = \langle \mathbf{w}^{(k)}, \mathbf{w}^{(k)} \rangle$) Step 6 If $|\beta| < TOL$ then if $\|\mathbf{r}\| < TOL$ then OUTPUT('Solution vector'; x_1, \ldots, x_n); OUTPUT('with residual'; r_1, \ldots, r_n); (The procedure was successful.) STOP

Algorithm 7.5: PRECONDITIONED CONJUGATE GRADIENT

Step 7 Set
$$s = \beta/\alpha$$
; $(s = s_k)$
 $\mathbf{v} = C^{-t}\mathbf{w} + s\mathbf{v}$; (Note: $\mathbf{v} = \mathbf{v}^{(k+1)}$)
 $\alpha = \beta$; (Update α .)
 $k = k + 1$.
Step 8 If $(k > n)$ then
OUTPUT ('The maximum number of iterations exceeded.'
(*The procedure was unsuccessful.*)
STOP.

);