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Chapter 10.1: Fixed Points for Functions of Sev-
eral Variables

MOTIVATION
A system of nonlinear equations has the form

f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,
...

...

fn(x1, x2, . . . , xn) = 0,

where each function fi can be thought of as mapping a vector
x = (x1, x2, . . . , xn)t of the n-dimensional space Rn into the real
line R.
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Chapter 10.1: Fixed Points for Functions of Sev-
eral Variables

MOTIVATION
This system of n nonlinear equations in n unknowns can also
be represented by defining a function F mapping Rn into Rn as

F(x1, x2, . . . , xn) =(f1(x1, x2, . . . , xn), f2(x1, x2,

. . . , xn), . . . , fn(x1, x2, . . . , xn))
t .

If vector notation is used to represent the variables
x1, x2, . . . , xn, then system from the previous slide assumes the
form

F(x) = 0.

The functions f1, f2, . . . , fn are called the coordinate functions

of F.
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eral Variables

MOTIVATION
This system of n nonlinear equations in n unknowns can also
be represented by defining a function F mapping Rn into Rn as

F(x1, x2, . . . , xn) =(f1(x1, x2, . . . , xn), f2(x1, x2,

. . . , xn), . . . , fn(x1, x2, . . . , xn))
t .

If vector notation is used to represent the variables
x1, x2, . . . , xn, then system from the previous slide assumes the
form

F(x) = 0.

The functions f1, f2, . . . , fn are called the coordinate functions

of F.

| Numerical Analysis 10E



4

Chapter 10.1: Fixed Points for Functions of Sev-
eral Variables
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z 5 f1(x1, x2)

z 5 f2(x1, x2)
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x2
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z 5 f1(x1, x2)

z 5 f2(x1, x2)

Figure: Figure 10.1
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Chapter 10.1: Fixed Points for Functions of Sev-
eral Variables

Definition (10.1)
et f be a function defined on a set D ⇢ Rn and mapping into R.
The function f is said to have the limit L at x0, written

lim
x!x0

f (x) = L,

if, given any number " > 0, a number � > 0 exists with

|f (x)� L| < ",

whenever x 2 D and

0 < ||x � x0|| < �.
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Chapter 10.1: Fixed Points for Functions of Sev-
eral Variables

Definition (10.2)
Let f be a function from a set D ⇢ Rn into R. The function f is
continuous at x0 2 D provided lim

x!x0 f (x) exists and

lim
x!x0

f (x) = f (x0).

Moreover, f is continuous on a set D if f is continuous at every
point of D. This concept is expressed by writing f 2 C(D).
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Chapter 10.1: Fixed Points for Functions of Sev-
eral Variables

Definition (10.3)
Let F be a function from D ⇢ Rn into Rn of the form

F(x) = (f1(x), f2(x), . . . , fn(x))t ,

where fi is a mapping from Rn into R for each i . We define

lim
x!x0

F(x) = L = (L1, L2, . . . , Ln)
t ,

if and only if lim
x!x0 fi(x) = Li , for each i = 1, 2, . . . , n.
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Chapter 10.1: Fixed Points for Functions of Sev-
eral Variables

Theorem (10.4)
Let f be a function from D ⇢ Rn into R and x0 2 D. Suppose
that all the partial derivatives of f exist and constants � > 0 and
K > 0 exist so that whenever kx � x0k < � and x 2 D, we have

����
@f (x)
@xj

����  K , for each j = 1, 2, . . . , n.

Then f is continuous at x0.

Definition (10.5)
A function G from D ⇢ Rn into Rn has a fixed point at p 2 D if
G(p) = p.
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Chapter 10.1: Fixed Points for Functions of Sev-
eral Variables

Theorem (10.6)
Let D = { (x1, x2, . . . , xn)t | ai  xi  bi , for each i = 1, 2, . . . , n } for
some collection of constants a1, a2, . . . , an and b1, b2, . . . , bn.
Suppose G is a continuous function from D ⇢ Rn into Rn with the
property that G(x) 2 D whenever x 2 D. Then G has a fixed point in
D. Suppose also that all the component functions of G have
continuous partial derivatives and a constant K < 1 exists with

����
@gi(x)

@xj

���� 
K
n
, whenever x 2 D,

for each j = 1, 2, . . . , n and each component function gi . Then the
fixed-point sequence {x

(k)}1k=0 defined by an arbitrarily selected x

(0)

in D and generated by x

(k) = G(x(k�1)), for each k � 1 converges
to the unique fixed point p 2 D and��
x

(k) � p

��
1  K k

1�K

��
x

(1) � x

(0)
��
1 .
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Chapter 10.2: Newton’s Method

MOTIVATION
We will use an approach similar to the one used in the
one-dimensional fixed-point method for the n-dimensional case. This
involves a matrix

A(x) =

2

6664

a11(x) a12(x) · · · a1n(x)
a21(x) a22(x) · · · a2n(x)

...
...

