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Chapter 7.1: Norms of Vectors and Matrices \y
)
4

Definition (7.1)

A vector norm on R” is a function, || - ||, from R” into R with the
following properties:

(i) ||x|| >0 forall x € R",
(ii) |[x|| =0ifandonly if x =0,

(iif) ||ax|| = |o|||x]| for all « € R and x € R",

(iv) [Ix+yl < [Ix|| +]ly] forallx, y € R

Definition (7.2)

The kL and I, norms for the vector x = (xq, Xo, ..., X,)! are defined by
n 1/2
2
p— J x o0 — m |-
1|2 {2 X; } and  [|x] = max |
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Theorem (7.3: Cauchy-Bunyakovsky-Schwarz inequality)
Foreachx = (xq,Xo,...,Xxp)  andy = (y1, Yo, ..., ¥n)t in R,

n n 1/2 n 1/2
xly = " xjy; < {Zx,?} {ny} = [IX|]2 - [|Y]|2-
=1 =1 i=1

Definition (7.4)

If X = (X1, X%o,...,xp) and 'y = (y1, ¥o,..., ¥n)! are vectors in R”,
the L and I, distances between x and y are defined by

n 1/2
||x—y\|2={2(x,-—y,->2} and  [[X—Y[oo = Max [xi—yil.

: 1<i<n
=1 R

o
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Chapter 7.1: Norms of Vectors and Matrices \y
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Definition (7.5)

A sequence {x(¥)}2 . of vectors in R" is said to converge to x
with respect to the norm || - || if, given any £ > 0, there exists an
integer N(e) such that

Ix®) —x|| < e, forall k> N(e).

Theorem (7.6)

The sequence of vectors {x¥)} converges to x in R" with

respect to the I, norm if and only iflimy_, - x,.(k) = X;, for each
I=1,2,...,n.
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Chapter 7.1: Norms of Vectors and Matrices

Theorem (7.7) J

Foreachx € R", ||X||s < |IX|l2 < VN||X||so-

Definition (7.8)

A matrix norm on the set of all n x n matrices is a real-valued

function, || - ||, defined on this set, satisfying for all n x n matrices A
and B and all real numbers a:
(i) [IAl=0;

(if) ||A]| =0, ifand only if Ais O, the matrix with all 0 entries;
(iii) [|aAl| = |of[|Al;

(iv) A+ Bl < ||All +[1BI;

(v) [[AB] < [|AllllBIl

v
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Chapter 7.1: Norms of Vectors and Matrices

Theorem (7.9)

If|| - || is a vector norm on R", then ||Al| = maxy—1 || AX|| is a
matrix norm.

)

Corollary (7.10)

For any vectorz # 0, matrix A, and any natural norm || - ||, we
have

|Az[| < [|A]l - [1]-

Theorem (7.11)

n
If A= (ay) is an n x n matrix, then ||Al|s = 1rgl_agxn; |aj-
j:

v
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Chapter 7.2: Eigenvalues and Eigenvectors

Definition (7.12)

If Ais a square matrix, the characteristic polynomial of A is
defined by

p(A\) = det(A — Al).

Definition (7.13)

If p is the characteristic polynomial of the matrix A, the zeros of
p are called eigenvalues, or characteristic values, of the matrix
A. If X is an eigenvalue of A and x # 0 satisfies (A — A\/)x = 0,
then x is an eigenvector, or characteristic vector, of A
corresponding to the eigenvalue .
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Chapter 7.2: Eigenvalues and Eigenvectors

Definition (7.14)
The spectral radius p(A) of a matrix A is defined by

p(A) =max|\|, where \is an eigenvalue of A.

(For complex A = o + 3i, we define |\| = (a? + 5?)1/2.)

Theorem (7.15)
If A is an n x n matrix, then
(i) [Al2 = [p(AlA)]'/2,
(i) p(A) < ||A||, for any natural norm || - ||.
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Definition (7.16)
We call an n x n matrix A convergent if

Jim (A)j =0, foreachi=1,2,...,nandj=1,2,...,n.
—00

v

Theorem (7.17)
The following statements are equivalent.

() A is a convergent matrix.

(if) lim,_ o ||A"|| = O, for some natural norm.
(iii) lim,_ . [|A"|| = O, for all natural norms.
(iv) p(A) < 1.

