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Chapter 7.1: Norms of Vectors and Matrices

Definition (7.1)
A vector norm on Rn is a function, k · k, from Rn into R with the
following properties:

(i) kxk � 0 for all x 2 Rn,

(ii) kxk = 0 if and only if x = 0,

(iii) k↵xk = |↵|kxk for all ↵ 2 R and x 2 Rn,

(iv) kx + yk  kxk +kyk for all x, y 2 R

Definition (7.2)
The l2 and l1 norms for the vector x = (x1, x2, . . . , xn)t are defined by

kxk2 =

⇢ nX

i=1

x2
i

�1/2

and kxk1 = max
1in

|xi |.

| Numerical Analysis 10E



2

Chapter 7.1: Norms of Vectors and Matrices

Theorem (7.3: Cauchy-Bunyakovsky-Schwarz inequality)
For each x = (x1, x2, . . . , xn)t and y = (y1, y2, . . . , yn)t in Rn,

xty =
nX

i=1

xiyi 
(

nX

i=1

x2
i

)1/2 ( nX

i=1

y2
i

)1/2

= kxk2 · kyk2.

Definition (7.4)
If x = (x1, x2, . . . , xn)t and y = (y1, y2, . . . , yn)t are vectors in Rn,
the l2 and l1 distances between x and y are defined by

kx� yk2 =

⇢ nX

i=1

(xi � yi)
2
�1/2

and kx� yk1 = max
1in

|xi � yi |.
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Chapter 7.1: Norms of Vectors and Matrices

Definition (7.5)
A sequence {x(k)}1k=1 of vectors in Rn is said to converge to x
with respect to the norm k · k if, given any " > 0, there exists an
integer N(") such that

kx(k) � xk < ", for all k � N(").

Theorem (7.6)
The sequence of vectors {x(k)} converges to x in Rn with
respect to the l1 norm if and only if limk!1 x (k)

i = xi , for each
i = 1, 2, . . . , n.
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Chapter 7.1: Norms of Vectors and Matrices

Theorem (7.7)
For each x 2 Rn, kxk1  kxk2 

p
nkxk1.

Definition (7.8)
A matrix norm on the set of all n ⇥ n matrices is a real-valued
function, k · k, defined on this set, satisfying for all n ⇥ n matrices A
and B and all real numbers ↵:

(i) kAk � 0;

(ii) kAk = 0, if and only if A is O, the matrix with all 0 entries;

(iii) k↵Ak = |↵|kAk;

(iv) kA + Bk  kAk+ kBk;

(v) kABk  kAkkBk.
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Chapter 7.1: Norms of Vectors and Matrices

Theorem (7.9)
If || · || is a vector norm on Rn, then kAk = maxkxk=1 kAxk is a
matrix norm.

Corollary (7.10)
For any vector z 6= 0, matrix A, and any natural norm k · k, we
have

kAzk  kAk · kzk.

Theorem (7.11)

If A = (aij) is an n ⇥ n matrix, then kAk1 = max
1in

nX

j=1

|aij |.
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Chapter 7.2: Eigenvalues and Eigenvectors

Definition (7.12)
If A is a square matrix, the characteristic polynomial of A is
defined by

p(�) = det(A � �I).

Definition (7.13)
If p is the characteristic polynomial of the matrix A, the zeros of
p are called eigenvalues, or characteristic values, of the matrix
A. If � is an eigenvalue of A and x 6= 0 satisfies (A � �I)x = 0,
then x is an eigenvector, or characteristic vector, of A
corresponding to the eigenvalue �.
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Chapter 7.2: Eigenvalues and Eigenvectors

Definition (7.14)
The spectral radius ⇢(A) of a matrix A is defined by

⇢(A) = max |�|, where � is an eigenvalue of A.

(For complex � = ↵+ �i , we define |�| = (↵2 + �2)1/2.)

Theorem (7.15)
If A is an n ⇥ n matrix, then

(i) kAk2 = [⇢(AtA)]1/2,
(ii) ⇢(A)  kAk, for any natural norm k · k.
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Chapter 7.2: Eigenvalues and Eigenvectors

Definition (7.16)
We call an n ⇥ n matrix A convergent if

lim
k!1

(Ak )ij = 0, for each i = 1, 2, . . . , n and j = 1, 2, . . . , n.