...
an1(x) an2(x) · · · ann(x)

3

7775
,

where each of the entries aij(x) is a function from Rn into R. This
requires that A(x) be found so that

G(x) = x � A(x)�1
F(x)

gives quadratic convergence to the solution of F(x) = 0, assuming
that A(x) is nonsingular at the fixed point p of G.
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Chapter 10.2: Newton’s Method

Theorem (10.7)
Let p be a solution of G(x) = x. Suppose a number � > 0 exists with

(i) @gi/@xj is continuous on N� = {x | kx � pk < � }, for each
i = 1, 2, . . . , n and j = 1, 2, . . . , n;

(ii) @2gi(x)/(@xj@xk ) is continuous, and |@2gi(x)/(@xj@xk )|  M
for some constant M, whenever x 2 N�, for each
i = 1, 2, ..., n, j = 1, 2, . . . , n, and k = 1, 2, . . . , n;

(iii) @gi(p)/@xk = 0, for each i = 1, 2, . . . , n and k = 1, 2, . . . , n.

Then a number �̂  � exists such that the sequence generated by
x

(k) = G(x(k�1)) converges quadratically to p for any choice of x

(0),
provided that

��
x

(0) � p

�� < �̂. Moreover,
kx

(k) � pk1  n2M
2 kx

(k�1) � pk2
1, for each k � 1.
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Chapter 10.2: Newton’s Method

The Jacobian Matrix
Define the matrix J(x) by

J(x) =

2

66666666664

@f1
@x1

(x)
@f1
@x2

(x) · · · @f1
@xn

(x)

@f2
@x1

(x)
@f2
@x2

(x) · · · @f2
@xn

(x)

...
...

...
@fn
@x1

(x)
@fn
@x2

(x) · · · @fn
@xn

(x)

3

77777777775

,

It is required that

A(p)�1J(p) = I, the identity matrix, soA(p) = J(p).
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Chapter 10.2: Newton’s Method

The Jacobian Matrix
An appropriate choice for A(x) is, consequently, A(x) = J(x)
since this satisfies condition (iii) in Theorem 10.7. The function
G is defined by

G(x) = x � J(x)�1
F(x),

and the fixed-point iteration procedure evolves from selecting
x

(0) and generating, for k � 1,

x

(k) = G(x(k�1)) = x

(k�1) � J(x(k�1))�1
F(x(k�1)).

This is called Newton’s method for nonlinear systems, and it
is generally expected to give quadratic convergence, provided
that a sufficiently accurate starting value is known and that
J(p)�1 exists.
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Chapter 10.3: Quasi-Newton Methods

MOTIVATION
A generalization of the Secant method to systems of nonlinear
equations is a technique known as Broyden’s method

The method requires only n scalar functional evaluations per
iteration and also reduces the number of arithmetic calculations
to O(n2). It belongs to a class of methods known as
least-change secant updates that produce algorithms called
quasi-Newton. These methods replace the Jacobian matrix in
Newton’s method with an approximation matrix that is easily
updated at each iteration.
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Chapter 10.3: Quasi-Newton Methods

DISADVANTAGES OF QUASI-NEWTON METHODS
I Quadratic convergence of Newton’s method is lost, being

replaced, in general, by a convergence called superlinear. This
implies that

lim
i!1

��
x

(i+1) � p

��
��
x

(i) � p

�� = 0,

where p denotes the solution to F(x) = 0 and x

(i) and x

(i+1) are
consecutive approximations to p.
This is an acceptable trade-off for the decrease in the amount of
computation.

