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Chapter 9.1: Linear Algebra and Eigenvalues

Theorem (9.1)
Let A be an n ⇥ n matrix and Ri denote the circle in the
complex plane with center aii and radius

Pn
j=1, j 6=i |aij |; that is,

Ri =

(
z 2 C

����|z � aii | 
nX

j=1,j 6=i

|aij |
)
,

where C denotes the complex plane. The eigenvalues of A are
contained within the union of these circles, R = [n

i=1Ri .
Moreover, the union of any k of the circles that do not intersect
the remaining (n � k) contains precisely k (counting
multiplicities) of the eigenvalues.
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Chapter 9.1: Linear Algebra and Eigenvalues

Definition (9.2)
Let {v(1), v(2), v(3), . . . , v(k)} be a set of vectors. The set is
linearly independent if whenever

0 = ↵1v(1) + ↵2v(2) + ↵3v(3) + · · ·+ ↵kv(k),

then ↵i = 0, for each i = 0, 1, . . . , k . Otherwise the set of
vectors is linearly dependent.

Theorem (9.3)
Suppose that {v(1), v(2), v(3), . . . , v(n)} is a set of n linearly
independent vectors in Rn. Then for any vector x 2 Rn a unique
collection of constants �1,�2, . . . ,�n exists with

x = �1v(1) + �2v(2) + �3v(3) + · · ·+ �nv(n).

| Numerical Analysis 10E



3

Chapter 9.1: Linear Algebra and Eigenvalues

Definition (9.4)
Any collection of n linearly independent vectors in Rn is called a basis for Rn.

Theorem (9.5)
If A is a matrix and �1, . . . ,�k are distinct eigenvalues of A with associated
eigenvectors x(1), x(2), . . . , x(k), then {x(1), x(2), . . . , x(k)} is a linearly
independent set.

Definition (9.6)
A set of vectors {v(1), v(2), . . . , v(n)} is called orthogonal if (v(i))tv(j) = 0, for
all i 6= j . If, in addition, (v(i))tv(i) = 1, for all i = 1, 2, . . . , n, then the set is
called orthonormal.

Theorem (9.7)
An orthogonal set of nonzero vectors is linearly independent.
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Chapter 9.1: Linear Algebra and Eigenvalues

Theorem (9.8)
Let {x1, x2, . . . , xk} be a set of k linearly independent vectors in
Rn. Then {v1, v2, . . . , vk} defined below is a k orthogonal set of
vectors in Rn:

v1 =x1,

v2 =x2 �
✓

vt
1x2

vt
1v1

◆
v1,

v3 =x3 �
✓

vt
1x3

vt
1v1

◆
v1 �

✓
vt

2x3

vt
2v2

◆
v2,

...

vk =xk �
k�1X

i=1

 
vt

ixk

vt
ivi

!
vi.
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Chapter 9.2: Orthogonal Matrices and Similarity
Transformations

Definition (9.9)
A matrix Q is said to be orthogonal if its columns {qt

1,q
t
2, . . . ,q

t
n}

form an orthonormal set in Rn.

Theorem (9.10)
Suppose that Q is an orthogonal n ⇥ n matrix. Then

(i) Q is invertible with Q�1 = Qt ;

(ii) For any x and y in Rn, (Qx)tQy = xty;

(iii) For any x in Rn, ||Qx||2 = ||x||2.

(iv) Any invertible matrix Q with Q�1 = Qt is orthogonal.

Definition (9.11)
Two matrices A and B are said to be similar if a nonsingular matrix S
exists with A = S�1BS
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Chapter 9.2: Orthogonal Matrices and Similarity
Transformations

Theorem (9.12)
Suppose A and B are similar matrices with A = S�1BS and � is
an eigenvalue of A with associated eigenvector x. Then � is an
eigenvalue of B with associated eigenvector Sx.

