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Chapter 8.1: Discrete Least Squares Approx

Motivation
Let a1xi + a0 denote the i th value on the approximating line and
yi be the i th given y -value.

Assume that the independent variables, xi , are exact and the
dependent variables, the yi , are suspect.

Problem: Find the equation of the best linear approximation to
the data {(xi , yi)}m

i=1.
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Chapter 8.1: Discrete Least Squares Approx

Minimax Problem
This approach requires that values of a0 and a1 be found to minimize

E1(a0, a1) = max
1im

{|yi � (a1xi + a0)|}.

DRAWBACK: assigns too much weight to a bit of data that is badly in
error.

Absolute Deviation Problem
This approach requires finding values of a0 and a1 to minimize

E1(a0, a1) =
mX

i=1

|yi � (a1xi + a0)|.

DRAWBACK: does not give sufficient weight to a point that is
considerably out of line with the approximation.
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Chapter 8.1: Discrete Least Squares Approx

NOTE
To minimize a function of two variables, we need to set its
partial derivatives to zero and simultaneously solve the
resulting equations. In the case of the absolute deviation, we
need to find a0 and a1 with

0 =
@

@a0

mX

i=1

|yi�(a1xi+a0)| and 0 =
@

@a1

mX

i=1

|yi�(a1xi+a0)|.

ISSUE: Absolute-value function is not differentiable at zero, and
we might not be able to find solutions to this pair of equations.
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Chapter 8.1: Discrete Least Squares Approx

Least Squares Problem
This approach involves determining the best approximating line when error
involved is the sum of the squares of the differences between the y -values on
the approximating line and the given y -values. Hence, constants a0 and a1

must be found that minimize the least squares error:

E2(a0, a1) =
mX

i=1

[yi � (a1xi + a0)]
2 .

Taking partial derivatives with respect to a0 and a1 leads to a system of
equations with solution

a0 =

Pm
i=1 x2

i
Pm

i=1 yi �
Pm

i=1 xiyi
Pm

i=1 xi

m
�Pm

i=1 x2
i

�
�

�Pm
i=1 xi

�2

and

a1 =
m

Pm
i=1 xiyi �

Pm
i=1 xi

Pm
i=1 yi

m
�Pm

i=1 x2
i

�
�

�Pm
i=1 xi

�2 .
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Chapter 8.1: Discrete Least Squares Approx

Polynomial Least Squares Problem
The general problem of approximating a set of data,
{ (xi , yi) | i = 1, 2, . . . ,m }, with an algebraic polynomial

Pn(x) = anxn + an�1xn�1 + · · ·+ a1x + a0,

of degree n < m � 1, using the least squares procedure is
handled similarly. We choose the constants a0, a1, . . ., an to
minimize the least squares error E = E2(a0, a1, . . . , an), where

E =
mX

i=1

(yi � Pn(xi))
2
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Chapter 8.1: Discrete Least Squares Approx

Exponential Least Squares Problem
At times it is appropriate to assume that the data are
exponentially related. This requires the approximating function
to be of the form

y = beax , or y = bxa,

for some constants a and b. The difficulty with applying the
least squares procedure in a situation of this type comes from
attempting to minimize

E =
mX

i=1

(yi � beaxi )2, or E =
mX

i=1

(yi � bxa
i )

2.
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Chapter 8.2: Orthogonal Polyn. and Least
Squares Approx

Definition (8.1)
The set of functions {�0, . . . ,�n} is said to be linearly

independent on [a, b] if, whenever

c0�0(x) + c1�1(x) + · · ·+ cn�n(x) = 0, for all x 2 [a, b],

we have c0 = c1 = · · · = cn = 0. Otherwise the set of functions
is said to be linearly dependent.

Theorem (8.2)
Suppose that, for each j = 0, 1, . . . , n, �j(x) is a polynomial of
degree j. Then {�0, . . . ,�n} is linearly independent on any
interval [a, b].
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Chapter 8.2: Orthogonal Polyn. and Least
Squares Approx

Theorem (8.3)
Suppose that {�0(x),�1(x), . . . ,�n(x)} is a collection of linearly
independent polynomials in

Q
n. Then any polynomial in

Q
n

can be written uniquely as a linear combination of �0(x), �1(x),
. . ., �n(x).