(v) limy_ A"'X =0, for every x.

v
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Chapter 7.3: Jacobi and Gauss-Siedel lteratiyg

Techniques Wyy/
Sy

The Jacobi iterative method is obtained by solving the ith
equation in Ax = b for x; to obtain (provided a;; # 0)

n
x,-:Z(— '”)Jr—’, fori=1,2,....n.
= djj djj

J#

For each k > 1, generate the components x,.(k) of x(K) from the
components of x(k=1) by

1| < _ .
xi(k):; Z(_aijxj(k 1)>+b,- : fori=1,2,...,n.
i |5
| j# |

v
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Chapter 7.3: Jacobi and Gauss-Siedel lteratiygg
Techniques R
. »

To solve Ax = b given an initial approximation x(®):

INPUT the number of equations and unknowns n; the entries
aj, 1 < I, j < nof the matrix A; the entries b;, 1 </ < nof b;
the entries XO;, 1 < i < n of XO = x(9): tolerance TOL;
maximum number of iterations N.

OUTPUT the approximate solution x4, ..., x, or a message that
the number of iterations was exceeded.

v
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Chapter 7.3: Jacobi and Gauss-Siedel Iteratiygg
Techniques R Y
q )

Step 1 Set k = 1.
Step 2 While (k < N) do Steps 3—6.
Step3Fori=1,...,n

set x; = 1 27:1 (@i X0Oj) + b
di i
Step 4 If || x — XO|| < TOL then OUTPUT (x4, ..., Xn);
STOP. (Procedure successful.)
Step 5 Set k = k+ 1.
Step6 Fori=1,...,nset XO; = x;.
Step 7 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was successful.)
STOP.

v
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Chapter 7.3: Jacobi and Gauss-Siedel lterati

Techniques

Possible improvement in Algorithm 7.1 can be seen by reconsidering
the formula for x,(.k) from the Jacobi iterative method. The components
of x—1) are used to compute all the components x\*) of x(). But, for

i > 1, the components x (k), . (k) of x(¥) have already been
computed and are expected to be better approximations to the actual
solutions x1, ..., xj_y than are x (k RN ..,xffj”. It seems reasonable,

then, to compute x,( ) using these most recently calculated values.
That is, to use

n
(k k—1
= §j(a,, )= D (@) bl
Ii
=

J=i+1

foreachi=1,2,..., n, instead of Eq. (7.5). This modification is
called the Gauss-Seidel iterative technique

v
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Techniques

To solve Ax = b given an initial approximation x(®):

INPUT the number of equations and unknowns n; the entries
aj, 1 < I, j < nof the matrix A; the entries b;, 1 </ < nof b;
the entries XO;, 1 < i < n of XO = x(9): tolerance TOL;
maximum number of iterations N.

OUTPUT the approximate solution x4, ..., x, or a message that
the number of iterations was exceeded.

v
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Chapter 7.3: Jacobi and Gauss-Siedel Iteratiygs
Techniques |

Step 1 Set k = 1.
Step 2 While (k < N) do Steps 3—6.
Step3Fori=1,...,n
set x; = al,-,- [— j’;] ajiXj — Y iy 1 @ XO; + b,-].
Step 4 If |[x — XO|| < TOL then OUTPUT (x1,..., Xn);
STOP. (Procedure successful.)
Step 5 Set k = k+ 1.
Step6 Fori=1,...,nset XO; = x;.
Step 7 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was successful.)
STOP.

o
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Chapter 7.3: Jacobi and Gauss-Siedel lteratiyg

Techniques

Lemma (7.18)
—1

If the spectral radius satisfies p(T) < 1, then (I — T)~" exists,
and OO
(=T '=1+T+T?+...=) T
j=0

Theorem (7.19)

For any x(®) € R", the sequence {x¥)}%° . defined by
xK) = Txk=1) 1 ¢, foreachk > 1.

converges to the unique solution of x = Tx + ¢ if and only if
p(T) < 1.

v
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Chapter 7.3: Jacobi and Gauss-Siedel lteratiy

Techniques

Corollary (7.20)

If || T|| <1 for any natural matrix norm and ¢ is a given vector,
then the sequence {x¥)} , defined by x¥) = Tx(*=1) 1 ¢
converges, for any x\%9 € R”, to a vector x € R", with
X = TX + ¢, and the following error bounds hold:

(i) [Ix —xU < T]*)x© —x||;

. T||X
(i) |[x — x| < 1H—||HT|| [x(M) — x(©)).