I Unlike Newton’s method, theyare not self-correcting. Newton’s
method will generally correct for roundoff error with successive
iterations, but unless special safeguards are incorporated,
Broyden’s method will not.
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Chapter 10.3: Quasi-Newton Methods

Theorem (10.8)
Suppose that A is a nonsingular matrix and that x and y are
vectors with y

tA�1
x 6= �1. Then A + xy

t is nonsingular and

�
A + xy

t��1
= A�1 � A�1

xy

tA�1

1 + y

tA�1
x

.
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Chapter 10.3: Quasi-Newton Methods

Algorithm 10.2: BROYDEN’S METHOD
To approximate the solution of the nonlinear system F(x) = 0 given
an initial approximation x:

INPUT number n of equations and unknowns; initial
approximation x = (x1, . . . , xn)t ;
tolerance TOL; maximum number of iterations N.
OUTPUT approximate solution x = (x1, . . . , xn)t or a message that
the number of iterations was exceeded.
Step 1 Set A0 = J(x) where J(x)i,j =

@fi
@xj

(x) for 1  i , j  n;
v = F(x). (Note: v = F(x(0)).)

Step 2 Set A = A�1
0 . (Use Gaussian elimination.)

Step 3 Set s = �Av; (Note: s = s1.)
x = x + s; (Note: x = x

(1).)
k = 2.
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Chapter 10.3: Quasi-Newton Methods

Algorithm 10.2: Broyden
Step 4 While (k  N) do Steps 5–13.

Step 5 Set w = v; (Save v.)
v = F(x); (Note: v = F(x(k)).)
y = v � w. (Note: y = yk .)

Step 6 Set z = �Ay. (Note: z = �A�1
k�1yk .)

Step 7 Set p = �s

t
z. (Note: p = s

t
k A�1

k�1yk .)
Step 8 Set u

t = s

tA.
Step 9 Set A = A + 1

p (s + z)ut . (Note: A = A�1
k .)

Step 10 Set s = �Av. (Note: s = �A�1
k F(x(k)).)

Step 11 Set x = x + s. (Note: x = x

(k+1).)
Step 12 If ||s|| < TOL then OUTPUT (x);

(Procedure successful.) STOP
Step 13 Set k = k + 1.

Step 14 OUTPUT (‘Maximum number of iterations exceeded’);
(Procedure unsuccessful.) STOP
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Chapter 10.4: Steepest Descent Techniques

MOTIVATION
The method of Steepest Descent for finding a local minimum for
an arbitrary function g from Rn into R can be intuitively
described as follows:

1. Evaluate g at an initial approximation

x

(0) =
⇣

x (0)
1 , x (0)

2 , . . . , x (0)
n

⌘t
.

2. Determine a direction from x

(0) that results in a decrease
in the value of g.

3. Move an appropriate amount in this direction and call the
new value x

(1).
4. Repeat steps 1 through 3 with x

(0) replaced by x

(1).
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Chapter 10.4: Steepest Descent Techniques

MOTIVATION
For g : Rn ! R, the gradient of g at x = (x1, x2, . . . , xn)t is
denoted rg(x) and defined by

rg(x) =
✓

@g
@x1

(x),
@g
@x2

(x), . . . ,
@g
@xn

(x)

◆t
.

A differentiable multivariable function can have a relative
minimum at x only when the gradient at x is the zero vector.
Suppose that v = (v1, v2, . . . , vn)t is a unit vector in Rn; that is,

||v||22 =
nX

i=1

v2
i = 1.
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Chapter 10.4: Steepest Descent Techniques

MOTIVATION
The directional derivative of g at x in the direction of v

measures the change in the value of the function g relative to
the change in the variable in the direction of v. It is defined by

D
v

g(x) = lim
h!0

1
h
[g(x + hv)� g(x)] = v

t ·rg(x).

When g is differentiable, the direction that produces the
maximum value for the directional derivative occurs when v is
chosen to be parallel to rg(x), provided that rg(x) 6= 0. As a
consequence, the direction of greatest decrease in the value of
g at x is the direction given by �rg(x).
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Chapter 10.4: Steepest Descent Techniques

Algorithm 10.3 STEEPEST DESCENT
To approximate a solution p to the minimization problem

g(p) = min
x2Rn

g(x)

given an initial approximation x:

INPUT number n of variables; initial approximation x = (x1, . . . , xn)t

TOL; maximum number of iterations N.
OUTPUT approximate solution x = (x1, . . . , xn)t or message of failure.
Step 1 Set k = 1.
Step 2 While (k  N) do Steps 3–15.

Step 3 Set g1 = g(x1, . . . , xn);
�
Note: g1 = g

�
x

(k)� .
�

z = rg(x1, . . . , xn);
�
Note: z = rg

�
x

(k)� .
�

z0 = ||z||2.

| Numerical Analysis 10E



23

Chapter 10.4: Steepest Descent Techniques

Algorithm 10.3 STEEPEST DESCENT
Step 4 If z0 = 0 then OUTPUT (‘Zero gradient’);

OUTPUT (x1, . . . , xn, g1);
(The procedure completed, may have a minimum.)
STOP.