Definition (8.4)
An integrable function w is called a weight function on the
interval I if w(x) � 0, for all x in I, but w(x) 6⌘ 0 on any
subinterval of I.
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Chapter 8.2: Orthogonal Polyn. and Least
Squares Approx

Definition (8.5)
{�0,�1, . . . ,�n} is said to be an orthogonal set of functions

for the interval [a, b] with respect to the weight function w if

Z b

a
w(x)�k (x)�j(x) dx =

(
0, when j 6= k ,
↵j > 0, when j = k .

If, in addition, ↵j = 1 for each j = 0, 1, . . . , n, the set is said to
be orthonormal.
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Chapter 8.2: Orthogonal Polyn. and Least
Squares Approx

Theorem (8.6)
If {�0, . . . ,�n} is an orthogonal set of functions on an interval
[a, b] with respect to the weight function w, then the least
squares approximation to f on [a, b] with respect to w is

P(x) =
nX

j=0

aj�j(x),

where, for each j = 0, 1, . . . , n,

aj =

R b
a w(x)�j(x)f (x) dx
R b

a w(x)[�j(x)]2 dx
=

1
↵j

Z b

a
w(x)�j(x)f (x) dx .
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Chapter 8.2: Orthogonal Polyn. and Least
Squares Approx

Theorem (8.7)
The set of polynomial functions {�0,�1, . . . ,�n} defined in the following way
is orthogonal on [a, b] with respect to the weight function w.

�0(x) ⌘ 1, �1(x) = x � B1, for each x in [a, b] where

B1 =

R b
a xw(x)[�0(x)]2 dx
R b

a w(x)[�0(x)]2 dx
, and when k � 2,

�k (x) = (x � Bk )�k�1(x)� Ck�k�2(x), for each x in [a, b] where

Bk =

R b
a xw(x)[�k�1(x)]2 dx
R b

a w(x)[�k�1(x)]2 dx
and

Ck =

R b
a xw(x)�k�1(x)�k�2(x) dx
R b

a w(x)[�k�2(x)]2 dx
.
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Chapter 8.2: Orthogonal Polyn. and Least
Squares Approx

Corollary (8.8)
For any n > 0, the set of polynomial functions {�0, . . . ,�n}
given in Theorem 8.7 is linearly independent on [a, b] and

Z b

a
w(x)�n(x)Qk (x) dx = 0,

for any polynomial Qk (x) of degree k < n.
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Chapter 8.3: Chebyshev Polynomials, Econo-
mization of Power Series

NOTE
The Chebyshev polynomials {Tn(x)} are orthogonal on (�1, 1)
with respect to the weight function w(x) = (1 � x2)�1/2 .
For x 2 [�1, 1], define

Tn(x) = cos[n arccos x ], for each n � 0.

For each n, Tn(x) is a polynomial in x .
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Chapter 8.3: Chebyshev Polynomials, Econo-
mization of Power Series

Theorem (8.9)
The Chebyshev polynomial Tn(x) of degree n � 1 has n simple
zeros in [�1, 1] at

x̄k = cos
✓

2k � 1
2n

⇡

◆
, for each k = 1, 2, . . . , n.

Moreover, Tn(x) assumes its absolute extrema at

x̄ 0
k = cos

✓
k⇡
n

◆
with Tn(x̄ 0

k ) = (�1)k ,

for each k = 0, 1, . . . , n.
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Chapter 8.3: Chebyshev Polynomials, Econo-
mization of Power Series

NOTE
The monic (polynomials with leading coefficient 1) Chebyshev
polynomials T̃n(x) are derived from the Chebyshev
polynomials Tn(x) by dividing by the leading coefficient 2n�1.
Hence

T̃0(x) = 1 and T̃n(x) =
1

2n�1 Tn(x), for each n � 1.

