Numerical Analysis

10th ed

R L Burden, J D Faires, and A M Burden

Beamer Presentation Slides Prepared by Dr. Annette M. Burden Youngstown State University

September 7, 2015

1

Definition (7.1)

A **vector norm** on \mathbb{R}^n is a function, $\|\cdot\|$, from \mathbb{R}^n into \mathbb{R} with the following properties:

(i) $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$,

(ii)
$$
\|\mathbf{x}\| = 0
$$
 if and only if $\mathbf{x} = \mathbf{0}$,

(iii) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$,

(iv) $\|\mathbf{x} + \mathbf{y}\| \leq \|\mathbf{x}\| + \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}$

Definition (7.2)

The I_2 and I_{∞} norms for the vector $\mathbf{x} = (x_1, x_2, \ldots, x_n)^t$ are defined by

$$
\|\mathbf{x}\|_2 = \left\{\sum_{i=1}^n x_i^2\right\}^{1/2}
$$
 and $\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$.

Theorem (7.3: Cauchy-Bunyakovsky-Schwarz inequality)

2

For each $\mathbf{x} = (x_1, x_2, \ldots, x_n)^t$ *and* $\mathbf{y} = (y_1, y_2, \ldots, y_n)^t$ *in* \mathbb{R}^n *,*

$$
\mathbf{x}^t \mathbf{y} = \sum_{i=1}^n x_i y_i \le \left\{ \sum_{i=1}^n x_i^2 \right\}^{1/2} \left\{ \sum_{i=1}^n y_i^2 \right\}^{1/2} = \|\mathbf{x}\|_2 \cdot \|\mathbf{y}\|_2.
$$

Definition (7.4)

If $\mathbf{x} = (x_1, x_2, \ldots, x_n)^t$ and $\mathbf{y} = (y_1, y_2, \ldots, y_n)^t$ are vectors in \mathbb{R}^n , the l_2 and l_{∞} distances between **x** and **y** are defined by

$$
\|\mathbf{x}-\mathbf{y}\|_2=\left\{\sum_{i=1}^n(x_i-y_i)^2\right\}^{1/2} \text{ and } \|\mathbf{x}-\mathbf{y}\|_{\infty}=\max_{1\leq i\leq n}|x_i-y_i|.
$$

Definition (7.5)

A sequence $\{x^{(k)}\}_{k=1}^{\infty}$ of vectors in \mathbb{R}^n is said to **converge** to **x** with respect to the norm $\|\cdot\|$ if, given any $\varepsilon > 0$, there exists an integer $N(\varepsilon)$ such that

3

$$
\|\mathbf{x}^{(k)} - \mathbf{x}\| < \varepsilon, \quad \text{for all } k \geq N(\varepsilon).
$$

Theorem (7.6)

The sequence of vectors $\{x^{(k)}\}$ *converges to* x *in* \mathbb{R}^n *with respect to the l*_{∞} *norm if and only if* $\lim_{k\to\infty} x_i^{(k)} = x_i$, for each $i = 1, 2, \ldots, n$.

4

Theorem (7.7)

```
For each \mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_2 \le \sqrt{n}\|\mathbf{x}\|_{\infty}.
```
Definition (7.8)

A **matrix norm** on the set of all $n \times n$ matrices is a real-valued function, $\|\cdot\|$, defined on this set, satisfying for all $n \times n$ matrices A and *B* and all real numbers α :

$$
(i) \quad ||A|| \geq 0;
$$

(ii) $||A|| = 0$, if and only if *A* is *O*, the matrix with all 0 entries;

(iii)
$$
\|\alpha A\| = |\alpha| \|A\|;
$$

(iv)
$$
||A + B|| \le ||A|| + ||B||
$$
;

(v) $||AB|| \le ||A||||B||$.

Theorem (7.9)

If $|| \cdot ||$ *is a vector norm on* \mathbb{R}^n , then $||A|| = \max_{||\mathbf{x}||=1} ||A\mathbf{x}||$ *is a matrix norm.*

5

Corollary (7.10)

For any vector $z \neq 0$ *, matrix A, and any natural norm* $\|\cdot\|$ *, we have*

 $||Az|| \leq ||A|| \cdot ||z||.$

Theorem (7.11)

If
$$
A = (a_{ij})
$$
 is an $n \times n$ matrix, then $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$.