Theorem (7.21)

If A is strictly diagonally dominant, then for any choice of x(9),
both the Jacobi and Gauss-Seidel methods give sequences
{x(K)}2 . that converge to the unique solution of Ax = b.

o
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Chapter 7.3: Jacobi and Gauss-Siedel lteratiyg

Techniques

Theorem (7.22)

Ifa; <0, foreachi # j and a; > 0, foreachi =1,2,...,n, then
one and only one of the following statements holds:

(i) 0<p(Tg) <p(Ty)<1; (i) 1<p(Tj) <p(Tg),
(iii) p(7;) = p(Tg) =0; (iv) o(Tj)=p(Tg) =1.
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Chapter 7.4: Relaxation Techniques for Solvi

Linear Systems

Definition (7.23)

Suppose x € R" is an approximation to the solution of the linear
system defined by Ax = b. The residual vector for x with respect to
this systemisr = b — Ax.

If we modify the Gauss-Seidel procedure, to

k—1 (k)
X8 = 1) ]

/ )
all

where
n
(k) — b — Zau N Z a,-,-xj(k_” —a,-,-x,.(k_”,
J=i+1

then for certain choices of positive w the norm of the residual vector
can be reduced and we obtain significantly faster convergence.

v
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are called relaxation methods.

For choices of w with 0 < w < 1, the procedures are called
under-relaxation methods. We will be interested in choices of
w With 1 < w, and these are called over-relaxation methods.
They are used to accelerate the convergence for systems that
are convergent by the Gauss-Seidel technique. The methods
are abbreviated SOR, for Successive Over-Relaxation, and
are particularly useful for solving the linear systems that occur

in the numerical solution of certain partial-differential equations.J
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Chapter 7.4: Relaxation Techniques for Solvi

Linear Systems

Theorem (7.24 (Kahan))

Ifa; #0, foreachi=1,2,... n,thenp(T,) > |w—1|. This implies
that the SOR method can converge only if 0 < w < 2.

Theorem (7.25 (Ostrowski-Reich))

If A is a positive definite matrix and 0 < w < 2, then the SOR method
converges for any choice of initial approximate vector x(©).

Theorem (7.26)

If A is positive definite and tridiagonal, then p(T,) = [p(T;)]* < 1, and
the optimal choice of w for the SOR method is

2
ST TR

With this choice of w, we have p(T,) = w — 1.




Chapter 7.4: Relaxation Technigques for Solving
Linear Systems

To solve Ax = b given the parameter w and an initial approximation
x(0):

INPUT the number of equations and unknowns n; the entries aj;,

1 </, j < n, of the matrix A; the entries b;, 1 </ < n, of b; the entries
XO;, 1 < i < n, of XO = x(9); the parameter w; tolerance TOL;
maximum number of iterations N.

OUTPUT the approximate solution xi, ..., x, or a message that the
number of iterations was exceeded.
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Chapter 7.4: Relaxation Techniques for Solving
Linear Systems

Step 1 Set k = 1.
Step 2 While (k < N) do Steps 3—-6.
Step3Fori=1,...,nset

= (1= X0 = [ (- apy - 7 a0 )]
Step 4 If ||x — XO|| < TOL then OUTPUT (x1, ..., Xn);
(The procedure was successful.)
STOP.
Step 5 Set k = k + 1.
Step6 Fori=1...., nset XO; = x;.
Step 7 OUTPUT (‘Maximum number of iterations exceeded’);

(The procedure was successful.)
STOP.
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Chapter 7.5: Error Bounds and lterative Refi

Suppose that X is an approximation to the solution of Ax = b, A is a
nonsingular matrix, andr is the residual vector for X. Then for any
natural norm,

I —X|| < [[r]| - [|IA7"]

andifx #0 andb # 0,

Ix — x|
1]

- r
< Al A 1|!H.

Definition (7.28)

The condition number of the nonsingular matrix A relative to a norm
|- 1l is K(A) = IA]l - [|A~]].
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Chapter 7.5: Error Bounds and lterative Refin

ment /\3)

Iterative refinement, or /terative improvement, consists of
performing iterations on the system whose right-hand side is
the residual vector for successive approximations until
satisfactory accuracy results.

y

To approximate the solution to the linear system Ax = b:

INPUT the number of equations and unknowns n; the entries
aj, 1 < I, j < nof the matrix A; the entries b;, 1 </ < nof b;
the maximum number of iterations N; tolerance TOL; number of
digits of precision t.

OUTPUT the approximation xx = (xx;, ..., xx,)! or a message
that the number of iterations was exceeded, and an
approximation COND to K. (A).

y
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Chapter 7.5: Error Bounds and lterative Refing
ment

Step 0 Solve the system Ax = b for x4, ..., X, by Gaussian elimination saving
multipliers my, j=i+1,i+2,...,n,i=1,2,...,n—1 and noting row
interchanges.