The recurrence relationship satisfied by the Chebyshev
polynomials implies that

T̃2(x) = xT̃1(x)�
1
2

T̃0(x) and

T̃n+1(x) = xT̃n(x)�
1
4

T̃n�1(x), for each n � 2.
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Chapter 8.3: Chebyshev Polynomials, Econo-
mization of Power Series

Theorem (8.10)
The polynomials of the form T̃n(x), when n � 1, have the property
that

1
2n�1 = max

x2[�1,1]
|T̃n(x)|  max

x2[�1,1]
|Pn(x)|, for all Pn(x) 2

fY
n
,

where eQ
n denotes the set of monic polynomials of degree n.

Moreover, equality occurs only if Pn ⌘ T̃n.

Corollary (8.11)
Suppose that P(x) is the interpolating polynomial of degree at most n
with nodes at the zeros of Tn+1(x). Then for each f 2 Cn+1[�1, 1]

max
x2[�1,1]

|f (x)� P(x)|  1
2n(n + 1)!

max
x2[�1,1]

|f (n+1)(x)|.
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Chapter 8.4: Rational Function Approximation

Algorithm 8.1: PADÉ APPROXIMATION
To obtain the rational approximation

r(x) =
p(x)
q(x)

=

Pn
i=0 pix i

Pm
j=0 qjx j

for a given function f (x):

INPUT nonnegative integers m and n.

OUTPUT coefficients q0, q1, . . . , qm and p0, p1, . . . , pn.

Step 1 Set N = m + n.

Step 2 For i = 0, 1, . . . ,N set ai =
f (i)(0)

i!
.

(The coefficients of the Maclaurin polynomial are
a0, . . . , aN, which could be input instead of calculated.)
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Chapter 8.4: Rational Function Approximation

Algorithm 8.1: PADÉ APPROXIMATION
Step 3 Set q0 = 1;

p0 = a0.
Step 4 For i = 1, 2, . . . ,N do Steps 5–10.

(Set up a linear system with matrix B.)
Step 5 For j = 1, 2, . . . , i � 1

if j  n then set bi,j = 0.
Step 6 If i  n then set bi,i = 1.
Step 7 For j = i + 1, i + 2, . . . ,N set bi,j = 0.
Step 8 For j = 1, 2, . . . , i

if j  m then set bi,n+j = �ai�j .
Step 9 For j = n + i + 1, n + i + 2, . . . ,N set bi,j = 0.
Step 10 Set bi,N+1 = ai .

(Steps 11–22 solve the linear system using partial pivoting.)
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Chapter 8.4: Rational Function Approximation

Algorithm 8.1: PADÉ APPROXIMATION
Step 11 For i = n + 1, n + 2, . . . ,N � 1 do Steps 12–18.

Step 12 Let k be the smallest integer with i  k  N and
|bk,i | = maxijN |bj,i |.
(Find pivot element.)

Step 13 If bk,i = 0 then OUTPUT
(“The system is singular ”);
STOP.

Step 14 If k 6= i then (Interchange row i and row k.)
for j = i , i + 1, . . . ,N + 1 set

bCOPY = bi,j ;
bi,j = bk,j ;
bk,j = bCOPY.

Step 15 For j = i + 1, i + 2, . . . ,N do Steps 16–18.
(Perform elimination.)
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Chapter 8.4: Rational Function Approximation

Algorithm 8.1: PADÉ APPROXIMATION

Step 16 Set xm =
bj,i

bi,i
.

Step 17 For k = i + 1, i + 2, . . . ,N + 1
set bj,k = bj,k � xm · bi,k .

Step 18 Set bj,i = 0.
Step 19 If bN,N = 0 then OUTPUT (“The system is singular”);

STOP.

Step 20 If m > 0 then set qm =
bN,N+1

bN,N
. (Start backward subs.)

Step 21 For i = N � 1,N � 2, . . . , n + 1, qi�n =
bi,N+1 �

PN
j=i+1 bi,j qj�n

bi,i
.