Chapter 7.2: Eigenvalues and Eigenvectors

Definition (7.12)

If *A* is a square matrix, the **characteristic polynomial** of *A* is defined by

 $p(\lambda) = \det(A - \lambda I).$

6

Definition (7.13)

If *p* is the characteristic polynomial of the matrix *A*, the zeros of *p* are called **eigenvalues**, or characteristic values, of the matrix *A*. If λ is an eigenvalue of *A* and $\mathbf{x} \neq \mathbf{0}$ satisfies $(A - \lambda I)\mathbf{x} = \mathbf{0}$, then **x** is an **eigenvector**, or characteristic vector, of *A* corresponding to the eigenvalue λ .

Chapter 7.2: Eigenvalues and Eigenvectors

Definition (7.14)

The **spectral radius** $\rho(A)$ of a matrix A is defined by

 $\rho(A) = \max |\lambda|$, where λ is an eigenvalue of A.

7

(For complex $\lambda = \alpha + \beta i$, we define $|\lambda| = (\alpha^2 + \beta^2)^{1/2}$.)

Theorem (7.15)

If A is an $n \times n$ *matrix, then*

(i)
$$
||A||_2 = [\rho(A^t A)]^{1/2}
$$
,

(ii) $\rho(A) \le ||A||$, for any natural norm $|| \cdot ||$.

Chapter 7.2: Eigenvalues and Eigenvectors

Definition (7.16)

We call an $n \times n$ matrix A **convergent** if

$$
\lim_{k \to \infty} (A^k)_{ij} = 0, \text{ for each } i = 1, 2, ..., n \text{ and } j = 1, 2, ..., n.
$$

8

Theorem (7.17)

The following statements are equivalent.

- **(i)** *A is a convergent matrix.*
- **(ii)** $\lim_{n\to\infty}$ $||A^n|| = 0$, for some natural norm.
- **(iii)** $\lim_{n\to\infty}$ $||A^n|| = 0$, for all natural norms.

$$
(iv) \quad \rho(A) < 1.
$$

(v) $\lim_{n\to\infty} A^n x = 0$, for every x.

9

The **Jacobi iterative method** is obtained by solving the *i*th equation in $A\mathbf{x} = \mathbf{b}$ for x_i to obtain (provided $a_{ii} \neq 0$)

$$
x_i = \sum_{\substack{j=1 \ j \neq i}}^n \left(-\frac{a_{ij}x_j}{a_{ii}}\right) + \frac{b_i}{a_{ii}}, \qquad \text{for } i = 1, 2, \ldots, n.
$$

For each $k \geq 1$, generate the components $x_i^{(k)}$ of $\mathbf{x}^{(k)}$ from the components of $x^{(k-1)}$ by

$$
x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1 \ j \neq i}}^n \left(-a_{ij} x_j^{(k-1)} \right) + b_i \right], \quad \text{for } i = 1, 2, \ldots, n.
$$

10

Algorithm 7.1: JACOBI ITERATIVE TECHNIQUE

To solve $A\mathbf{x} = \mathbf{b}$ given an initial approximation $\mathbf{x}^{(0)}$:

INPUT the number of equations and unknowns *n*; the entries a_{ij} , $1 \le i, j \le n$ of the matrix *A*; the entries b_i , $1 \le i \le n$ of **b**; the entries XO_i , $1 \leq i \leq n$ of $XO = X^{(0)}$; tolerance *TOL*; maximum number of iterations *N*.

OUTPUT the approximate solution x_1, \ldots, x_n or a message that the number of iterations was exceeded.

11

Algorithm 7.1: JACOBI ITERATIVE TECHNIQUE

```
Step 1 Set k = 1.
Step 2 While (k \leq N) do Steps 3–6.
      Step 3 For i = 1,..., n
                    set x_i =1
                              rac{1}{a_{ii}}-\sum_{j=1}^nj \neq i(a_{ij}XO_j)+b_i\overline{1}.
      Step 4 If ||\mathbf{x} - \mathbf{XO}|| < \overline{TOL} then OUTPUT (x_1, \ldots, x_n);
              STOP. (Procedure successful.)
      Step 5 Set k = k + 1.
      Step 6 For i = 1, \ldots, n set XO_i = x_i.
Step 7 OUTPUT ('Maximum number of iterations exceeded');
        (The procedure was successful.)
         STOP.
```
12

