Numerical Analysis

10th ed

R L Burden, J D Faires, and A M Burden

Beamer Presentation Slides Prepared by Dr. Annette M. Burden Youngstown State University

September 12, 2015

MOTIVATION

A system of nonlinear equations has the form

$$\begin{array}{rcl} f_1(x_1, x_2, \dots, x_n) &=& 0, \\ f_2(x_1, x_2, \dots, x_n) &=& 0, \\ &\vdots & &\vdots \\ f_n(x_1, x_2, \dots, x_n) &=& 0, \end{array}$$

where each function f_i can be thought of as mapping a vector $\mathbf{x} = (x_1, x_2, ..., x_n)^t$ of the *n*-dimensional space \mathbb{R}^n into the real line \mathbb{R} .

MOTIVATION

This system of *n* nonlinear equations in *n* unknowns can also be represented by defining a function **F** mapping \mathbb{R}^n into \mathbb{R}^n as

$$\mathbf{F}(x_1, x_2, \dots, x_n) = (f_1(x_1, x_2, \dots, x_n), f_2(x_1, x_2, \dots, x_n), \dots, f_n(x_1, x_2, \dots, x_n))^t$$

If vector notation is used to represent the variables x_1, x_2, \ldots, x_n , then system from the previous slide assumes the form

$$\mathbf{F}(\mathbf{x}) = \mathbf{0}.$$

The functions f_1, f_2, \ldots, f_n are called the **coordinate functions** of **F**.

MOTIVATION

This system of *n* nonlinear equations in *n* unknowns can also be represented by defining a function **F** mapping \mathbb{R}^n into \mathbb{R}^n as

$$\mathbf{F}(x_1, x_2, \dots, x_n) = (f_1(x_1, x_2, \dots, x_n), f_2(x_1, x_2, \dots, x_n), \dots, f_n(x_1, x_2, \dots, x_n))^t$$

If vector notation is used to represent the variables x_1, x_2, \ldots, x_n , then system from the previous slide assumes the form

$$\mathbf{F}(\mathbf{x}) = \mathbf{0}.$$

The functions f_1, f_2, \ldots, f_n are called the **coordinate functions** of **F**.

Definition (10.1)

et *f* be a function defined on a set $D \subset \mathbb{R}^n$ and mapping into \mathbb{R} . The function *f* is said to have the **limit** *L* at **x**₀, written

$$\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=L,$$

if, given any number $\varepsilon > 0$, a number $\delta > 0$ exists with

 $|f(\mathbf{x}) - L| < \varepsilon,$

whenever $\mathbf{x} \in D$ and

$$0 < ||\mathbf{x} - \mathbf{x}_0|| < \delta.$$

Definition (10.2)

Let *f* be a function from a set $D \subset \mathbb{R}^n$ into \mathbb{R} . The function *f* is **continuous** at $\mathbf{x}_0 \in D$ provided $\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x})$ exists and

$$\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=f(\mathbf{x}_0).$$

Moreover, *f* is **continuous** on a set *D* if *f* is continuous at every point of *D*. This concept is expressed by writing $f \in C(D)$.

Definition (10.3)

Let **F** be a function from $D \subset \mathbb{R}^n$ into \mathbb{R}^n of the form

$$\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_n(\mathbf{x}))^t,$$

where f_i is a mapping from \mathbb{R}^n into \mathbb{R} for each *i*. We define

$$\lim_{\mathbf{x}\to\mathbf{x}_0}\mathbf{F}(\mathbf{x})=\mathbf{L}=(L_1,L_2,\ldots,L_n)^t,$$

if and only if $\lim_{\mathbf{x}\to\mathbf{x}_0} f_i(\mathbf{x}) = L_i$, for each i = 1, 2, ..., n.

Theorem (10.4)

Let f be a function from $D \subset \mathbb{R}^n$ into \mathbb{R} and $\mathbf{x}_0 \in D$. Suppose that all the partial derivatives of f exist and constants $\delta > 0$ and K > 0 exist so that whenever $\|\mathbf{x} - \mathbf{x}_0\| < \delta$ and $\mathbf{x} \in D$, we have

$$\left|\frac{\partial f(\mathbf{x})}{\partial x_j}\right| \leq K, \quad \text{for each } j = 1, 2, \dots, n.$$

Then f is continuous at \mathbf{x}_0 .