Step 22 For i = n, n � 1, . . . , 1 set pi = bi,N+1 �
PN

j=n+1 bi,j qj�n.
Step 23 OUTPUT (q0, q1, . . . , qm, p0, p1, . . . , pn);

STOP. (The procedure was successful.)
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Chapter 8.4: Rational Function Approximation

Algorithm 8.2: CHEBYSHEV RATIONAL
APPROXIMATION
To obtain the rational approximation

rT (x) =
Pn

k=0 pk Tk (x)Pm
k=0 qk Tk (x)

for a given function f (x):

INPUT nonnegative integers m and n.

OUTPUT coefficients q0, q1, . . . , qm and p0, p1, . . . , pn.

Step 1 Set N = m + n.
Step 2 Set a0 = 2

⇡

R ⇡
0 f (cos ✓) d✓;

(The coefficient a0 is doubled for computational
efficiency.
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Chapter 8.4: Rational Function Approximation

Algorithm 8.2: CHEBYSHEV RATIONAL
APPROXIMATION

For k = 1, 2, . . . ,N + m set
ak = 2

⇡

R ⇡
0 f (cos ✓) cos k✓ d✓.

(The integrals can be evaluated using a numerical
integration procedure or the coefficients can be input )
directly.)

Step 3 Set q0 = 1.
Step 4 For i = 0, 1, . . . ,N do Steps 5–9.

(Set up a linear system with matrix B.)
Step 5 For j = 0, 1, . . . , i if j  n, then set bi,j = 0.
Step 6 If i  n then set bi,i = 1.
Step 7 For j = i + 1, i + 2, . . . , n set bi,j = 0.
Step 8 For j = n + 1, n + 2, . . . ,N

if i 6= 0 then set bi,j = � 1
2 (ai+j�n + a|i�j+n|)

else set bi,j = � 1
2 aj�n.
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Chapter 8.4: Rational Function Approximation

Algorithm 8.2: CHEBYSHEV RATIONAL
APPROXIMATION

Step 9 If i 6= 0 then set bi,N+1 = ai

else set bi,N+1 = 1
2 ai .

(Steps 10–21 solve the linear system using partial pivoting.)
Step 10 For i = n + 1, n + 2, . . . ,N � 1 do Steps 11–17.

Step 11 Let k be the smallest integer with i  k  N and
|bk,i | = maxijN |bj,i |. (Find pivot element.)

Step 12 If bk,i = 0 then OUTPUT (“The system is singular”);
STOP.

Step 13 If k 6= i then (Interchange row i and row k.)
for j = i , i + 1, . . . ,N + 1 set

bCOPY = bi,j ;
bi,j = bk,j ;
bk,j = bCOPY.
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Chapter 8.4: Rational Function Approximation

Algorithm 8.2: CHEBYSHEV RATIONAL
APPROXIMATION

Step 14 For j = i + 1, i + 2, . . . ,N do Steps 15–17.
(Perform elimination.)

Step 15 Set xm =
bj,i

bi,i
.

Step 16 For k = i + 1, i + 2, . . . ,N + 1
set bj,k = bj,k � xm · bi,k .

Step 17 Set bj,i = 0.
Step 18 If bN,N = 0 then OUTPUT (“The system is singular”); STOP.

Step 19 If m > 0 then set qm =
bN,N+1

bN,N
. (Start backward subs.)

Step 20 For i = N � 1,N � 2, . . . , n + 1, set qi�n =
bi,N+1 �

PN
j=i+1 bi,j qj�n

bi,i
.

Step 21 For i = n, n � 1, . . . , 0 set pi = bi,N+1 �
PN

j=n+1 bi,j qj�n.
Step 22 OUTPUT (q0, q1, . . . , qm, p0, p1, . . . , pn); STOP. (successful.)
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Chapter 8.5: Trigonometric Polynomial Approxi-
mation

Lemma (8.12)
Suppose that the integer r is not a multiple of 2m. Then

I
2m�1X

j=0

cos rxj = 0 and
2m�1X

j=0

sin rxj = 0.

