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Finite Precision A single char

Computers use a finite number of bits (0’s and 1’s) to represent
numbers.

For instance, an 8-bit unsigned integer (a.k.a a “char”) is stored:

27 26 25 24 23 22 21 20

0 1 0 0 1 1 0 1

Here, 26 + 23 + 22 + 20 = 64 + 8 + 4 + 1 = 77, which represents the
upper-case character “M” (US-ASCII).
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Finite Precision A 64-bit real number, double

The Binary Floating Point Arithmetic Standard 754-1985
(IEEE — The Institute for Electrical and Electronics Engineers)
standard specified the following layout for a 64-bit real number:

s c10 c9 . . . c1 c0 m51 m50 . . . m1 m0

where

Symbol Bits Description
s 1 The sign bit — 0=positive, 1=negative
c 11 The characteristic (exponent)
m 52 The mantissa

r = (−1)s 2c−1023 (1 +m), c =

10∑
k=0

ck2k, m =

51∑
k=0

mk

252−k
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Examples: Finite Precision

r = (−1)s 2c−1023 (1 + f), c =

10∑
k=0

ck2k, m =

51∑
k=0

mk

252−k

Example 1: The number 3.0

0 10000000000 100000000000000000000000000000000000000000000000000

r1 = (−1)0 · 22
10−1023 ·

(
1 +

1

2

)
= 1 · 21 · 3

2
= 3.0

Example 2: The Smallest Positive Real Number

0 00000000000 000000000000000000000000000000000000000000000000001

r2 = (−1)0 · 20−1023 ·
(
1 + 2−52

)
= (1 + 2−52) · 2−1023 · 1 ≈ 10−308
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Examples: Finite Precision

r = (−1)s 2c−1023 (1 + f), c =

10∑
k=0

ck2k, m =

51∑
k=0

mk

252−k

Example 3: The Largest Positive Real Number

0 11111111110 111111111111111111111111111111111111111111111111111

r3 = (−1)0 · 21023 ·
(

1 +
1

2
+

1

22
+ · · ·+ 1

251
+

1

252

)
= 21024 ·

(
2− 1

252

)
≈ 10308
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Special Numbers

Note that the IEEE standard does NOT allow zero!

There are some special signals in IEEE-754-1985:

All zeros for c and m produce zero

c having 11 bits all 1 gives either NaN (Not a Number) or
±∞
Further reference at
http://www.freesoft.org/CIE/RFC/1832/32.htm
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Something is Missing — Gaps in the Representation 1 of 3

There are gaps in the floating-point representation!

Given the representation

0 00000000000 000000000000000000000000000000000000000000000000001

for the value 2−1023

252 .

The next larger floating-point value is

0 00000000000 000000000000000000000000000000000000000000000000010

i.e. the value 2−1023

251 .

The difference between these two values is 2−1023

252 = 2−1075,

so any number in the interval
(

2−1023

252 , 2
−1023

251

)
is not representable!
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Something is Missing — Gaps in the Representation 2 of 3

A gap of 2−1075 doesn’t seem too bad...

However, the size of the gap depends on the value itself...

Consider r = 3.0

0 10000000000 100000000000000000000000000000000000000000000000000

and the next value

0 10000000000 100000000000000000000000000000000000000000000000001

The difference is
2

252
≈ 4.4 · 10−16
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Something is Missing — Gaps in the Representation 3 of 3

At the other extreme, the difference between

0 11111111110 111111111111111111111111111111111111111111111111111

and the previous value

0 11111111110 111111111111111111111111111111111111111111111111110

is
21023

252
= 2971 ≈ 1.99 · 10292.

That’s a “fairly significant” gap!!!

The number of atoms in the observable universe can be
estimated to be no more than ∼ 1080.
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The Relative Gap

It makes more sense to factor the exponent out of the discussion and
talk about the relative gap:

Exponent Gap Relative Gap (Gap/Exponent)
2−1023 2−1075 2−52

21 2−51 2−52

21023 2971 2−52

Any difference between numbers smaller than the local gap is not
representable, e.g. any number in the interval[

3.0, 3.0 + 1
251

)
is represented by the value 3.0.

