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Chapter 10.1: Fixed Points for Functions of Sexss
eral Variables N
)

MOTIVATION

A system of nonlinear equations has the form

f1(X17X27---7Xn) — 07
f2(X17X27'°'7Xn) — 07
fa(X1,Xo,...,Xn) = O,

where each function f; can be thought of as mapping a vector
X = (Xq, X2, ..., Xn)" of the n-dimensional space R” into the real
line R.
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Chapter 10.1: Fixed Points for Functions of Se

eral Variables 3}/

MOTIVATION

This system of n nonlinear equations in n unknowns can also
be represented by defining a function F mapping R” into R” as

F(X1 y X250 - 7Xn) :(f1 (X1 y X2y e 7Xn)7 f2(X1 y X2,

o Xn)s s (X, X, Xn))

If vector notation is used to represent the variables

X1, Xo, ..., Xpn, then system from the previous slide assumes the
form

F(x) =0.
The functions f4, f, ..., f, are called the coordinate functions
of F.

v
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Figure: Figure 10.1
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Chapter 10.1: Fixed Points for Functions of Se .

eral Variables 3)5

Definition (10.1)

et f be a function defined on a set D C R" and mapping into R.
The function f is said to have the limit L at xp, written

lim f(x) =L,

X—Xp

If, given any number £ > 0, a number § > 0 exists with
f(x) —L| <e,

whenever x € D and

0 < [|x—Xp|| <.
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Definition (10.2)

Let f be a function from a set D ¢ R"” into R. The function f is
continuous at Xo € D provided limy_,x, f(X) exists and

lim f(x) = f(Xg).

X—Xp

Moreover, f is continuous on a set D if f is continuous at every
point of D. This concept is expressed by writing f € C(D).
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Chapter 10.1: Fixed Points for Functions of Se

eral Variables

Definition (10.3)
Let F be a function from D c R” into R" of the form

F(x) = (f1(X), (%), ..., (X)),
where f; is a mapping from R" into R for each i. We define

im F(x) =L = (Ly, Lo, ..., Lp)",

X—Xp

if and only if limy_,x, fi(X) = L;, foreachi=1,2,...,n.
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Theorem (10.4)

Let f be a function from D C R" into R and xo € D. Suppose
that all the partial derivatives of f exist and constants 6 > 0 and
K > 0 exist so that whenever ||X — Xg|| < 6 andx € D, we have

8

o0f(X)
2

<K, foreachj=1,2,...,n.

Then f is continuous at Xg.

Definition (10.5)

A function G from D C R"” into R" has a fixed point at p € D if
G(p) = p.
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Chapter 10.1: Fixed Points for Functions of Se

eral Variables

Theorem (10.6)

LetD = {(x1,%0,...,Xp)" | @ < x; < bj, foreachi=1,2,...,n} for
some collection of constants ai, a»,...,an, and by, bo, ..., bp.
Suppose G is a continuous function from D C R” into R" with the
property that G(x) € D whenever x € D. Then G has a fixed point in
D. Suppose also that all the component functions of G have
continuous partial derivatives and a constant K < 1 exists with

'8gi(x) < 5, whenever X € D,
OX; n
foreachj=1,2,...,n and each component function g;. Then the

fixed-point sequence {x¥)}2 = defined by an arbitrarily selected x°)
in D and generated by x¥) = G(x*=1)),  for each k > 1 converges
to the unique fixed pointp € D and

[x9 —p|l. < ¥ = xO|__.

v
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Chapter 10.2: Newton’s Method 3}\
| ‘/10

MOTIVATION

We will use an approach similar to the one used in the
one-dimensional fixed-point method for the n-dimensional case. This
iInvolves a matrix

[ai1(X) a2(x) - ain(x)
A(x): 321.(X) 322.(X) agn.(X) |
_aml(X) anZI(X) ann.(x)_

where each of the entries g;(X) is a function from R" into R. This
requires that A(x) be found so that

G(x) = x — A(X) " "F(x)

gives quadratic convergence to the solution of F(x) = 0, assuming
that A(x) is nonsingular at the fixed point p of G.

o
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Chapter 10.2: Newton’s Method ﬁ)\
Z

)

Yy

Theorem (10.7)

Let p be a solution of G(Xx) = X. Suppose a number § > 0 exists with

(i) 0gi/0x; is continuous on Ns = {X | || X — p|| < ¢ }, for each
i=1,2,....nandj=1,2,....n;

(i) 029i(x)/(0x;0xk) is continuous, and |0%g;(x)/(0xj0xk)| < M
for some constant M, whenever x ¢ Ny, for each
i=1,2,...n,j=1,2,....n,andk=1,2,...,n;

(i) agi(p)/oxx =0, foreachi=1,2,...,.nandk =1,2,...,n.
Then a number § < § exists such that the sequence generated by

x) = G(x"*~1)) converges quadratically to p for any choice of x(©),
provided that || x(®) — p|| < 6. Moreover,

X0 — p|ls < ZM|x*k-D _p|2, foreachk > 1.
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Chapter 10.2: Newton’s Method