Theorem (9.13)
An n ⇥ n matrix A is similar to a diagonal matrix D if and only if
A has n linearly independent eigenvectors. In this case,
D = S�1AS, where the columns of S consist of the
eigenvectors, and the ith diagonal element of D is the
eigenvalue of A that corresponds to the ith column of S.
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Chapter 9.2: Orthogonal Matrices and Similarity
Transformations

Corollary (9.14)
An n ⇥ n matrix A that has n distinct eigenvalues is similar to a
diagonal matrix.

Theorem (9.15: Schur’s Theorem)
Let A be an arbitrary matrix. A nonsingular matrix U exists with
the property that

T = U�1AU,

where T is an upper-triangular matrix whose diagonal entries
consist of the eigenvalues of A.
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Chapter 9.2: Orthogonal Matrices and Similarity
Transformations

Theorem (9.16)
The n ⇥ n matrix A is symmetric if and only if there exists a
diagonal matrix D and an orthogonal matrix Q with A = QDQt.

Corollary (9.17)
Suppose that A is a symmetric n ⇥ n matrix. There exist n
eigenvectors of A that form an orthonormal set, and the
eigenvalues of A are real numbers.

Theorem (9.18)
A symmetric matrix A is positive definite if and only if all the
eigenvalues of A are positive.
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Chapter 9.3: The Power Method

The Power method is an iterative technique used to determine
the dominant eigenvalue of a matrix—that is, the eigenvalue
with the largest magnitude. By modifying the method slightly, it
can also used to determine other eigenvalues. One useful
feature of the Power method is that it produces not only an
eigenvalue, but also an associated eigenvector. In fact, the
Power method is often applied to find an eigenvector for an
eigenvalue that is determined by some other means.
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Chapter 9.3: The Power Method

Algorithm 9.1: POWER METHOD
To approximate the dominant eigenvalue and an associated
eigenvector of the n ⇥ n matrix A given a nonzero vector x:

INPUT dimension n; matrix A; vector x; tolerance TOL; maximum
number of iterations N.

OUTPUT approximate eigenvalue µ; approximate eigenvector x (with
||x||1 = 1) or a message that the maximum number of iterations was
exceeded.

Step 1 Set k = 1.
Step 2 Find the smallest integer p with 1  p  n and |xp| = ||x||1.
Step 3 Set x = x/xp.
Step 4 While (k  N) do Steps 5–11.

Step 5 Set y = Ax.
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Chapter 9.3: The Power Method

Algorithm 9.1: POWER METHOD
Step 7 Find smallest integer p with 1  p  n and |yp| = |yk1.
Step 8 If yp = 0 then OUTPUT (‘Eigenvector’, x);

OUTPUT (‘A has the eigenvalue 0, select a
new vector x and restart’);

STOP.
Step 9 Set ERR = ||x � (y/yp)||1;

x = y/yp.
Step 10 If ERR < TOL then OUTPUT (µ, x);

(The procedure was successful.)
STOP.

Step 11 Set k = k + 1.
Step 12 OUTPUT (‘The maximum number of iterations exceeded’);

(The procedure was unsuccessful.)
STOP.
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Chapter 9.3: The Power Method

Algorithm 9.1: ACCELERATING CONVERGENCE
The sequence {µ(m)} converges linearly to �1, so Aitken’s �2

procedure discussed in Section 2.5 can be used to speed the
convergence. Implementing the �2 procedure in Algorithm 9.1 is
accomplished by modifying the algorithm as follows:

Step 1 Set k = 1;
µ0 = 0;
µ1 = 0.

Step 6 Set µ = yp;

µ̂ = µ0 �
(µ1 � µ0)2

µ� 2µ1 + µ0
.

Step 10 If ERR < TOL and k � 4 then OUTPUT (µ̂, x); STOP.
Step 11 Set k = k + 1;

µ0 = µ1;
µ1 = µ.
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Chapter 9.3: The Power Method

Algorithm 9.2: SYMMETRIC POWER METHOD
INPUT dimension n; matrix A; vector x; tolerance TOL; maximum
number of iterations N.

OUTPUT approximate eigenvalue µ; approximate eigenvector x (with
kxk2 = 1) or a message that the maximum number of iterations was
exceeded.

Step 1 Set k = 1;
x = x/kxk2.