Theorem (7.17)
The following statements are equivalent.

(i) A is a convergent matrix.
(ii) limn!1 kAnk = 0, for some natural norm.
(iii) limn!1 kAnk = 0, for all natural norms.
(iv) ⇢(A) < 1.
(v) limn!1 Anx = 0, for every x.
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Chapter 7.3: Jacobi and Gauss-Siedel Iterative
Techniques

The Jacobi iterative method is obtained by solving the i th
equation in Ax = b for xi to obtain (provided aii 6= 0)

xi =
nX

j=1
j 6=i

✓
�

aijxj

aii

◆
+

bi

aii
, for i = 1, 2, . . . , n.

For each k � 1, generate the components x (k)
i of x(k) from the

components of x(k�1) by

x (k)
i =

1
aii

2

664
nX

j=1
j 6=i

⇣
�aijx

(k�1)
j

⌘
+ bi

3

775 , for i = 1, 2, . . . , n.
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Chapter 7.3: Jacobi and Gauss-Siedel Iterative
Techniques

Algorithm 7.1: JACOBI ITERATIVE TECHNIQUE
To solve Ax = b given an initial approximation x(0):

INPUT the number of equations and unknowns n; the entries
aij , 1  i , j  n of the matrix A; the entries bi , 1  i  n of b;
the entries XOi , 1  i  n of XO = x(0); tolerance TOL;
maximum number of iterations N.

OUTPUT the approximate solution x1, . . . , xn or a message that
the number of iterations was exceeded.
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Chapter 7.3: Jacobi and Gauss-Siedel Iterative
Techniques

Algorithm 7.1: JACOBI ITERATIVE TECHNIQUE
Step 1 Set k = 1.
Step 2 While (k  N) do Steps 3–6.

Step 3 For i = 1, . . . , n

set xi =
1
aii

"
�
Pn

j=1
j 6=i

(aijXOj) + bi

#
.

Step 4 If ||x � XO|| < TOL then OUTPUT (x1, . . . , xn);
STOP. (Procedure successful.)

Step 5 Set k = k + 1.
Step 6 For i = 1, . . . , n set XOi = xi .

Step 7 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was successful.)
STOP.
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Chapter 7.3: Jacobi and Gauss-Siedel Iterative
Techniques

Possible improvement in Algorithm 7.1 can be seen by reconsidering
the formula for x(k)

i from the Jacobi iterative method. The components
of x(k�1) are used to compute all the components x (k)

i of x(k). But, for
i > 1, the components x (k)

1 , . . . , x (k)
i�1 of x(k) have already been

computed and are expected to be better approximations to the actual
solutions x1, . . . , xi�1 than are x (k�1)

1 , . . . , x (k�1)
i�1 . It seems reasonable,

then, to compute x (k)
i using these most recently calculated values.

That is, to use

x (k)
i =

1
aii

2

4�
i�1X

j=1

(aijx
(k)
j )�

nX

j=i+1

(aijx
(k�1)
j ) + bi

3

5 ,

for each i = 1, 2, . . . , n, instead of Eq. (7.5). This modification is
called the Gauss-Seidel iterative technique
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Chapter 7.3: Jacobi and Gauss-Siedel Iterative
Techniques

Algorithm 7.2: GAUSS-SEIDEL ITERATIVE TECHNIQUE
To solve Ax = b given an initial approximation x(0):

INPUT the number of equations and unknowns n; the entries
aij , 1  i , j  n of the matrix A; the entries bi , 1  i  n of b;
the entries XOi , 1  i  n of XO = x(0); tolerance TOL;
maximum number of iterations N.

OUTPUT the approximate solution x1, . . . , xn or a message that
the number of iterations was exceeded.
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Chapter 7.3: Jacobi and Gauss-Siedel Iterative
Techniques

Algorithm 7.2: GAUSS-SEIDEL ITERATIVE TECHNIQUE
Step 1 Set k = 1.
Step 2 While (k  N) do Steps 3–6.

Step 3 For i = 1, . . . , n

set xi =
1
aii

h
�
Pi�1

j=1 aijxj �
Pn

j=i+1 aijXOj + bi

i
.