Step 1 Set k = 1.
Step 2 While (k < N) do Steps 3-9.
Step3 Fori=1,2,...,n (Calculater.)set r; = b; — > a;x;.
(Perform computations in double-precision arithmetic.)
Step 4 Solve the linear system Ay = r by using Gaussian
elimination in the same order as in Step 0.
Step5Fori=1,...,nset xx; = x; + y;.
VIS

Step 6 If k = 1 then set COND = Wmt.

Step 7 If || x — xX||co < TOL then OUTPUT (xx);OUTPUT (COND);
STOP. (Procedure successful.)
Step 8 Set k = k+ 1.
Step9 Fori=1,...,nset x; = xx;.
Step 10 OUTPUT (‘Max number iterations exceeded’); OUTPUT (COND);
STOP. (Procedure unsuccessful.)

v
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Chapter 7.5: Error Bounds and lterative Refin

ment /\y

Suppose A is nonsingular and

:

|10A|| < ——.
|A=T|

The solution x to (A+ JA)X = b + db approximates the solution
X of Ax = b with the error estimate

x=x|| __ K(A[A] (H5bH+H5AH>.
x|l Al = K(A)[[oA] \ [[bl[ A
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Chapter 7.6: Conjugate Gradient Method

Let (X,y) = X*y be the inner product notation.
For any vectors X, y, and z and any real number o, we have

(@) x,y)={y,X) (b) (ax,y) = (x,ay) = a(X,y)
() x+zy)=XYy) +(zy () xXx)=>0

(e) (x,x)=01ifandonlyifx=0

The vector x* is a solution to the positive definite linear system
Ax = b if and only if X* produces the minimal value of

Q(X) - <X,AX> - 2<X, b>




Chapter 7.6: Conjugate Gradient Method \3
Y

For any vectors X, y, and z and any real number o, we have Let
(v . v(M be an A-orthogonal set of nonzero vectors

(vi) AvU)Y = 0, if i +# j.) associated with the positive definite matrix
A, and let x(9) be arbitrary. Define

- (viK) b — Ax(k—1))
T v, AvR)y

and x"®) = x*=1) 1y

fork =1,2,...,n. Then, assuming exact arithmetic, Ax(") = b.
The residual vectors r'%), where k = 1,2, ..., n, for a conjugate
direction method, satisfy the equations

k) vy =0, foreach j=1,2,... k.

v
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Chapter 7.6: Conjugate Gradient Method @
/ 2

Preconditioning replaces a given system with one having the
same solutions but with better convergence characteristics. J

To solve Ax = b given the preconditioning matrix C~' and the initial
approximation x(9):

INPUT the number of equations and unknowns n; the entries aj,

1 <, j < nof the matrix A; the entries b;, 1 <j < n of the vector b;
the entries v;, 1 < i, j < n of the preconditioning matrix C~', the
entries x;, 1 < i < n of the initial approximation x = x(%), the
maximum number of iterations N; tolerance TOL.

OUTPUT the approximate solution xi, ... X, and the residual ry, ... r,
or a message that the number of iterations was exceeded.

y
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Chapter 7.6: Conjugate Gradient Method

same solutions but with better convergence characteristics.

Step 1 Set r = b — Ax; (Compute r©) )
w = C'r; (Note: w = w(®)
v = C'w; (Note: v = v())
a = 27:1 wr.
Step 2 Set k = 1.
Step 3 While (k < N) do Steps 4—7.
Step 4 If ||v|| < TOL, then
OUTPUT (‘Solution vector’; x1, ..., Xp);
OUTPUT (‘with residual’; rq, ..., r);
STOP (The procedure was successful.)

Preconditioning replaces a given system with one having the J

C cl ~ cAly U



Chapter 7.6: Conjugate Gradient Method

Step 5 Set u = Av; (Note: u = AvY)
t—— 2 (Note: t = t)
27:1 Vit
X = X + tv; (Note: x = x(¥)
r =r — tu; (Note: r = r¥)
w = C'r; (Note: w = wk))
B =i w?. (Note: g = (w), wlh))
Step 6 If |3| < TOL then
if ||r|| < TOL then
OUTPUT((‘Solution vector’; x1, ..., Xp);
OUTPUT (‘with residual’; ry, ..., ry);
(The procedure was successful.)
STOP

v
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Chapter 7.6: Conjugate Gradient Method

Step 7 Set s = 5/a; (s = Sk)
v = C!'w + sv; (Note: v = vikt1)
a = 8; (Update «.)
k=k+1.
Step 8 If (k > n) then
OUTPUT (‘The maximum number of iterations exceeded.);

(The procedure was unsuccessful.)
STOP.
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