Possible improvement in Algorithm 7.1 can be seen by reconsidering the formula for $\mathbf{x}_i^{(k)}$ from the Jacobi iterative method. The components of $\mathbf{x}^{(k-1)}$ are used to compute all the components $x_i^{(k)}$ of $\mathbf{x}^{(k)}$. But, for $i > 1$, the components $x_1^{(k)}, \ldots, x_{i-1}^{(k)}$ of $\mathbf{x}^{(k)}$ have already been computed and are expected to be better approximations to the actual solutions x_1, \ldots, x_{i-1} than are $x_1^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$. It seems reasonable, then, to compute $x_i^{(k)}$ using these most recently calculated values. That is, to use

$$
x_i^{(k)} = \frac{1}{a_{ii}} \left[- \sum_{j=1}^{i-1} (a_{ij} x_j^{(k)}) - \sum_{j=i+1}^n (a_{ij} x_j^{(k-1)}) + b_i \right],
$$

for each $i = 1, 2, \ldots, n$, instead of Eq. (7.5). This modification is called the **Gauss-Seidel iterative technique**

13

Algorithm 7.2: GAUSS-SEIDEL ITERATIVE TECHNIQUE

To solve $A\mathbf{x} = \mathbf{b}$ given an initial approximation $\mathbf{x}^{(0)}$:

INPUT the number of equations and unknowns *n*; the entries a_{ij} , $1 \le i, j \le n$ of the matrix *A*; the entries b_i , $1 \le i \le n$ of **b**; the entries XO_i , $1 \leq i \leq n$ of $XO = X^{(0)}$; tolerance *TOL*; maximum number of iterations *N*.

OUTPUT the approximate solution x_1, \ldots, x_n or a message that the number of iterations was exceeded.

14

Algorithm 7.2: GAUSS-SEIDEL ITERATIVE TECHNIQUE

Step 1 Set $k = 1$. Step 2 While $(k \leq N)$ do Steps 3–6. Step 3 For *i* = 1*,..., n* set $x_i =$ 1 *aii* $\int -\sum_{j=1}^{i-1} a_{ij}x_j - \sum_{j=i+1}^{n} a_{ij}XO_j + b_i$ $\overline{}$. Step 4 If $||\mathbf{x} - \mathbf{XO}|| < 7OL$ then OUTPUT (x_1, \ldots, x_n) ; STOP. (*Procedure successful*.) Step 5 Set $k = k + 1$. Step 6 For $i = 1, \ldots, n$ set $XO_i = x_i$. Step 7 OUTPUT ('Maximum number of iterations exceeded'); (*The procedure was successful*.) STOP.

15

Lemma (7.18)

If the spectral radius satisfies $\rho(T) < 1$, then $(I - T)^{-1}$ exists, *and*

$$
(I-T)^{-1} = I + T + T^2 + \cdots = \sum_{j=0}^{\infty} T^j.
$$

Theorem (7.19)

For any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^\infty$ defined by

$$
\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}, \quad \text{for each } k \ge 1,
$$

converges to the unique solution of $x = Tx + c$ *if and only if* $\rho(T) < 1$.

16

Corollary (7.20)

If $||T|| < 1$ *for any natural matrix norm and* **c** *is a given vector, then the sequence* $\{ \mathbf{x}^{(k)} \}_{k=0}^{\infty}$ *defined by* $\mathbf{x}^{(k)} = T \mathbf{x}^{(k-1)} + \mathbf{c}$ *converges, for any* $\mathbf{x}^{(0)} \in \mathbb{R}^n$, to a vector $\mathbf{x} \in \mathbb{R}^n$, with **x** = *T***x** + **c***, and the following error bounds hold:* $(|\mathbf{X} - \mathbf{X}^{(k)}| \leq ||T||^k ||\mathbf{X}^{(0)} - \mathbf{X}||$ **(ii)** $\|\mathbf{x} - \mathbf{x}^{(k)}\| \le \frac{\|T\|^k}{1 - \|T\|} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|.$

Theorem (7.21)

If A is strictly diagonally dominant, then for any choice of $x^{(0)}$, *both the Jacobi and Gauss-Seidel methods give sequences* $\{X^{(k)}\}_{k=0}^{\infty}$ *that converge to the unique solution of* A *x = b<i>.*

17

Theorem (7.22)

If $a_{ii} \leq 0$ *, for each i* $\neq j$ *and* $a_{ii} > 0$ *, for each i* = 1*,* 2*,..., n, then one and only one of the following statements holds:*

(i) $0 \le \rho(T_q) < \rho(T_i) < 1$; (ii) $1 < \rho(T_i) < \rho(T_q)$;

(iii) $\rho(T_i) = \rho(T_g) = 0;$ (iv) $\rho(T_i) = \rho(T_g) = 1.$

18

Definition (7.23)

Suppose $\tilde{\mathbf{x}} \in \mathbb{R}^n$ is an approximation to the solution of the linear system defined by $A\mathbf{x} = \mathbf{b}$. The **residual vector** for $\tilde{\mathbf{x}}$ with respect to this system is $\mathbf{r} = \mathbf{b} - A\tilde{\mathbf{x}}$.