Step 4 If ||x � XO|| < TOL then OUTPUT (x1, . . . , xn);
STOP. (Procedure successful.)

Step 5 Set k = k + 1.
Step 6 For i = 1, . . . , n set XOi = xi .

Step 7 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was successful.)
STOP.
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Chapter 7.3: Jacobi and Gauss-Siedel Iterative
Techniques

Lemma (7.18)
If the spectral radius satisfies ⇢(T ) < 1, then (I � T )�1 exists,
and

(I � T )�1 = I + T + T 2 + · · · =
1X

j=0

T j .

Theorem (7.19)
For any x(0) 2 Rn, the sequence {x(k)}1k=0 defined by

x(k) = T x(k�1) + c, for each k � 1,

converges to the unique solution of x = T x + c if and only if
⇢(T ) < 1.
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Chapter 7.3: Jacobi and Gauss-Siedel Iterative
Techniques

Corollary (7.20)
If kTk < 1 for any natural matrix norm and c is a given vector,
then the sequence {x(k)}1k=0 defined by x(k) = T x(k�1) + c
converges, for any x(0) 2 Rn, to a vector x 2 Rn, with
x = T x + c, and the following error bounds hold:

(i) kx � x(k)k  kTkkkx(0) � xk;

(ii) kx � x(k)k  kTkk

1�kTkkx(1) � x(0)k.

Theorem (7.21)
If A is strictly diagonally dominant, then for any choice of x(0),
both the Jacobi and Gauss-Seidel methods give sequences
{x(k)}1k=0 that converge to the unique solution of Ax = b.
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Chapter 7.3: Jacobi and Gauss-Siedel Iterative
Techniques

Theorem (7.22)
If aij  0, for each i 6= j and aii > 0, for each i = 1, 2, . . . , n, then
one and only one of the following statements holds:

(i) 0  ⇢(Tg) < ⇢(Tj) < 1; (ii) 1 < ⇢(Tj) < ⇢(Tg);

(iii) ⇢(Tj) = ⇢(Tg) = 0; (iv) ⇢(Tj) = ⇢(Tg) = 1.
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Chapter 7.4: Relaxation Techniques for Solving
Linear Systems

Definition (7.23)
Suppose x̃ 2 Rn is an approximation to the solution of the linear
system defined by Ax = b. The residual vector for x̃ with respect to
this system is r = b � Ax̃.

If we modify the Gauss-Seidel procedure, to

x (k)
i = x (k�1)

i + !
r (k)ii
aii

where

r (k)ii = bi �
i�1X

j=1

aijx
(k)
j �

nX

j=i+1

aijx
(k�1)
j � aiix

(k�1)
i ,

then for certain choices of positive ! the norm of the residual vector
can be reduced and we obtain significantly faster convergence.
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Chapter 7.4: Relaxation Techniques for Solving
Linear Systems

Methods involving the equation

x (k)
i = x (k�1)

i + !
r (k)ii
aii

,

are called relaxation methods.

For choices of ! with 0 < ! < 1, the procedures are called
under-relaxation methods. We will be interested in choices of
! with 1 < !, and these are called over-relaxation methods.
They are used to accelerate the convergence for systems that
are convergent by the Gauss-Seidel technique. The methods
are abbreviated SOR, for Successive Over-Relaxation, and
are particularly useful for solving the linear systems that occur
in the numerical solution of certain partial-differential equations.
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Chapter 7.4: Relaxation Techniques for Solving
Linear Systems

Theorem (7.24 (Kahan))
If aii 6= 0, for each i = 1, 2, . . . , n, then ⇢(T!) � |! � 1|. This implies
that the SOR method can converge only if 0 < ! < 2.

Theorem (7.25 (Ostrowski-Reich))
If A is a positive definite matrix and 0 < ! < 2, then the SOR method
converges for any choice of initial approximate vector x(0).

Theorem (7.26)
If A is positive definite and tridiagonal, then ⇢(Tg) = [⇢(Tj)]2 < 1, and
the optimal choice of ! for the SOR method is

! =
2

1 +
p

1 � [⇢(Tj)]2
.