Step 2 While (k  N) do Steps 3–8.
Step 3 Set y = Ax.
Step 4 Set µ = xty.
Step 5 If kyk2 = 0, then OUTPUT (‘Eigenvector’, x);

OUTPUT (‘A has eigenvalue 0, select
new vector x and restart’);

STOP.
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Chapter 9.3: The Power Method

Algorithm 9.2: SYMMETRIC POWER METHOD

Step 6 Set ERR =
���x � y

kyk2

���
2
;

x = y/kyk2.
Step 7 If ERR < TOL then OUTPUT (µ, x);

STOP (The procedure was successful.)
Step 8 Set k = k + 1.

Step 9 OUTPUT (‘Maximum number of iterations exceeded’);
STOP (Procedure was unsuccessful.)

Theorem (9.19)
Suppose that A is an n ⇥ n symmetric matrix with eigenvalues �1, �2,
. . ., �n. If kAx � �xk2 < " for some real number � and vector x with
kxk2 = 1, then

min
1jn

|�j � �| < ".
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Chapter 9.3: The Power Method

Algorithm 9.3: INVERSE POWER METHOD
To approximate an eigenvalue and an associated eigenvector of the
n ⇥ n matrix A given a nonzero vector x:

INPUT dimension n; matrix A; vector x; tolerance TOL; maximum
number of iterations N.

OUTPUT approximate eigenvalue µ; approximate eigenvector x (with
kxk1 = 1) or a message that the maximum number of iterations was
exceeded.

Step 1 Set q =
xtAx
xtx

.
Step 2 Set k = 1.
Step 3 Find the smallest integer p with 1  p  n and |xp| = kxk1.
Step 4 Set x = x/xp.
Step 5 While (k  N) do Steps 6–12.

Step 6 Solve the linear system (A � qI)y = x.
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Chapter 9.3: The Power Method

Algorithm 9.3: INVERSE POWER METHOD
Step 7 If the system does not have a unique solution, then

OUTPUT (‘q is an eigenvalue’, q);
STOP.

Step 8 Set µ = yp.
Step 9 Find smallest integer p with 1  p  n and |yp| = kyk1.
Step 10 Set ERR = kx � (y/yp)k1;

x = y/yp.
Step 11 If ERR < TOL then set µ = (1/µ) + q;

OUTPUT (µ, x);
(The procedure was successful.)
STOP.

Step 12 Set k = k + 1.
Step 13 OUTPUT (‘Maximum number of iterations exceeded’);

(The procedure was unsuccessful.)
STOP.
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Chapter 9.3: The Power Method

Note
Numerous techniques are available for obtaining
approximations to the other eigenvalues of a matrix once an
approximation to the dominant eigenvalue has been computed.
Deflation techniques involve forming a new matrix B whose
eigenvalues are the same as those of A, except that the
dominant eigenvalue of A is replaced by the eigenvalue 0 in B.
The following result justifies the procedure.
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Chapter 9.3: The Power Method

Theorem (9.20)
Suppose �1,�2, . . . ,�n are eigenvalues of A with associated
eigenvectors v(1), v(2), . . . , v(n) and that �1 has multiplicity 1.
Let x be a vector with xtv(1) = 1. Then the matrix

B = A � �1v(1)xt

has eigenvalues 0,�2,�3, . . . ,�n with associated eigenvectors
v(1), w(2), w(3), . . . ,w(n), where v(i) and w(i) are related by the
equation

v(i) = (�i � �1)w(i) + �1(xtw(i))v(1),

for each i = 2, 3, . . . , n.
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Chapter 9.3: The Power Method

Note
There are many choices of the vector x that could be used in
Theorem 9.20. Wielandt deflation proceeds from defining

x =
1

�1v (1)
i

(ai1, ai2, . . . , ain)
t ,

where v (1)
i is a nonzero coordinate of the eigenvector v(1), and

the values ai1, ai2, . . . , ain are the entries in the i th row of A.
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Chapter 9.3: The Power Method

Algorithm 9.4: WIELANDT DEFLATION
To approximate the second most dominant eigenvalue and an
associated eigenvector of the n ⇥ n matrix A given an approximation
� to the dominant eigenvalue, an approximation v to a corresponding
eigenvector, and a vector x 2 Rn�1:

INPUT dimension n; matrix A; approximate eigenvalue � with eigenvector
v 2 Rn; vector x 2 Rn�1, tolerance TOL, maximum number of iterations N.