If we modify the Gauss-Seidel procedure, to

$$
x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_{ii}^{(k)}}{a_{ii}}
$$

where

$$
r_{ii}^{(k)}=b_i-\sum_{j=1}^{i-1}a_{ij}x_j^{(k)}-\sum_{j=i+1}^n a_{ij}x_j^{(k-1)}-a_{ii}x_i^{(k-1)},
$$

then for certain choices of positive ω the norm of the residual vector can be reduced and we obtain significantly faster convergence.

19

Methods involving the equation

$$
x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_{ii}^{(k)}}{a_{ii}},
$$

are called **relaxation methods**.

For choices of ω with $0 < \omega < 1$, the procedures are called **under-relaxation methods**. We will be interested in choices of ω with 1 $<$ ω , and these are called **over-relaxation methods**. They are used to accelerate the convergence for systems that are convergent by the Gauss-Seidel technique. The methods are abbreviated **SOR**, for **Successive Over-Relaxation**, and are particularly useful for solving the linear systems that occur in the numerical solution of certain partial-differential equations.

20

Theorem (7.24 (Kahan))

If a_{ii} \neq 0, for each $i = 1, 2, \ldots, n$, then $\rho(T_\omega) \ge |\omega - 1|$. This implies *that the SOR method can converge only if* $0 < \omega < 2$.

Theorem (7.25 (Ostrowski-Reich))

If A is a positive definite matrix and $0 < \omega < 2$, then the SOR method *converges for any choice of initial approximate vector* $x^{(0)}$.

Theorem (7.26)

If A is positive definite and tridiagonal, then $\rho(T_q) = [\rho(T_i)]^2 < 1$ *, and the optimal choice of* ω for the SOR method is

$$
\omega=\frac{2}{1+\sqrt{1-[\rho(\mathcal{T}_j)]^2}}.
$$

With this choice of ω , we have $\rho(T_{\omega}) = \omega - 1$.

Numerical Analysis

21

Algorithm 7.3: SOR

To solve $A\mathbf{x} = \mathbf{b}$ given the parameter ω and an initial approximation **x**(0) :

INPUT the number of equations and unknowns *n*; the entries *aij*, $1 \le i, j \le n$, of the matrix A; the entries b_i , $1 \le i \le n$, of **b**; the entries XO_i , $1 \le i \le n$, of $XO = X^{(0)}$; the parameter ω ; tolerance *TOL*; maximum number of iterations *N*.

OUTPUT the approximate solution x_1, \ldots, x_n or a message that the number of iterations was exceeded.

22

Algorithm 7.3: SOR

```
Step 1 Set k = 1.
Step 2 While (k \leq N) do Steps 3–6.
      Step 3 For i = 1,..., n set
        x_i = (1 - \omega)XO_i +1
                               aii
                                   \sqrt{ }\omega\left(-\sum_{j=1}^{i-1} a_{ij}x_j - \sum_{j=i+1}^{n} a_{ij}XO_j + b_i\right)\right].Step 4 If ||\mathbf{x} - \mathbf{XO}|| < \text{TOL} then OUTPUT (x_1, \ldots, x_n);
                                              (The procedure was successful.)
                                              STOP.
      Step 5 Set k = k + 1.
      Step 6 For i = 1, \ldots, n set XO_i = x_i.
Step 7 OUTPUT ('Maximum number of iterations exceeded');
         (The procedure was successful.)
         STOP.
```
23

Theorem (7.27)

Suppose that **x**˜ *is an approximation to the solution of A***x** = **b***, A is a nonsingular matrix, and r <i>is the residual vector for* $\tilde{\mathbf{x}}$ *. Then for any natural norm,*

$$
\|\mathbf{x}-\tilde{\mathbf{x}}\| \leq \|\mathbf{r}\| \cdot \|\mathbf{A}^{-1}\|
$$

and if $\mathbf{x} \neq \mathbf{0}$ *and* $\mathbf{b} \neq \mathbf{0}$ *,*

$$
\frac{\Vert \mathbf{x} - \tilde{\mathbf{x}} \Vert}{\Vert \mathbf{x} \Vert} \leq \Vert A \Vert \cdot \Vert A^{-1} \Vert \frac{\Vert \mathbf{r} \Vert}{\Vert \mathbf{b} \Vert}.
$$

Definition (7.28)

The **condition number** of the nonsingular matrix *A* relative to a norm $\| \cdot \|$ is $K(A) = \|A\| \cdot \|A^{-1}\|.$

24

Iterative refinement, or *Iterative improvement*, consists of performing iterations on the system whose right-hand side is the residual vector for successive approximations until satisfactory accuracy results.