Definition (10.5)

A function **G** from $D \subset \mathbb{R}^n$ into \mathbb{R}^n has a **fixed point** at $\mathbf{p} \in D$ if $\mathbf{G}(\mathbf{p}) = \mathbf{p}$.

Theorem (10.6)

Let $D = \{ (x_1, x_2, ..., x_n)^t \mid a_i \le x_i \le b_i, \text{ for each } i = 1, 2, ..., n \}$ for some collection of constants $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$. Suppose **G** is a continuous function from $D \subset \mathbb{R}^n$ into \mathbb{R}^n with the property that $\mathbf{G}(\mathbf{x}) \in D$ whenever $\mathbf{x} \in D$. Then **G** has a fixed point in D. Suppose also that all the component functions of **G** have continuous partial derivatives and a constant K < 1 exists with

 $\left|\frac{\partial g_i(\mathbf{x})}{\partial x_j}\right| \leq \frac{K}{n}, \quad \text{whenever } \mathbf{x} \in D,$

for each j = 1, 2, ..., n and each component function g_i . Then the fixed-point sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by an arbitrarily selected $\mathbf{x}^{(0)}$ in D and generated by $\mathbf{x}^{(k)} = G(\mathbf{x}^{(k-1)})$, for each $k \ge 1$ converges to the unique fixed point $\mathbf{p} \in D$ and $\|\mathbf{x}^{(k)} - \mathbf{p}\|_{\infty} \le \frac{K^k}{1-K} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|_{\infty}$.

MOTIVATION

We will use an approach similar to the one used in the one-dimensional fixed-point method for the *n*-dimensional case. This involves a matrix

$$A(\mathbf{x}) = \begin{bmatrix} a_{11}(\mathbf{x}) & a_{12}(\mathbf{x}) & \cdots & a_{1n}(\mathbf{x}) \\ a_{21}(\mathbf{x}) & a_{22}(\mathbf{x}) & \cdots & a_{2n}(\mathbf{x}) \\ \vdots & \vdots & & \vdots \\ a_{n1}(\mathbf{x}) & a_{n2}(\mathbf{x}) & \cdots & a_{nn}(\mathbf{x}) \end{bmatrix}$$

where each of the entries $a_{ij}(\mathbf{x})$ is a function from \mathbb{R}^n into \mathbb{R} . This requires that $A(\mathbf{x})$ be found so that

$$\mathbf{G}(\mathbf{x}) = \mathbf{x} - A(\mathbf{x})^{-1} \mathbf{F}(\mathbf{x})$$

gives quadratic convergence to the solution of F(x) = 0, assuming that A(x) is nonsingular at the fixed point **p** of **G**.

Theorem (10.7)

Let **p** be a solution of $\mathbf{G}(\mathbf{x}) = \mathbf{x}$. Suppose a number $\delta > 0$ exists with

- (i) $\partial g_i / \partial x_j$ is continuous on $N_{\delta} = \{ \mathbf{x} \mid ||\mathbf{x} \mathbf{p}|| < \delta \}$, for each i = 1, 2, ..., n and j = 1, 2, ..., n;
- (ii) $\partial^2 g_i(\mathbf{x})/(\partial x_j \partial x_k)$ is continuous, and $|\partial^2 g_i(\mathbf{x})/(\partial x_j \partial x_k)| \le M$ for some constant M, whenever $\mathbf{x} \in N_\delta$, for each i = 1, 2, ..., n, j = 1, 2, ..., n, and k = 1, 2, ..., n;

(iii) $\partial g_i(\mathbf{p})/\partial x_k = 0$, for each i = 1, 2, ..., n and k = 1, 2, ..., n.