Moreover, if r is not a multiple of m, then

I
2m�1X

j=0

(cos rxj)
2 = m and

2m�1X

j=0

(sin rxj)
2 = m.

where

xj = �⇡ +

✓
j
m

◆
⇡, for each j = 0, 1, . . . , 2m � 1.
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Chapter 8.5: Trigonometric Polynomial Approxi-
mation

Theorem (8.13)
The constants in the summation

Sn(x) =
a0

2
+ an cos nx +

n�1X

k=1

(ak cos kx + bk sin kx)

that minimize the least squares sum

E(a0, . . . , an, b1, . . . , bn�1) =
2m�1X

j=0

(yj � Sn(xj))
2 are

I ak =
1
m

2m�1X

j=0

yj cos kxj , for each k = 0, 1, . . . , n, and

I bk =
1
m

2m�1X

j=0

yj sin kxj , for each k = 1, 2, . . . , n � 1.
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Chapter 8.6: Fast Fourier Transforms

Algorithm 8.3: FAST FOURIER TRANSFORM
To compute the coefficients in the summation

1
m

2m�1X

k=0

ckeikx =
1
m

2m�1X

k=0

ck (cos kx + i sin kx), where i =
p
�1,

for the data {(xj , yj)}2m�1
j=0 where m = 2p and xj = �⇡ + j⇡/m

for j = 0, 1, . . . , 2m � 1:

INPUT m, p; y0, y1, . . . , y2m�1.

OUTPUT complex numbers c0, . . . , c2m�1; real numbers
a0, . . . , am; b1, . . . , bm�1.
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Chapter 8.6: Fast Fourier Transforms

Algorithm 8.3: FAST FOURIER TRANSFORM
Step 1 Set M = m;

q = p;
⇣ = e⇡i/m.

Step 2 For j = 0, 1, . . . , 2m � 1 set cj = yj .
Step 3 For j = 1, 2, . . . ,M set ⇠j = ⇣ j ;

⇠j+M = �⇠j .
Step 4 Set K = 0;

⇠0 = 1.
Step 5 For L = 1, 2, . . . , p + 1 do Steps 6–12.

Step 6 While K < 2m � 1 do Steps 7–11.
Step 7 For j = 1, 2, . . . ,M do Steps 8–10.
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Chapter 8.6: Fast Fourier Transforms

Algorithm 8.3: FAST FOURIER TRANSFORM
Step 7 For j = 1, 2, . . . ,M do Steps 8–10.

Step 8 Let K = kp · 2p + kp�1 · 2p�1 + · · ·+ k1 · 2 + k0;
(Decompose k .)
set K1 = K/2q = kp · 2p�q + · · ·+ kq+1 · 2 + kq ;

K2 = kq · 2p + kq+1 · 2p�1 + · · ·+ kp · 2q .
Step 9 Set ⌘ = cK+M⇠K2 ;

cK+M = cK � ⌘;
cK = cK + ⌘.

Step 10 Set K = K + 1.
Step 11 Set K = K + M.

Step 12 Set K = 0;
M = M/2;
q = q � 1.
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Chapter 8.6: Fast Fourier Transforms

Algorithm 8.3: FAST FOURIER TRANSFORM
Step 13 While K < 2m � 1 do Steps 14–16.

Step 14 Let K = kp · 2p + kp�1 · 2p�1 + · · ·+ k1 · 2 + k0;
(Decompose k .)
set j = k0 · 2p + k1 · 2p�1 + · · ·+ kp�1 · 2 + kp.

Step 15 If j > K then interchange cj and ck .
Step 16 Set K = K + 1.

Step 17 Set a0 = c0/m;
am = Re(e�i⇡mcm/m).

Step 18 For j = 1, . . . ,m � 1 set aj = Re(e�i⇡j cj/m);
bj = Im(e�i⇡j cj/m).

Step 19 OUTPUT (c0, . . . , c2m�1; a0, . . . , am; b1, . . . , bm�1);
STOP.
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