Step 5 Set z = z/z0; (Make z a unit vector.)
↵1 = 0;
↵3 = 1;
g3 = g(x � ↵3z).

Step 6 While (g3 � g1) do Steps 7 and 8.
Step 7 Set ↵3 = ↵3/2;

g3 = g(x � ↵3z).
Step 8 If ↵3 < TOL/2 then

OUTPUT (‘No likely improvement’);
OUTPUT (x1, . . . , xn, g1); STOP
(Procedure completed, may have a minimum.)
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Chapter 10.4: Steepest Descent Techniques

Algorithm 10.3 STEEPEST DESCENT
Step 9 Set ↵2 = ↵3/2;

g2 = g(x � ↵2z).
Step 10 Set h1 = (g2 � g1)/↵2;

h2 = (g3 � g2)/(↵3 � ↵2);
h3 = (h2 � h1)/↵3.
(Note: Newton’s forward divided-difference formula
used to find the quadratic
P(↵) = g1 + h1↵+ h3↵(↵� ↵2) that interpolates
h(↵) at ↵ = 0,↵ = ↵2,↵ = ↵3.)

Step 11 Set ↵0 = 0.5(↵2 � h1/h3); (Critical point of P at ↵0.)
g0 = g(x � ↵0z).

Step 12 Find ↵ from {↵0,↵3} so g = g(x � ↵z) = min{g0, g3}.
Step 13 Set x = x � ↵z.
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Chapter 10.4: Steepest Descent Techniques

Algorithm 10.3 STEEPEST DESCENT
Step 14 If |g � g1| < TOL then

OUTPUT (x1, . . . , xn, g);
(The procedure was successful.)
STOP.

Step 15 Set k = k + 1.
Step 16 OUTPUT (‘Maximum iterations exceeded’);

(The procedure was unsuccessful.)
STOP.
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Chapter 10.5: Homotopy; Continuation Methods

Homotopy, or continuation, methods for nonlinear systems
embed the problem to be solved within a collection of problems.
Specifically, to solve a problem of the form

F(x) = 0,

which has the unknown solution x

⇤, we consider a family of
problems described using a parameter � that assumes values
in [0, 1]. A problem with a known solution x(0) corresponds to
the situation when � = 0, and the problem with the unknown
solution x(1) ⌘ x

⇤ corresponds to � = 1.
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Chapter 10.5: Homotopy; Continuation Methods

CONTINUATION PROBLEM
The continuation problem is to: Determine a way to proceed from
the known solution x(0) of G(0, x) = zero to the unknown solution
x(1) = x

⇤ of G(1, x) = 0, that is, the solution to F(x) = 0.

Theorem (10.10)
Let F(x) be continuously differentiable for x 2 Rn. Suppose that the
Jacobian matrix J(x) is nonsingular for all x 2 Rn and that a constant
M exists with kJ(x)�1k  M, for all x 2 Rn. Then, for any x(0) in Rn,
there exists a unique function x(�), such that

G(�, x(�)) = 0,

for all � in [0, 1]. Moreover, x(�) is continuously differentiable and
x

0(�) = �J(x(�))�1
F(x(0)), for each � 2 [0, 1].
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Chapter 10.5: Homotopy; Continuation Methods

Algorithm 10.4 CONTINUATION
To approximate the solution of the nonlinear system F(x) = 0 given
an initial approximation x:
INPUT number n of equations and unknowns; integer N > 0; initial
approximation x = (x1, x2, . . . , xn)t .
OUTPUT approximate solution x = (x1, x2, . . . , xn)t .

Step 1 Set h = 1/N;
b = �hF(x).

Step 2 For i = 1, 2, . . . ,N do Steps 3–7.
Step 3 Set A = J(x); Solve the linear system Ak1 = b.
Step 4 Set A = J(x + 1

2 k1); Solve the linear system Ak2 = b.
Step 5 Set A = J(x + 1

2 k2); Solve the linear system Ak3 = b.
Step 6 Set A = J(x + k3); Solve the linear system Ak3 = b.
Step 7 Set x = x + (k1 + 2k2 + 2k3 + k4)/6.

Step 8 OUTPUT (x1, x2, . . . , xn); STOP.
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