OUTPUT approximate eigenvalue µ; approximate eigenvector u or a
message that the method fails.

Step 1 Let i be smallest integer with 1  i  n and |vi | = max1jn |vj |.
Step 2 If i 6= 1 then

for k = 1, . . . , i � 1
for j = 1, . . . , i � 1

set bkj = akj � vk
vi

aij .

| Numerical Analysis 10E



21

Chapter 9.3: The Power Method

Algorithm 9.4: WIELANDT DEFLATION
Step 3 If i 6= 1 and i 6= n then

for k = i , . . . , n � 1
for j = 1, . . . , i � 1

set bkj = ak+1,j � vk+1
vi

aij ;

bjk = aj,k+1 � vj
vi

ai,k+1.
Step 4 If i 6= n then

for k = i , . . . , n � 1
for j = i , . . . , n � 1

set bkj = ak+1,j+1 � vk+1
vi

ai,j+1.
Step 5 Perform the power method on the (n � 1)⇥ (n � 1) matrix

B0 = (bkj) with x as initial approximation.
Step 6 If the method fails, then OUTPUT (‘Method fails’); STOP

else let µ be the approximate eigenvalue &
w0 = (w 0

1, . . . ,w
0
n�1)

t the approximate
eigenvector.
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Chapter 9.3: The Power Method

Algorithm 9.4: WIELANDT DEFLATION
Step 7 If i 6= 1 then for k = 1, . . . , i � 1 set wk = w 0

k .
Step 8 Set wi = 0.
Step 9 If i 6= n then for k = i + 1, . . . , n set wk = w 0

k�1.
Step 10 For k = 1, . . . , n

set uk = (µ� �)wk +
⇣Pn

j=1 aijwj

⌘
vk
vi

.
(Compute the eigenvector using Eq. (9.6).)

Step 11 OUTPUT (µ,u); (The procedure was successful.)
STOP.
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Chapter 9.4: Householder’s Method

Definition (9.21)
Let w 2 Rn with wtw = 1. The n ⇥ n matrix

P = I � 2wwt

is called a Householder transformation.

Theorem (9.22)
A Householder transformation, P = I � 2wwt , is symmetric and
orthogonal, so P�1 = P.
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Chapter 9.4: Householder’s Method

Algorithm 9.5 HOUSEHOLDER’S METHOD
To obtain a symmetric tridiagonal matrix A(n�1) similar to the
symmetric matrix A = A(1), construct the following matrices
A(2),A(3), . . . ,A(n�1), where A(k) = (a(k)

ij ) for each k = 1, 2, . . . , n � 1:

INPUT dimension n; matrix A.
OUTPUT A(n�1). (At each step, A can be overwritten.)
Step 1 For k = 1, 2, . . . , n � 2 do Steps 2–14.

Step 2 Set

q =
nX

j=k+1

⇣
a(k)

jk

⌘2
.

Step 3 If a(k)
k+1,k = 0 then set ↵ = �q1/2

else set ↵ = �
q1/2a(k)

k+1,k

|a(k)
k+1,k |

.
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Chapter 9.4: Householder’s Method

Algorithm 9.5 HOUSEHOLDER’S METHOD

Step 4 Set RSQ = ↵2 � ↵a(k)
k+1,k . (Note: RSQ = 2r2)

Step 5 Set vk = 0; (Note: v1 = · · · = vk�1 = 0; not needed.)
vk+1 = a(k)

k+1,k � ↵;
For j = k + 2, . . . , n set vj = a(k)

jk .
✓

Note: w =

✓
1p

2RSQ

◆
v =

1
2r

v.
◆

Step 6 For j = k , k + 1, . . . , n set uj =

✓
1

RSQ

◆ nX

i=k+1

a(k)
ji vi .