The Jacobian Matrix

Define the matrix J(x) by

[ Of; Of ofy
X B g™
81‘2 8f2 afZ
Jo = [aa ™ ae™ 5™
8fn 8fn 8fl’)
_5,—)(1()() 8—)(2()() T 8—)(,,()()_

It is required that

A(p)~'J(p) = /,the identity matrix, soA(p) = J(p).

y
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Chapter 10.2: Newton’s Method

The Jacobian Matrix

An appropriate choice for A(x) is, consequently, A(x) = J(x)
since this satisfies condition (iii) in Theorem 10.7. The function
G is defined by

G(x) = x — J(x)"'F(x),

and the fixed-point iteration procedure evolves from selecting
x(9) and generating, for k > 1,

x(K) — G(x(k_”) _ x(k=1) _ J(x(k—1))—1 F(x(k_1)).

This is called Newton’s method for nonlinear systems, and it
IS generally expected to give quadratic convergence, provided
that a sufficiently accurate starting value is known and that
J(p)~! exists.

4

| Numerical Analysis 10E




Chapter 10.3: Quasi-Newton Methods

MOTIVATION

A generalization of the Secant method to systems of nonlinear
equations is a technique known as Broyden’s method

The method requires only n scalar functional evaluations per
iteration and also reduces the number of arithmetic calculations
to O(n?). It belongs to a class of methods known as
least-change secant updates that produce algorithms called
quasi-Newton. These methods replace the Jacobian matrix in
Newton’s method with an approximation matrix that is easily
updated at each iteration.
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Chapter 10.3: Quasi-Newton Methods

DISADVANTAGES OF QUASI-NEWTON METHODS

» Quadratic convergence of Newton’s method is lost, being

replaced, in general, by a convergence called superlinear. This
implies that

im X0 el
i— 00 Hx(')_pH

where p denotes the solution to F(x) = 0 and x() and x(*+") are
consecutive approximations to p.

This is an acceptable trade-off for the decrease in the amount of
computation.

» Unlike Newton’s method, theyare not self-correcting. Newton'’s
method will generally correct for roundoff error with successive
iterations, but unless special safeguards are incorporated,
Broyden’s method will not.

y

| Numerical Analysis 10E



Chapter 10.3: Quasi-Newton Methods <w\
)

Theorem (10.8)

Suppose that A is a nonsingular matrix and that x andy are
vectors with y!A='x # —1. Then A + xy! is nonsingular and

A TxylA—

N1 _ ,-1
(Arxy) = A P
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Chapter 10.3: Quasi-Newton Methods

To approximate the solution of the nonlinear system F(x) = 0 given
an initial approximation Xx:

INPUT number n of equations and unknowns; initial

approximation X = (xy,..., Xn)";
tolerance TOL; maximum number of iterations N.
OUTPUT approximate solution x = (xi, ..., x,)! or a message that

the number of iterations was exceeded.
Step 1 Set Aq = J(X) where J(X);; = 2L(x) for1 <i,j < n;

I,j — ax;
v = F(x). (Note: v =F(x())
Step 2 Set A= A;'. (Use Gaussian elimination.)
Step 3 Sets = —Av; (Note: s = s4.)
x=x+s; (Note:x=x1)
k = 2.

v
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Chapter 10.3: Quasi-Newton Methods

Step 4 While (k < N) do Steps 5-13.
Step 5 Setw =v; (Savev.)
v = F(x); (Note: v = F(x()))
y=v—w. (Note:y =yg.)
Step 6 Setz = —Ay. (Note:z= —A_'.yx.)
Step 7 Set p = —s'z.  (Note: p = sLA . yx.)
Step 8 Set u! = s’A.
Step9 Set A=A+ I(s+2z)u’. (Note:A=A.")
Step 10 Sets = —Av.  (Note: s = — A, 'F(x()).)
Step 11 Setx =x+s. (Note: x = x(k+1))
Step 12 If ||s|| < TOL then OUTPUT (x);
(Procedure successful.) STOP
Step 13 Set k = k + 1.
Step 14 OUTPUT (‘Maximum number of iterations exceeded’);
(Procedure unsuccessful.) STOP

y
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Chapter 10.4: Steepest Descent Techniques Kw\
)

MOTIVATION

The method of Steepest Descent for finding a local minimum for
an arbitrary function g from R" into R can be intuitively

described as follows:
1. Evaluate g at an initial approximation

KO = (x0 0OY

2. Determine a direction from x(9) that results in a decrease
in the value of g.

3. Move an appropriate amount in this direction and call the
new value x().

4. Repeat steps 1 through 3 with x(©) replaced by x(1).
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Chapter 10.4: Steepest Descent Techniques

MOTIVATION

For g : R" — R, the gradient of g at x = (X1, X2, ..., Xn)! is
denoted Vg(x) and defined by

A differentiable multivariable function can have a relative
minimum at x only when the gradient at x is the zero vector.
Suppose that v = (v, Vs, ..., v,)! is a unit vector in R™; that is,

n
2 2
viz=) vi=1.
=1

o
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Chapter 10.4: Steepest Descent Techniques

MOTIVATION

The directional derivative of g at x in the direction of v
measures the change in the value of the function g relative to
the change in the variable in the direction of v. It is defined by

Dvg(x) = lim +[g(x + hv) — g(x)] = V' - V().