Then a number $\hat{\delta} \leq \delta$ exists such that the sequence generated by $\mathbf{x}^{(k)} = \mathbf{G}(\mathbf{x}^{(k-1)})$ converges quadratically to \mathbf{p} for any choice of $\mathbf{x}^{(0)}$, provided that $\|\mathbf{x}^{(0)} - \mathbf{p}\| < \hat{\delta}$. Moreover, $\|\mathbf{x}^{(k)} - \mathbf{p}\|_{\infty} \leq \frac{n^2 M}{2} \|\mathbf{x}^{(k-1)} - \mathbf{p}\|_{\infty}^2$, for each $k \geq 1$.

The Jacobian Matrix

Define the matrix $J(\mathbf{x})$ by

$$J(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \frac{\partial f_1}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{x}) & \frac{\partial f_2}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_2}{\partial x_n}(\mathbf{x}) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1}(\mathbf{x}) & \frac{\partial f_n}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_n}{\partial x_n}(\mathbf{x}) \end{bmatrix}$$

It is required that

 $A(\mathbf{p})^{-1}J(\mathbf{p}) = I$, the identity matrix, $so A(\mathbf{p}) = J(\mathbf{p})$.

The Jacobian Matrix

An appropriate choice for $A(\mathbf{x})$ is, consequently, $A(\mathbf{x}) = J(\mathbf{x})$ since this satisfies condition (iii) in Theorem 10.7. The function **G** is defined by

$$\mathbf{G}(\mathbf{x}) = \mathbf{x} - J(\mathbf{x})^{-1}\mathbf{F}(\mathbf{x}),$$

and the fixed-point iteration procedure evolves from selecting $\mathbf{x}^{(0)}$ and generating, for $k \ge 1$,

$$\mathbf{x}^{(k)} = \mathbf{G}(\mathbf{x}^{(k-1)}) = \mathbf{x}^{(k-1)} - J(\mathbf{x}^{(k-1)})^{-1}\mathbf{F}(\mathbf{x}^{(k-1)})$$

This is called **Newton's method for nonlinear systems**, and it is generally expected to give quadratic convergence, provided that a sufficiently accurate starting value is known and that $J(\mathbf{p})^{-1}$ exists.

MOTIVATION

A generalization of the Secant method to systems of nonlinear equations is a technique known as **Broyden's method**

The method requires only *n* scalar functional evaluations per iteration and also reduces the number of arithmetic calculations to $O(n^2)$. It belongs to a class of methods known as *least-change secant updates* that produce algorithms called **quasi-Newton**. These methods replace the Jacobian matrix in Newton's method with an approximation matrix that is easily updated at each iteration.

DISADVANTAGES OF QUASI-NEWTON METHODS

 Quadratic convergence of Newton's method is lost, being replaced, in general, by a convergence called **superlinear**. This implies that

$$\lim_{i\to\infty}\frac{\left\|\mathbf{x}^{(i+1)}-\mathbf{p}\right\|}{\left\|\mathbf{x}^{(i)}-\mathbf{p}\right\|}=0,$$

where **p** denotes the solution to $\mathbf{F}(\mathbf{x}) = \mathbf{0}$ and $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(i+1)}$ are consecutive approximations to **p**.

This is an acceptable trade-off for the decrease in the amount of computation.

Unlike Newton's method, theyare not self-correcting. Newton's method will generally correct for roundoff error with successive iterations, but unless special safeguards are incorporated, Broyden's method will not.

Theorem (10.8)

Suppose that A is a nonsingular matrix and that **x** and **y** are vectors with $\mathbf{y}^t A^{-1} \mathbf{x} \neq -1$. Then $A + \mathbf{x} \mathbf{y}^t$ is nonsingular and

$$(A + \mathbf{x}\mathbf{y}^{t})^{-1} = A^{-1} - \frac{A^{-1}\mathbf{x}\mathbf{y}^{t}A^{-1}}{1 + \mathbf{y}^{t}A^{-1}\mathbf{x}}$$

To approximate the solution of the nonlinear system F(x) = 0 given an initial approximation x:

INPUT number *n* of equations and unknowns; initial approximation $\mathbf{x} = (x_1, \dots, x_n)^t$; tolerance *TOL*; maximum number of iterations *N*. OUTPUT approximate solution $\mathbf{x} = (x_1, \dots, x_n)^t$ or a message that the number of iterations was exceeded. Step 1 Set $A_0 = J(\mathbf{x})$ where $J(\mathbf{x})_{i,j} = \frac{\partial f_i}{\partial x_j}(\mathbf{x})$ for $1 \le i,j \le n$; $\mathbf{v} = \mathbf{F}(\mathbf{x})$. (*Note:* $\mathbf{v} = \mathbf{F}(\mathbf{x}^{(0)})$.) Step 2 Set $A = A_0^{-1}$. (*Use Gaussian elimination*.) Step 3 Set $\mathbf{s} = -A\mathbf{v}$; (*Note:* $\mathbf{s} = \mathbf{s}_1$.) $\mathbf{x} = \mathbf{x} + \mathbf{s}$; (*Note:* $\mathbf{x} = \mathbf{x}^{(1)}$.) k = 2.

Numerical Analysis 10E

Algorithm 10.2: Broyden

Step 4 While ($k \le N$) do Steps 5–13. Step 5 Set $\mathbf{w} = \mathbf{v}$; (*Save* \mathbf{v} .) v = F(x); (*Note:* $v = F(x^{(k)}).$) $\mathbf{y} = \mathbf{v} - \mathbf{w}$. (Note: $\mathbf{y} = \mathbf{y}_k$.) Step 6 Set z = -Ay. (*Note:* $z = -A_{k-1}^{-1}y_k$.) Step 7 Set $p = -\mathbf{s}^t \mathbf{z}$. (*Note:* $p = \mathbf{s}_k^t A_{k-1}^{-1} \mathbf{y}_k$.) Step 8 Set $\mathbf{u}^t = \mathbf{s}^t A$. Step 9 Set $A = A + \frac{1}{p}(s + z)u^{t}$. (*Note:* $A = A_{k}^{-1}$.) Step 10 Set s = -Av. (*Note:* $s = -A_k^{-1}F(x^{(k)})$.) Step 11 Set x = x + s. (*Note:* $x = x^{(k+1)}$.) Step 12 If $||\mathbf{s}|| < TOL$ then OUTPUT (**x**); (Procedure successful.) STOP Step 13 Set k = k + 1. Step 14 OUTPUT ('Maximum number of iterations exceeded'); (Procedure unsuccessful.) STOP

Numerical Analysis 10E

MOTIVATION

The method of Steepest Descent for finding a local minimum for an arbitrary function g from \mathbb{R}^n into \mathbb{R} can be intuitively described as follows:

- **1.** Evaluate *g* at an initial approximation $\mathbf{x}^{(0)} = \left(x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}\right)^t$.
- **2.** Determine a direction from $\mathbf{x}^{(0)}$ that results in a decrease in the value of g.
- **3.** Move an appropriate amount in this direction and call the new value $\mathbf{x}^{(1)}$.
- **4.** Repeat steps 1 through 3 with $\mathbf{x}^{(0)}$ replaced by $\mathbf{x}^{(1)}$.

MOTIVATION

For $g : \mathbb{R}^n \to \mathbb{R}$, the **gradient** of g at $\mathbf{x} = (x_1, x_2, \dots, x_n)^t$ is denoted $\nabla g(\mathbf{x})$ and defined by

$$\nabla g(\mathbf{x}) = \left(\frac{\partial g}{\partial x_1}(\mathbf{x}), \frac{\partial g}{\partial x_2}(\mathbf{x}), \dots, \frac{\partial g}{\partial x_n}(\mathbf{x})\right)^t.$$

A differentiable multivariable function can have a relative minimum at **x** only when the gradient at **x** is the zero vector. Suppose that $\mathbf{v} = (v_1, v_2, \dots, v_n)^t$ is a unit vector in \mathbb{R}^n ; that is,

$$||\mathbf{v}||_2^2 = \sum_{i=1}^n v_i^2 = 1.$$

MOTIVATION

The **directional derivative** of g at **x** in the direction of **v** measures the change in the value of the function g relative to the change in the variable in the direction of **v**. It is defined by

$$D_{\mathbf{v}}g(\mathbf{x}) = \lim_{h \to 0} \frac{1}{h} [g(\mathbf{x} + h\mathbf{v}) - g(\mathbf{x})] = \mathbf{v}^t \cdot \nabla g(\mathbf{x}).$$