 
Note: u =

✓
1

RSQ

◆
A(k)v =

1
2r2 A(k)v =

1
r

A(k)w.

!
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Chapter 9.4: Householder’s Method

Algorithm 9.5 HOUSEHOLDER’S METHOD

Step 7 Set PROD =
nX

i=k+1

viui .

 
Note: PROD = vtu =

1
2r2 vtA(k)v.

!

Step 8 For j = k , k + 1, . . . , n set zj = uj �
✓

PROD
2RSQ

◆
vj .

 
Note: z = u � 1

2RSQ
vtuv = u � 1

4r2 vtuv

= u � wwtu =
1
r

A(k)w � wwt 1
r

A(k)w.

!
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Chapter 9.4: Householder’s Method

Algorithm 9.5 HOUSEHOLDER’S METHOD
Step 9 For l = k + 1, k + 2, . . . , n � 1 do Steps 10 and 11.
(Note: Compute A(k+1) = A(k) � vzt � zvt = (I � 2wwt)A(k)(I � 2wwt).)

Step 10 For j = l + 1, . . . , n set
a(k+1)

jl = a(k)
jl � vlzj � vjzl ;

a(k+1)
lj = a(k+1)

jl .

Step 11 Set a(k+1)
ll = a(k)

ll � 2vlzl .
Step 12 Set a(k+1)

nn = a(k)
nn � 2vnzn.

Step 13 For j = k + 2, . . . , n set a(k+1)
kj = a(k+1)

jk = 0.
Step 14 Set a(k+1)

k+1,k = a(k)
k+1,k � vk+1zk ;

a(k+1)
k,k+1 = a(k+1)

k+1,k .
(Note: The other elements of A(k+1) are the same as A(k).)

Step 15 OUTPUT (A(n�1)); STOP
(Process complete. A(n�1) is symmetric, tridiagonal, & similar to A.)

| Numerical Analysis 10E



28

Chapter 9.5: The QR Algorithm

Definition
A rotation matrix P differs from the identity matrix in at most
four elements. These four elements are of the form

pii = pjj = cos ✓ and pij = �pji = sin ✓,

for some ✓ and some i 6= j .
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Chapter 9.5: The QR Algorithm

Algorithm 9.6 QR METHOD
To obtain the eigenvalues of the symmetric, tridiagonal n ⇥ n matrix

A ⌘ A1 =

2

6666666664

a(1)
1 b(1)

2 0 0

b(1)
2 a(1)

2

0 0

b(1)
n

0 0 b(1)
n a(1)

n

3

7777777775

INPUT n; a(1)
1 , . . . , a(1)

n , b(1)
2 , . . . , b(1)

n ; tolerance TOL; maximum
number of iterations M.

OUTPUT eigenvalues of A, or recommended splitting of A, or a
message that the maximum number of iterations was exceeded.
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Chapter 9.5: The QR Algorithm

Algorithm 9.6 QR METHOD
Step 1 Set k = 1; SHIFT = 0. (Accumulated shift.)
Step 2 While k  M do Steps 3–19.

(Steps 3–7 test for success.)
Step 3 If |b(k)

n |  TOL then set � = a(k)
n + SHIFT;

OUTPUT (�);
set n = n � 1.

Step 4 If |b(k)
2 |  TOL then set � = a(k)

1 + SHIFT;
OUTPUT (�);
set n = n � 1;

a(k)
1 = a(k)

2 ;
for j = 2, . . . , n

set a(k)
j = a(k)

j+1;
b(k)

j = b(k)
j+1.

Step 5 If n = 0 then STOP.

| Numerical Analysis 10E



31

Chapter 9.5: The QR Algorithm

Algorithm 9.6 QR METHOD
Step 6 If n = 1 then

set � = a(k)
1 + SHIFT;

OUTPUT (�);
STOP.