Algorithm 7.4: ITERATIVE REFINEMENT

To approximate the solution to the linear system $Ax = b$:

INPUT the number of equations and unknowns *n*; the entries a_{ij} , $1 \le i, j \le n$ of the matrix *A*; the entries b_i , $1 \le i \le n$ of **b**; the maximum number of iterations *N*; tolerance *TOL*; number of digits of precision *t*.

OUTPUT the approximation $\mathbf{x} \mathbf{x} = (x x_i, \dots, x x_n)^t$ or a message that the number of iterations was exceeded, and an approximation *COND* to $K_{\infty}(A)$.

25

Algorithm 7.4: ITERATIVE REFINEMENT

Step 0 Solve the system $Ax = b$ for x_1, \ldots, x_n by Gaussian elimination saving multipliers m_{ji} , $j = i + 1, i + 2, \ldots, n$, $i = 1, 2, \ldots, n - 1$ and noting row interchanges. Step 1 Set $k = 1$. Step 2 While $(k < N)$ do Steps 3–9. Step 3 For $i = 1, 2, ..., n$ (*Calculate* **r**.) set $r_i = b_i - \sum_{j=1}^n a_{ij}x_j$. (*Perform computations in double-precision arithmetic*.) Step 4 Solve the linear system $Ay = r$ by using Gaussian elimination in the same order as in Step 0. Step 5 For $i = 1, \ldots, n$ set $xx_i = x_i + y_i$. Step 6 If $k = 1$ then set $COND = \frac{\|\mathbf{y}\|_{\infty}}{\|\mathbf{y}\|_{\infty}}$ $\|\mathbf{XX}\|_{\infty}$ 10*^t* . Step 7 If $\|\mathbf{x} - \mathbf{x}\mathbf{x}\|_{\infty} < \text{TOL}$ then OUTPUT ($\mathbf{x}\mathbf{x}$);OUTPUT (*COND*); STOP. (*Procedure successful*.) Step 8 Set $k = k + 1$. Step 9 For $i = 1, \ldots, n$ set $x_i = xx_i$. Step 10 OUTPUT ('Max number iterations exceeded'); OUTPUT (*COND*); STOP. (*Procedure unsuccessful*.)

26

Theorem (7.29)

Suppose A is nonsingular and

$$
\|\delta A\|<\frac{1}{\|A^{-1}\|}.
$$

The solution $\tilde{\mathbf{x}}$ *to* $(A + \delta A)\tilde{\mathbf{x}} = \mathbf{b} + \delta \mathbf{b}$ approximates the solution **x** *of A***x** = **b** *with the error estimate*

$$
\frac{\|\mathbf{x}-\tilde{\mathbf{x}}\|}{\|\mathbf{x}\|}\leq \frac{K(A)\|A\|}{\|A\| - K(A)\|\delta A\|}\left(\frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}+\frac{\|\delta A\|}{\|A\|}\right).
$$

Theorem (7.30)

Let $\langle x, y \rangle = x^*y$ *be the inner product notation. For any vectors* **x***,* **y***, and* **z** *and any real number* α *, we have* 27

- **(a)** $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ **(b)** $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$
- **(c)** $\langle \mathbf{x} + \mathbf{z}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{z}, \mathbf{y} \rangle$ **(d)** $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$
- **(e)** $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ *if and only if* $\mathbf{x} = \mathbf{0}$

Theorem (7.31)

The vector **x**⇤ *is a solution to the positive definite linear system* $Ax = b$ *if and only if* x^* *produces the minimal value of*

$$
g(\mathbf{x}) = \langle \mathbf{x}, A\mathbf{x} \rangle - 2\langle \mathbf{x}, \mathbf{b} \rangle.
$$

Theorem (7.32)

For any vectors **x***,* **y***, and* **z** *and any real number* α *, we have Let {***v**(1) *,...,* **v**(*n*) *} be an A-orthogonal set of nonzero vectors* $(\langle v^{(i)}, Av^{(j)} \rangle = 0, \text{ if } i \neq j.)$ associated with the positive definite matrix *A, and let* **x**(0) *be arbitrary. Define*

28

$$
t_k = \frac{\langle \mathbf{v}^{(k)}, \mathbf{b} - A\mathbf{x}^{(k-1)} \rangle}{\langle \mathbf{v}^{(k)}, A\mathbf{v}^{(k)} \rangle}
$$
 and $\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} + t_k \mathbf{v}^{(k)},$

for $k = 1, 2, \ldots, n$. Then, assuming exact arithmetic, $A\mathbf{x}^{(n)} = \mathbf{b}$.

