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Why Review Calculus???

It’s a good warm-up for our brains!

When developing numerical schemes we will use theorems from calculus to
guarantee that our algorithms make sense.

If the theory is sound, when our programs fail we look for bugs in the code!

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Lecture Notes – Calculus and Taylor’s Theorem
— (3/24)



Calculus Review
Examples

Definitions
Taylor’s Theorem

Background Material — A Crash Course in Calculus

Key concepts from Calculus

• Limits

• Continuity

• Differentiability

• Taylor’s Theorem
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Limit

The most fundamental concept in Calculus is the limit.

Definition (Limit)

A function f defined on a set X of real numbers X ⊂ R has the
limit L at x0, written

lim
x→x0

f(x) = L

if given any real number ε > 0, there exists a real number δ > 0
such that |f(x)− L| < ε whenever x ∈ X and 0 < |x− x0| < δ.
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Continuity

Definition (Continuity (at a point))

Let f be a function defined on a set X of real numbers, and
x0 ∈ X. Then f is continuous at x0 if

lim
x→x0

f(x) = f(x0).

It is important to note that computers only have discrete
representation, not continuous.

Thus, the computer is often making approximations.
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Derivative

Definition (Differentiability (at a point))

Let f be a function defined on an open interval containing x0

(a < x0 < b). f is differentiable at x0 if

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
exists.

If the limit exists, f ′(x0) is the derivative at x0. Note: This is
the slope of the tangent line at f(x0).

The derivative is used often in this course, and sometimes an
approximate derivative is adequate.
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Taylor’s Theorem

The following theorem is the most important one for you to remember
from Calculus.

Theorem (Taylor’s Theorem with Remainder)

Suppose f ∈ Cn[a, b], f (n+1) exists on [a, b], and x0 ∈ [a, b]. Then for
all x ∈ (a, b), there exists ξ(x) ∈ (x0, x) with f(x) = Pn(x) +Rn(x)
where

Pn(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k,

Rn(x) =
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)(n+1).

Pn(x) is called the Taylor polynomial of degree n, and Rn(x) is
the remainder term (truncation error).

Note: f (n+1) exists on [a, b], but is not necessarily continuous.
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Important Examples

Important Examples: Below are important functions studied
in Calculus

ex =

∞∑
n=0

xn

n!

cos(x) =

∞∑
n=0

(−1)nx2n

(2n)!

sin(x) =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
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Example 1: Approximate sin 1

Example 1: Approximate sin(x) with x near π
6

We know sin
(
π
6

)
= 1

2 , so what about sin
(
π
6 + 0.1

)
Since f(x) ∈ C∞(−∞,∞), we can use Taylor’s theorem:

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2!
f ′′(x0)(x− x0)2 + ...

=

∞∑
n=0

1

n!
f (n)(x0)(x− x0)n
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Example 1: Approximate sin 2

From Taylor’s theorem sin(x) with x near π
6

sin(x) =

∞∑
n=0

1

n!

dn

dxn
sin(x)

∣∣∣∣
x=π

6

(
x− π

6

)n
=

= sin
(π

6

)
+ cos

(π
6

)(
x− π

6

)
−

1

2!
sin
(π

6

)(
x− π

6

)2
− 1

3!
cos
(π

6

)(
x− π

6

)3
+ ...

But sin
(
π
6

)
= 1

2 and cos
(
π
6

)
=

√
3

2
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Example 1: Approximate sin 3

With information above and x = π
6 + 0.1, we have

sin(x) =
1

2

[
1− 1

2!

(
x− π

6

)2
+

1

4!

(
x− π

6

)4
− ...

]
+

√
3

2

[(
x− π

6

)
− 1

3!

(
x− π

6

)3
+ ...

]

=
1

2

∞∑
n=0

(−1)n

(2n)!

(
x− π

6

)2n
+

√
3

2

∞∑
n=0

(−1)n

(2n+ 1)!

(
x− π

6

)2n+1

It follows that sin
(
π
6 + 0.1

)
satisfies:

sin
(π

6
+ 0.1

)
=

1

2

∞∑
n=0

(−1)n

(2n)!
(0.1)

2n
+

√
3

2

∞∑
n=0

(−1)n

(2n+ 1)!
(0.1)

2n+1
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Example 1: Approximate sin 4

Examining the infinite sums, we see both the (0.1)n and the factorials
in the denominator resulting terms going to zero

We truncate the series at n = N , gives the approximation at
x = π

6 + 0.1

sin
(π

6
+ 0.1

)
≈ 1

2

N∑
n=0

(−1)n

(2n)!
(0.1)

2n
+

√
3

2

N∑
n=0

(−1)n

(2n+ 1)!
(0.1)

2n+1

Truncating the series at n = N leaves a polynomial of order 2N + 1

TN (x) =
1

2

N∑
n=0

(−1)n

(2n)!

(
x− π

6

)2n
+

√
3

2

N∑
n=0

(−1)n

(2n+ 1)!

(
x− π

6

)2n+1

,

where x is “close” to π
6
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Example 1: Approximate sin 5

The error or remainder satisfies:

RN (x) =
1

2

∞∑
n=N+1

(−1)n

(2n)!

(
x− π

6

)2n
+

√
3

2

∞∑
n=N+1

(−1)n

(2n+ 1)!