When *g* is differentiable, the direction that produces the maximum value for the directional derivative occurs when **v** is chosen to be parallel to $\nabla g(\mathbf{x})$, provided that $\nabla g(\mathbf{x}) \neq \mathbf{0}$. As a consequence, the direction of greatest decrease in the value of *g* at **x** is the direction given by $-\nabla g(\mathbf{x})$.

Algorithm 10.3 STEEPEST DESCENT

To approximate a solution **p** to the minimization problem

$$g(\mathbf{p}) = \min_{\mathbf{x} \in \mathbb{R}^n} g(\mathbf{x})$$

given an initial approximation **x**:

INPUT number *n* of variables; initial approximation $\mathbf{x} = (x_1, \dots, x_n)^t$ *TOL*; maximum number of iterations *N*. OUTPUT approximate solution $\mathbf{x} = (x_1, \dots, x_n)^t$ or message of failure. Step 1 Set k = 1. Step 2 While $(k \le N)$ do Steps 3–15. Step 3 Set $g_1 = g(x_1, \dots, x_n)$; (Note: $g_1 = g(\mathbf{x}^{(k)})$.) $\mathbf{z} = \nabla g(x_1, \dots, x_n)$; (Note: $\mathbf{z} = \nabla g(\mathbf{x}^{(k)})$.) $z_0 = ||\mathbf{z}||_2$.

Algorithm 10.3 STEEPEST DESCENT

Step 4 If $z_0 = 0$ then OUTPUT ('Zero gradient'); OUTPUT $(x_1, ..., x_n, g_1);$ (The procedure completed, may have a minimum.) STOP. Step 5 Set $\mathbf{z} = \mathbf{z}/z_0$; (*Make* \mathbf{z} *a unit vector.*) $\alpha_1 = 0$: $\alpha_{3} = 1;$ $g_3 = g(\mathbf{x} - \alpha_3 \mathbf{z}).$ Step 6 While ($g_3 \ge g_1$) do Steps 7 and 8. Step 7 Set $\alpha_3 = \alpha_3/2$; $g_3 = g(\mathbf{x} - \alpha_3 \mathbf{z}).$ Step 8 If $\alpha_3 < TOL/2$ then OUTPUT ('No likely improvement'); OUTPUT $(x_1, ..., x_n, g_1)$; STOP (*Procedure completed, may have a minimum.*)

Algorithm 10.3 STEEPEST DESCENT

Step 9 Set $\alpha_2 = \alpha_3/2$; $g_2 = g(\mathbf{x} - \alpha_2 \mathbf{z})$. Step 10 Set $h_1 = (g_2 - g_1)/\alpha_2$; $h_2 = (g_3 - g_2)/(\alpha_3 - \alpha_2)$; $h_3 = (h_2 - h_1)/\alpha_3$. (Note: Newton's forward divided-difference formula used to find the quadratic $P(\alpha) = g_1 + h_1\alpha + h_3\alpha(\alpha - \alpha_2)$ that interpolates $h(\alpha)$ at $\alpha = 0, \alpha = \alpha_2, \alpha = \alpha_3$.) Step 11 Set $\alpha_0 = 0.5(\alpha_2 - h_1/h_3)$; (Critical point of P at α_0 .) $g_0 = g(\mathbf{x} - \alpha_0 \mathbf{z})$. Step 12 Find α from $\{\alpha_0, \alpha_3\}$ so $g = g(\mathbf{x} - \alpha \mathbf{z}) = \min\{g_0, g_3\}$. Step 13 Set $\mathbf{x} = \mathbf{x} - \alpha \mathbf{z}$.