Step 7 For j = 3, . . . , n � 1
if |b(k)

j |  TOL then
OUTPUT (‘split into’, a(k)

1 , . . . , a(k)
j�1, b

(k)
2 , . . . , b(k)

j�1,
‘and’,
a(k)

j , . . . , a(k)
n , b(k)

j+1, . . . , b
(k)
n ,SHIFT);

STOP.
Step 8 (Compute shift.)

Set b = �(a(k)
n�1 + a(k)

n ); c = a(k)
n a(k)

n�1 �
h
b(k)

n

i2
;

d = (b2 � 4c)1/2.
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Chapter 9.5: The QR Algorithm

Algorithm 9.6 QR METHOD
Step 9 If b > 0 then set µ1 = �2c/(b + d);

µ2 = �(b + d)/2
else set µ1 = (d � b)/2;

µ2 = 2c/(d � b).
Step 10 If n = 2 then set �1 = µ1 + SHIFT;

�2 = µ2 + SHIFT;
OUTPUT (�1,�2);
STOP.

Step 11 Choose � so |� � a(k)
n | = min{|µ1 � a(k)

n |, |µ2 � a(k)
n |}.

Step 12 (Accumulate the shift.)
Set SHIFT = SHIFT + �.

Step 13 (Perform shift.)
For j = 1, . . . , n, set dj = a(k)

j � �.
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Chapter 9.5: The QR Algorithm

Algorithm 9.6 QR METHOD
Step 14 (Steps 14 and 15 compute R(k).)

Set x1 = d1; y1 = b2.
Step 15 For j = 2, . . . , n

set zj�1 =

⇢
x2

j�1 +
h
b(k)

j

i2
�1/2

;

cj =
xj�1

zj�1
; �j =

b(k)
j

zj�1
;

qj�1 = cjyj�1 + sjdj ;
xj = ��j yj�1 + cjdj ;

If j 6= n then set rj�1 = �j b
(k)
j+1; yj = cjb

(k)
j+1.⇣

A(k)
j = PjA

(k)
j�1 just computed & R(k) = A(k)

n .
⌘
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Chapter 9.5: The QR Algorithm

Algorithm 9.6 QR METHOD
Step 16 (Steps 16–18 compute A(k+1.)

Set zn = xn;

a(k+1)
1 = �2q1 + c2z1;

b(k+1)
2 = �2z2.

Step 17 For j = 2, 3, . . . , n � 1
set a(k+1)

j = �j+1qj + cjcj+1zj ;

b(k+1)
j+1 = �j+1zj+1.

Step 18 Set a(k+1)
n = cnzn.

Step 19 Set k = k + 1.
Step 20 OUTPUT (‘Maximum number of iterations exceeded’);

(The procedure was unsuccessful.)
STOP.
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Chapter 9.6: Singular Value Decomposition

Definition (9.24)
Let A be an m ⇥ n matrix.

(i) The Rank of A, denoted RankA is the number of linearly
independent rows in A.

(ii) The Nullity of A, denoted Nullity(A), is n� Rank (A), and
describes the largest set of linearly independent vectors v
in Rn for which Av = 0.

Theorem (9.25)
The number of linearly independent rows of an m ⇥ n matrix A
is the same as the number of linearly independent columns of
A.
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Chapter 9.6: Singular Value Decomposition

Theorem (9.26)
Let A be m ⇥ n matrix.

(i) The matrices AtA and AAt are symmetric.

(ii) Nullity (A) = Nullity (AtA).

(iii) Rank (A) = Rank (AtA).

(iv) The eigenvalues of AtA are real and nonnegative.

(v) The nonzero eigenvalues of AAt are the same as the nonzero
eigenvalues of AtA .