(
x− π

6

)2n+1

,

Thus, sin
(
π
6 + 0.1

)
= TN

(
π
6 + 0.1

)
+RN

(
π
6 + 0.1

)
If we use the approximation from the previous page with x = π

6 + 0.1,
we find the following polynomial evaluations:

Poly Order Approximation Error

sin
(
π
6 + 0.1

)
∞ 0.58396036

T1
(
π
6 + 0.1

)
1 0.58660254 0.45246%

T2
(
π
6 + 0.1

)
3 0.58395820 -0.00037%

T3
(
π
6 + 0.1

)
5 0.58396036 8.56× 10−8%
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Example 1: Approximate sin 6

Below is the graph of y = sin(x) with the Taylor polynomial fits of
order 1, 3, and 5, passing through x0 = π

6

−π/2 −π/3 −π/6 0 π/6 π/3 π/2
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

sin(x)

sin(x)
T1(x)
T2(x)
T3(x)
x0

We observe even a cubic polynomial fits the sine function well
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Example 1: Approximate sin 7

The remainder term in Taylor’s theorem is useful for finding
bounds on the error.

Recall

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)(n+1)

with ξ ∈ (x0, x). However, we rarely know ξ.

A bound on the error satisfies

max
x∈[x0−δ,x0+δ]

|Rn(x)| = max
x∈[x0−δ,x0+δ]

|f (n+1)(ξ)|
(n+ 1)!

|x− x0|(n+1)

≤ δn+1

(n+ 1)!
max

x∈[x0−δ,x0+δ]
|f (n+1)(ξ)|
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Example 1: Approximate sin 8

For this example, the (n+ 1)st derivative of f(x) = sin(x) satisfies

|f (n+1)(ξ)| ≤ 1,

and we are taking δ = 0.1

It follows that

max
x∈[x0−δ,x0+δ]

|Rn(x)| ≤ δn+1

(n+ 1)!
max

x∈[x0−δ,x0+δ]
|f (n+1)(ξ)|

≤ δn+1

(n+ 1)!
≤ (0.1)n+1

(n+ 1)!

We saw the error for T2(x) (cubic fit) was 2.16× 10−6.

The error approximation gives

E3(x) ≤ (0.1)4

4!
≈ 4.17× 10−6,

which is only double the actual error
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Example 2: Integrate cos(cos(x)) 1

Example 2: Consider the following integral:∫ π
2

0
cos(cos(x))dx

This is not an integral that is readily solvable with
standard methods

Can we obtain a reasonable approximation?

Maple and MatLab can numerically solve this problem

Later in the course we learn quadrature methods for solving

Polynomials are easy to integrate, so let’s try using
Taylor’s theorem and integrate the truncated
polynomial.
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Example 2: Integrate cos(cos(x)) 2

Our function is clearly C∞(−∞,∞), so Taylor’s theorem readily
applies

f(x) = cos(cos(x)) =

∞∑
0

1

n!

dnf(0)

dxn
xn

There is no easy form for dnf(0)
dxn , but taking a few terms is not hard

f(0) = cos(cos(0)) = cos(1)

f ′(0) = sin(cos(0)) sin(0) = 0

f ′′(0) = − cos(cos(0)) sin2(0) + sin(cos(0)) cos(0) = sin(1)

It follows that a quadratic approximating polynomial is:

f(x) ≈ P2(x) = cos(1) +
sin(1)

2
x2
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Example 2: Integrate cos(cos(x)) 3

The integral gives the area under the curve. The figure below shows
f(x) = cos(cos(x)) and the second order Maclaurin series expansion

P2(x) = cos(1) + sin(1)
2 x2

0 π/4 π/2
0

0.5

1

1.5

2

x

y

f(x) = cos(cos(x))

f (x)
P2(x)
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Example 2: Integrate cos(cos(x)) 4

The 2nd order Maclaurin series expansion P2(x) = cos(1) + sin(1)
2 x2 is

easily integrable

∫ π
2

0

cos(cos(x))dx ≈
∫ π

2

0

(
cos(1) +

sin(1)

2
x2
)
dx

=

(
cos(1)x+

sin(1)x3

6

)∣∣∣∣π2
0

=
π cos(1)

2
+
π3 sin(1)

48
≈ 1.392265,

which is larger than the actual value (1.201970) as seen in the graph.
This is a 15.8% error, so not great.
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Example 2: Integrate cos(cos(x)) 5

How much is the error improved if the interval is divided
into two equal intervals?

This time we use Taylor’s expansions around x0 = 0 and x0 = π
4 , and

again truncate with 2nd order polynomials

About x0 = π
4 , Taylor’s series is

T2(x) = cos

(√
2

2

)
+

√
2 sin

(√
2
2

)
2

(
x− π

4

)

+

√2 sin
(√

2
2

)
4

−
cos
(√

2
2

)
4

(x− π

4

)2
≈ 0.76024 + 0.45936

(
x− π

4

)
+ 0.039620

(
x− π

4

)2
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Example 2: Integrate cos(cos(x)) 6

The integral is now approximated by∫ π
4

0

cos(cos(x))dx+

∫ π
2

π
4

cos(cos(x))dx ≈
∫ π

4

0

P2(x)dx+

∫ π
2

π
4

T2(x)dx,

where

P2(x) ≈ 0.54030 + 0.42074x2 and

T2(x) ≈ 0.76024 + 0.45936
(
x− π

4

)
+ 0.039620

(
x− π

4

)2
However, integrating these quadratic polynomials is easy∫ π

4

0

P2(x)dx+

∫ π
2

π
4

T2(x)dx ≈ 0.492297 + 0.745172 = 1.237469,

which is only a 2.95% error from the actual value
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Example 2: Integrate cos(cos(x)) 7

The figure below shows a diagram for the computations done above
with two approximating quadratics for finding the area

0 0.7854 1.5708
0

0.5

1

1.5
f(x) = cos(cos(x))

x

y

f (x)

P2(x)

T2(x)
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