When g is differentiable, the direction that produces the
maximum value for the directional derivative occurs when v is
chosen to be parallel to Vg(x), provided that Vg(x) # 0. As a
conseqguence, the direction of greatest decrease in the value of
g at x is the direction given by —Vg(x).
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Chapter 10.4: Steepest Descent Techniques

To approximate a solution p to the minimization problem

g(p) = min g(x)

) (SN
given an initial approximation x:
INPUT number n of variables; initial approximation x = (xi, ..., Xp)!
TOL; maximum number of iterations N.
OUTPUT approximate solution x = (x, ..., x,)! or message of failure.

Step 1 Set k = 1.
Step 2 While (k < N) do Steps 3-15.
Step 3 Set g1 = g(X1,...,xn); (Note: g1 = g (x¥)) )
z=Vg(x1,...,xn); (Note:z=vg(xk))
Zo = ||2l2-

y
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Chapter 10.4: Steepest Descent Techniques

Step 4 If zy = 0 then OUTPUT (‘Zero gradient’);
OUTPUT (x1,...,Xn, 91);
(The procedure completed, may have a minimum.)

STOP.
Step 5 Setz =2z/7y; (Make z a unit vector.)
aq = 0;
az = 1;
g3 = 9(X — a3z2).

Step 6 While (g3 > g1) do Steps 7 and 8.
Step 7 Set az = 043/2;
g5 = g(X — as2).
Step 8 If ag < TOL/2 then
OUTPUT (‘No likely improvement’);
OUTPUT (x1,...,Xn,91); STOP
(Procedure completed, may have a minimum.)

v
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Chapter 10.4: Steepest Descent Technigues ﬁ\
) 5

Step 9 Set ap = a3/2;
92 = g(X — a2Z).
Step 10 Set h1 = (g2 — g1)/a2;
hy = (g5 — 92)/(as — a2);
h3 — (h2 — h1)/043.
(Note: Newton'’s forward divided-difference formula
used to find the quadratic
P(a) = g1 + hia + hsa(a — a2) that interpolates
h(a) at a =0, = az, @ = agz.)
Step 11 Set ag = 0.5(a2 — hy/h3); (Critical point of P at ay.)
9o = g(X — ap2).
Step 12 Find « from {ap, a3} so0 g = g(X — az) = min{go, g3}
Step 13 Set x = x — az.

y
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Chapter 10.4: Steepest Descent Techniques

Step 14 If |g — g1] < TOL then
OUTPUT (x4,...,Xn, 9);
(The procedure was successful.)
STOP.
Step 15 Set k = k + 1.
Step 16 OUTPUT (‘Maximum iterations exceeded’);
(The procedure was unsuccessful.)
STOP.
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Chapter 10.5: Homotopy; Continuation I\/Ietho

Homotopy, or continuation, methods for nonlinear systems

embed the problem to be solved within a collection of problems.

Specifically, to solve a problem of the form

which has the unknown solution x*, we consider a family of
problems described using a parameter A that assumes values
in [0, 1]. A problem with a known solution x(0) corresponds to
the situation when A = 0, and the problem with the unknown
solution x(1) = x* corresponds to A = 1.

QX
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()
CONTINUATION PROBLEM

The continuation problem is to: Determine a way to proceed from
the known solution x(0) of G(0, x) = zero to the unknown solution
x(1) = x* of G(1,x) = 0, that is, the solution to F(x) = 0.

Theorem (10.10)

Let F(x) be continuously differentiable for x € R". Suppose that the
Jacobian matrix J(X) is nonsingular for all x € R" and that a constant
M exists with ||J(x)~1|| < M, for all x € R". Then, for any x(0) in R",
there exists a unique function x()\), such that

G(X, x(A)) =

for all X in [0, 1]. Moreover, x(\) is continuously differentiable and
X'(\) = —J(x()\))~'F(x(0)), foreach X € [0,1].

v
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\

To approximate the solution of the nonlinear system F(x) = 0 given
an initial approximation x:

INPUT number n of equations and unknowns; integer N > 0; initial
approximation X = (xq, X2, ..., Xp)".

OUTPUT approximate solution x = (X1, Xo, ..., Xp)".

Step 1 Set h=1/N;
b = —hF(x).
Step2 Fori=1,2,..., N do Steps 3-7.
Step 3 Set A= J(x); Solve the linear system Ak; = b.

Step 4 Set A = J(x + 3k¢); Solve the linear system Ak, = b.
Step 5 Set A = J(x + ;kz); Solve the linear system Aks = b.

Step 6 Set A= J(x + k3); Solve the linear system Aks; = b.
Step 7 Set x = x + (k1 + 2ks + 2Kz + ky4) /6.
Step 8 OUTPUT (x4, X2,...,Xxn); STOP.

v

| Numerical Analysis 10E