Definition (9.27)
The singular values of an m ⇥ n matrix A are the positive square roots of the
nonzero eigenvalues of the n ⇥ n symmetric matrix AtA. The matrix S is an
m ⇥ n matrix with the singular values of A on its diagonal in decreasing order
and zeros elsewhere.
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Chapter 9.6: Singular Value Decomposition

Constructing V in the factorization A = U S V t

The n ⇥ n matrix AtA is symmetric, so by Theorem 9.16 in Section
9.2, we have a factorization

AtA = V D V t ,

where D is a diagonal matrix whose diagonal consists of the
eigenvalues of AtA, and V is an orthogonal matrix whose i th column
is an eigenvector with l2 norm 1 corresponding to the eigenvalue on
the i th diagonal of D.
The specific diagonal matrix depends on the order of the eigenvalues
along the diagonal.
Choose D so that these are written in decreasing order. The
columns, denoted vt

1, v
t
2, . . . , v

t
n, of the n ⇥ n orthogonal matrix V are

orthonormal eigenvectors corresponding to these eigenvalues.
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Chapter 9.6: Singular Value Decomposition

Constructing U in the factorization A = U S V t

To construct the m ⇥ m matrix U, we consider the nonzero values
s1 � s2 � · · · � sk > 0 and the corresponding columns in V given by
v1, v2, . . . , vk. We define

ui =
1
si

Avi, for i = 1, 2, . . . , k .

Use these as the first k of the m columns of U. These k columns of U
form an orthonormal set of vectors in Rm. However, we need m � k
additional columns of U.
For this we first need to find m � k vectors which when added to the
vectors from the first k columns will give us a linearly independent
set. Then we can apply the Gram-Schmidt process to obtain
appropriate additional columns.
The matrix U will not be unique unless k = m, and then only if all the
eigenvalues of AtA are unique.
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Chapter 9.6: Singular Value Decomposition

An alternative method for finding A = U S V t

To determine the Singular Value Decomposition of the m ⇥ n matrix A
we can:

I Find the eigenvalues
s2

1 � s2
2 � · · · � s2

k � sk+1 = · · · = sn = 0 for the symmetric
matrix AtA, and place the positive square root of s2

i in the entry
(S)ii of the m ⇥ n matrix S.

I Find a set of orthonormal eigenvectors {v1, v2, . . . , vn}
corresponding to the eigenvalues of AtA and construct the n ⇥ n
matrix V with these vectors as columns.

I Form {u1,u2, . . . ,uk} as before. Then add a set of orthonormal
eigenvectors corresponding to the zero eigenvalues of AAt and
construct the m ⇥ m matrix U with these vectors as columns.

Then A has the Singular Value Decomposition A = U S V t .
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LEAST SQUARES APPROXIMATION
Singular value decomposition has application in many areas. One is
an alternative for finding the least squares polynomials for fitting data.

Let A be an m ⇥ n matrix, with m > n, and b a vector in Rm. The least
squares objective is to find a vector x in Rn that will minimize
||Ax � b||2.

Suppose that the singular value decomposition of A is known, that is

A = U S V t ,

where U is an m ⇥ m orthogonal matrix, V is an n ⇥ n orthogonal
matrix, and S is an m ⇥ n matrix that contains the nonzero singular
values in decreasing order along the main diagonal in the first k  n
rows, and zero entries elsewhere.
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LEAST SQUARES APPROXIMATION
Because U and V are both orthogonal we have U�1 = Ut , V�1 = V t ,
and by part(iii) of Theorem 9.10 in Section 9.2, U and V are both
l2-norm preserving. As a consequence,

||Ax � b||2 = ||U S Vtx � U Utb||2 = ||S Vtx � Utb||2.

Let z = Vtx and c = Utb. Then

||Ax � b||2 =||(s1z1 � c1, s2z2 � c2, . . . , sk zk � ck ,�ck+1, . . . ,�cm)
t ||2

=

(
kX

i=1

(sizi � ci)
2 +

mX

i=k+1

(ci)
2

)1/2

.
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LEAST SQUARES APPROXIMATION
The norm is minimized when the vector z is chosen with

zi =

8
<

:

ci

si
, when i  k ,

arbitrarily, when k < i  n.

Because c = Utb and x = Vz are both easy to compute, the least
squares solution is also easily found.
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SVD important uses
1. permits us to obtain the most important features of an

m ⇥ n matrix using a matrix that is often of significantly
smaller size

2. helps us in determine effective condition numbers for
square matrices

3. helps us in determining the effective rank of a matrix
4. helps in removing signal noise.
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