Algorithm 10.3 STEEPEST DESCENT

Step 14 If $|g - g_1| < TOL$ then OUTPUT (x_1, \dots, x_n, g) ; (*The procedure was successful.*) STOP. Step 15 Set k = k + 1. Step 16 OUTPUT ('Maximum iterations exceeded'); (*The procedure was unsuccessful.*) STOP.

Chapter 10.5: Homotopy; Continuation Methor

Homotopy, or *continuation*, methods for nonlinear systems embed the problem to be solved within a collection of problems. Specifically, to solve a problem of the form

$$\mathbf{F}(\mathbf{x}) = \mathbf{0},$$

which has the unknown solution \mathbf{x}^* , we consider a family of problems described using a parameter λ that assumes values in [0, 1]. A problem with a known solution $\mathbf{x}(0)$ corresponds to the situation when $\lambda = 0$, and the problem with the unknown solution $\mathbf{x}(1) \equiv \mathbf{x}^*$ corresponds to $\lambda = 1$.

Chapter 10.5: Homotopy; Continuation Methor

CONTINUATION PROBLEM

The **continuation** problem is to: Determine a way to proceed from the known solution $\mathbf{x}(0)$ of $\mathbf{G}(0, \mathbf{x}) = \mathbf{zero}$ to the unknown solution $\mathbf{x}(1) = \mathbf{x}^*$ of $\mathbf{G}(1, \mathbf{x}) = \mathbf{0}$, that is, the solution to $\mathbf{F}(\mathbf{x}) = \mathbf{0}$.

Theorem (10.10)

Let $\mathbf{F}(\mathbf{x})$ be continuously differentiable for $\mathbf{x} \in \mathbb{R}^n$. Suppose that the Jacobian matrix $J(\mathbf{x})$ is nonsingular for all $\mathbf{x} \in \mathbb{R}^n$ and that a constant M exists with $||J(\mathbf{x})^{-1}|| \leq M$, for all $\mathbf{x} \in \mathbb{R}^n$. Then, for any $\mathbf{x}(0)$ in \mathbb{R}^n , there exists a unique function $\mathbf{x}(\lambda)$, such that

 $\mathbf{G}(\lambda, \mathbf{x}(\lambda)) = \mathbf{0},$

for all λ in [0, 1]. Moreover, $\mathbf{x}(\lambda)$ is continuously differentiable and $\mathbf{x}'(\lambda) = -J(\mathbf{x}(\lambda))^{-1}\mathbf{F}(\mathbf{x}(0))$, for each $\lambda \in [0, 1]$.

Chapter 10.5: Homotopy; Continuation Methor

Algorithm 10.4 CONTINUATION

To approximate the solution of the nonlinear system $\mathbf{F}(\mathbf{x}) = \mathbf{0}$ given an initial approximation \mathbf{x} : INPUT number *n* of equations and unknowns; integer N > 0; initial approximation $\mathbf{x} = (x_1, x_2, \dots, x_n)^t$. OUTPUT approximate solution $\mathbf{x} = (x_1, x_2, \dots, x_n)^t$.

Step 1 Set
$$h = 1/N$$
;
 $\mathbf{b} = -h\mathbf{F}(\mathbf{x})$.
Step 2 For $i = 1, 2, ..., N$ do Steps 3–7.
Step 3 Set $A = J(\mathbf{x})$; Solve the linear system $A\mathbf{k}_1 = \mathbf{b}$.
Step 4 Set $A = J(\mathbf{x} + \frac{1}{2}\mathbf{k}_1)$; Solve the linear system $A\mathbf{k}_2 = \mathbf{b}$.
Step 5 Set $A = J(\mathbf{x} + \frac{1}{2}\mathbf{k}_2)$; Solve the linear system $A\mathbf{k}_3 = \mathbf{b}$.
Step 6 Set $A = J(\mathbf{x} + \mathbf{k}_3)$; Solve the linear system $A\mathbf{k}_3 = \mathbf{b}$.
Step 7 Set $\mathbf{x} = \mathbf{x} + (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)/6$.
Step 8 OUTPUT $(x_1, x_2, ..., x_n)$; STOP.

Numerical Analysis 10E