With this choice of !, we have ⇢(T!) = ! � 1.
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Chapter 7.4: Relaxation Techniques for Solving
Linear Systems

Algorithm 7.3: SOR
To solve Ax = b given the parameter ! and an initial approximation
x(0):

INPUT the number of equations and unknowns n; the entries aij ,
1  i , j  n, of the matrix A; the entries bi , 1  i  n, of b; the entries
XOi , 1  i  n, of XO = x(0); the parameter !; tolerance TOL;
maximum number of iterations N.

OUTPUT the approximate solution x1, . . . , xn or a message that the
number of iterations was exceeded.
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Chapter 7.4: Relaxation Techniques for Solving
Linear Systems

Algorithm 7.3: SOR
Step 1 Set k = 1.
Step 2 While (k  N) do Steps 3–6.

Step 3 For i = 1, . . . , n set

xi = (1 � !)XOi +
1
aii

h
!
⇣
�
Pi�1

j=1 aijxj �
Pn

j=i+1 aijXOj + bi

⌘i
.

Step 4 If ||x � XO|| < TOL then OUTPUT (x1, . . . , xn);
(The procedure was successful.)
STOP.

Step 5 Set k = k + 1.
Step 6 For i = 1, . . . , n set XOi = xi .

Step 7 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was successful.)
STOP.
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Chapter 7.5: Error Bounds and Iterative Refine-
ment

Theorem (7.27)
Suppose that x̃ is an approximation to the solution of Ax = b, A is a
nonsingular matrix, and r is the residual vector for x̃. Then for any
natural norm,

kx � x̃k  krk · kA�1k

and if x 6= 0 and b 6= 0,

kx � x̃k
kxk  kAk · kA�1k krk

kbk .

Definition (7.28)
The condition number of the nonsingular matrix A relative to a norm
k · k is K (A) = kAk · kA�1k.
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Chapter 7.5: Error Bounds and Iterative Refine-
ment

Iterative refinement, or Iterative improvement, consists of
performing iterations on the system whose right-hand side is
the residual vector for successive approximations until
satisfactory accuracy results.

Algorithm 7.4: ITERATIVE REFINEMENT
To approximate the solution to the linear system Ax = b:

INPUT the number of equations and unknowns n; the entries
aij , 1  i , j  n of the matrix A; the entries bi , 1  i  n of b;
the maximum number of iterations N; tolerance TOL; number of
digits of precision t .

OUTPUT the approximation xx = (xxi , . . . , xxn)t or a message
that the number of iterations was exceeded, and an
approximation COND to K1(A).
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Chapter 7.5: Error Bounds and Iterative Refine-
ment

Algorithm 7.4: ITERATIVE REFINEMENT
Step 0 Solve the system Ax = b for x1, . . . , xn by Gaussian elimination saving

multipliers mji , j = i + 1, i + 2, . . . , n, i = 1, 2, . . . , n � 1 and noting row
interchanges.

Step 1 Set k = 1.
Step 2 While (k  N) do Steps 3–9.

Step 3 For i = 1, 2, . . . , n (Calculate r.) set ri = bi �
Pn

j=1 aij xj .
(Perform computations in double-precision arithmetic.)

Step 4 Solve the linear system Ay = r by using Gaussian
elimination in the same order as in Step 0.

Step 5 For i = 1, . . . , n set xxi = xi + yi .

Step 6 If k = 1 then set COND =
kyk1
kxxk1

10t .

Step 7 If kx � xxk1 < TOL then OUTPUT (xx);OUTPUT (COND);
STOP. (Procedure successful.)

Step 8 Set k = k + 1.
Step 9 For i = 1, . . . , n set xi = xxi .

Step 10 OUTPUT (‘Max number iterations exceeded’); OUTPUT (COND);
STOP. (Procedure unsuccessful.)

| Numerical Analysis 10E



26

Chapter 7.5: Error Bounds and Iterative Refine-
ment

Theorem (7.29)
Suppose A is nonsingular and

k�Ak <
1

kA�1k
.