Theorem (7.33)

The residual vectors $\mathbf{r}^{(k)}$, where $k = 1, 2, \ldots, n$, for a conjugate *direction method, satisfy the equations*

$$
\langle \mathbf{r}^{(k)}, \mathbf{v}^{(j)} \rangle = 0
$$
, for each $j = 1, 2, ..., k$.

Preconditioning replaces a given system with one having the same solutions but with better convergence characteristics.

29

Algorithm 7.5: PRECONDITIONED CONJUGATE GRADIENT

To solve A **x** = **b** given the preconditioning matrix C^{-1} and the initial approximation **x**(0) :

INPUT the number of equations and unknowns *n*; the entries *aij*, $1 \leq i, j \leq n$ of the matrix A; the entries b_i , $1 \leq j \leq n$ of the vector **b**; the entries γ_{ij} , $1 \le i, j \le n$ of the preconditioning matrix C^{-1} , the entries x_i , $1 \le i \le n$ of the initial approximation $\mathbf{x} = \mathbf{x}^{(0)}$, the maximum number of iterations *N*; tolerance *TOL*.

OUTPUT the approximate solution x_1, \ldots, x_n and the residual r_1, \ldots, r_n or a message that the number of iterations was exceeded.

Preconditioning replaces a given system with one having the same solutions but with better convergence characteristics.

30

Algorithm 7.5: PRECONDITIONED CONJUGATE GRADIENT

Step 1 Set **r** = **b** - A**x**; (*Compute* **r**⁽⁰⁾.) $\mathbf{w} = C^{-1}\mathbf{r}$; (*Note:* $\mathbf{w} = \mathbf{w}^{(0)}$) $\mathbf{v} = C^{-t} \mathbf{w};$ (Note: $\mathbf{v} = \mathbf{v}^{(1)})$ $\alpha = \sum_{j=1}^{n} w_j^2$. Step 2 Set $k = 1$. Step 3 While $(k \leq N)$ do Steps 4–7. Step 4 If $\|\mathbf{v}\| < \textit{TOL}$, then OUTPUT ('Solution vector'; x_1, \ldots, x_n); OUTPUT ('with residual'; r_1, \ldots, r_n); STOP (*The procedure was successful.*)

31

Algorithm 7.5: PRECONDITIONED CONJUGATE GRADIENT

Step 5 Set **u** = *A***v**; (*Note:* **u** = *A***v**(*k*)) $t =$ α $\sum_{j=1}^n v_j u_j$; (*Note: t* = *tk*) $\mathbf{x} = \mathbf{x} + t\mathbf{v}$; (Note: $\mathbf{x} = \mathbf{x}^{(k)}$) **r** = **r** - *t***u**; (*Note:* **r** = **r**^(*k*)) $\mathbf{w} = C^{-1}\mathbf{r}$; (*Note:* $\mathbf{w} = \mathbf{w}^{(k)}$) $\beta = \sum_{j=1}^n w_j^2$. (Note: $\beta = \langle \mathbf{w}^{(k)}, \mathbf{w}^{(k)} \rangle$) Step 6 If $|\beta|$ < TOL then if $\|\mathbf{r}\| < \textit{TOL}$ then OUTPUT('Solution vector'; x_1, \ldots, x_n); OUTPUT('with residual'; r_1, \ldots, r_n); (*The procedure was successful.*) STOP

32

Algorithm 7.5: PRECONDITIONED CONJUGATE GRADIENT

Step 7 Set
$$
s = \beta/\alpha
$$
; $(s = s_k)$
\n $\mathbf{v} = C^{-t}\mathbf{w} + s\mathbf{v}$; *(Note: $\mathbf{v} = \mathbf{v}^{(k+1)})$*
\n $\alpha = \beta$; *(Update α .)*
\n $k = k + 1$.
\nStep 8 If $(k > n)$ then
\nOUTPUT (The maximum number of iterations exceeded.');
\n(*The procedure was unsuccessful*.)
\nSTOP.