The solution x̃ to (A + �A)x̃ = b + �b approximates the solution
x of Ax = b with the error estimate

kx � x̃k
kxk  K (A)kAk

kAk � K (A)k�Ak

✓
k�bk
kbk +

k�Ak
kAk

◆
.
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Chapter 7.6: Conjugate Gradient Method

Theorem (7.30)
Let hx, yi = x⇤y be the inner product notation.
For any vectors x, y, and z and any real number ↵, we have

(a) hx, yi = hy, xi (b) h↵x, yi = hx,↵yi = ↵hx, yi

(c) hx + z, yi = hx, yi+ hz, yi (d) hx, xi � 0

(e) hx, xi = 0 if and only if x = 0

Theorem (7.31)
The vector x⇤ is a solution to the positive definite linear system
Ax = b if and only if x⇤ produces the minimal value of

g(x) = hx,Axi � 2hx,bi.
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Chapter 7.6: Conjugate Gradient Method

Theorem (7.32)
For any vectors x, y, and z and any real number ↵, we have Let
{v(1), . . . , v(n)} be an A-orthogonal set of nonzero vectors
(hv(i),Av(j)i = 0, if i 6= j .) associated with the positive definite matrix
A, and let x(0) be arbitrary. Define

tk =
hv(k),b � Ax(k�1)i

hv(k),Av(k)i
and x(k) = x(k�1) + tk v(k),

for k = 1, 2, . . . , n. Then, assuming exact arithmetic, Ax(n) = b.

Theorem (7.33)
The residual vectors r(k), where k = 1, 2, . . . , n, for a conjugate
direction method, satisfy the equations

hr(k), v(j)i = 0, for each j = 1, 2, . . . , k .
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Chapter 7.6: Conjugate Gradient Method

Preconditioning replaces a given system with one having the
same solutions but with better convergence characteristics.

Algorithm 7.5: PRECONDITIONED CONJUGATE
GRADIENT
To solve Ax = b given the preconditioning matrix C�1 and the initial
approximation x(0):

INPUT the number of equations and unknowns n; the entries aij ,
1  i , j  n of the matrix A; the entries bj , 1  j  n of the vector b;
the entries �ij , 1  i , j  n of the preconditioning matrix C�1, the
entries xi , 1  i  n of the initial approximation x = x(0), the
maximum number of iterations N; tolerance TOL.

OUTPUT the approximate solution x1, . . . xn and the residual r1, . . . rn
or a message that the number of iterations was exceeded.
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Chapter 7.6: Conjugate Gradient Method

Preconditioning replaces a given system with one having the
same solutions but with better convergence characteristics.

Algorithm 7.5: PRECONDITIONED CONJUGATE
GRADIENT
Step 1 Set r = b � Ax; (Compute r(0).)

w = C�1r; (Note: w = w(0))
v = C�tw; (Note: v = v(1))
↵ =

Pn
j=1 w2

j .
Step 2 Set k = 1.
Step 3 While (k  N) do Steps 4–7.

Step 4 If kvk < TOL, then
OUTPUT (‘Solution vector’; x1, . . . , xn);
OUTPUT (‘with residual’; r1, . . . , rn);
STOP (The procedure was successful.)
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Chapter 7.6: Conjugate Gradient Method

Algorithm 7.5: PRECONDITIONED CONJUGATE
GRADIENT

Step 5 Set u = Av; (Note: u = Av(k))
t =

↵
Pn

j=1 vjuj
; (Note: t = tk )

x = x + tv; (Note: x = x(k))
r = r � tu; (Note: r = r(k))
w = C�1r; (Note: w = w(k))
� =

Pn
j=1 w2

j . (Note: � = hw(k),w(k)i)
Step 6 If |�| < TOL then

if krk < TOL then
OUTPUT(‘Solution vector’; x1, . . . , xn);
OUTPUT(‘with residual’; r1, . . . , rn);
(The procedure was successful.)
STOP
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Chapter 7.6: Conjugate Gradient Method

Algorithm 7.5: PRECONDITIONED CONJUGATE
GRADIENT

Step 7 Set s = �/↵; (s = sk )
v = C�tw + sv; (Note: v = v(k+1))
↵ = �; (Update ↵.)
k = k + 1.

Step 8 If (k > n) then
OUTPUT (‘The maximum number of iterations exceeded.’);
(The procedure was unsuccessful.)
STOP.
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