The MatLab command eps (for epsilon tolerance) gives double
precision, which is

2−52 ≈ 2.2204× 10−16

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Lecture Notes – Computer Arithmetic and Finite Precision
— (11/33)



Finite Precision
Numerical Errors

Algorithms and Convergence

Binary Representation
Something Missing ... Gaps

The Floating Point “Numbers”

Floating point “numbers” represent intervals!

Since (most) humans find it hard to think in binary representation,
from now on we will for simplicity and without loss of generality
assume that floating point numbers are represented in the normalized
floating point form as...
k-digit decimal machine numbers

±0.d1d2 · · · dk−1dk · 10n

where
1 ≤ d1 ≤ 9, 0 ≤ di ≤ 9, i ≥ 2, n ∈ Z
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k-Digit Decimal Machine Numbers

Any real number can be written in the form

r = ±0.d1d2 · · · d∞ · 10n

given infinite patience and storage space.

We can obtain the floating-point representation fl(r) in two ways:

1 Truncating (chopping) — just keep the first k digits (In
MatLab use floor(r))

2 Rounding — if dk+1 ≥ 5 then add 1 to dk. Truncate.
(Standard for most languages)

Examples

flt,5(π) = 0.31415 · 101, flr,5(π) = 0.31416 · 101

In both cases, the error introduced is called the roundoff error.
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Quantifying the Error

Let p∗ be and approximation to p, then...

Definition (The Absolute Error)

|p− p∗|

Definition (The Relative Error)

|p− p∗|
|p|

, p 6= 0

Definition (Significant Digits)

The number of significant digits is the largest value of t for which

|p− p∗|
|p|

< 5 · 10−t
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Sources of Numerical Error Important!!!

Some Sources of Numerical Error

1 Representation — Roundoff

2 Cancellation

Consider:
0.12345678012345 · 101

− 0.12345678012344 · 101

= 0.10000000000000 · 10−13

this value has (at most) 1 significant digit!!!

If you assume a “cancelled value” has more significant bits (the
computer will happily give you some numbers) — Any use of these
random digits is GARBAGE!!!
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Examples: 5-digit Arithmetic k-Digit Decimal Machine Numbers

Rounding 5-digit arithmetic

(0.96384 · 105 + 0.26678 · 102)− 0.96410 · 105 =
(0.96384 · 105 + 0.00027 · 105)− 0.96410 · 105 =

0.96411 · 105 − 0.96410 · 105 = 0.10000 · 101

Truncating 5-digit arithmetic

(0.96384 · 105 + 0.26678 · 102)− 0.96410 · 105 =
(0.96384 · 105 + 0.00026 · 105)− 0.96410 · 105 =

0.96410 · 105 − 0.96410 · 105 = 0.0000 · 100

Rearrangement changes the result:

(0.96384 · 105 − 0.96410 · 105) + 0.26678 · 102 =
−0.26000 · 102 + 0.26678 · 102 = 0.67800 · 100

Numerically, order of computation matters! (This is a HARD

problem)
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Example: Loss of Significant Digits due to Subtractive Cancellation

Consider the recursive relation

xn+1 = 1− (n+ 1)xn with x0 = 1− 1

e
.

This sequence can be shown to converge to 0

Subtractive cancellation produces an error, which is
approximately equal to the machine precision times n!.
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Example: Proof of Convergence to 0

The recursive relation is
xn+1 = 1− (n+ 1)xn

with

x0 = 1−
1

e
= 1−

1

2!
+

1

3!
−

1

4!
+ ...

From the recursive relation

x1 = 1− x0 =
1

2!
−

1

3!
+

1

4!
− ...

x2 = 1− 2x1 =
1

3
−

2

4!
+

2

5!
− ...

x3 = 1− 3x2 =
3!

4!
−

3!

5!
+

3!

6!
− ...

...

xn = 1− nxn−1 =
n!

(n+ 1)!
−

n!

(n+ 2)!
+

n!

(n+ 3)!
− ...

This shows that

xn =
1

n+ 1
−

1

(n+ 1)(n+ 2)
+ ...→ 0 as n→∞.
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Subtraction Error

The recursive relation xn+1 = 1− (n+ 1)xn with x0 = 1− 1
e

1 clear
2 x(1) = 1-1/exp(1);
3 s(1) = 1;
4 f(1) = 1;
5 for i = 2:21
6 x(i) = 1-(i-1)*x(i-1);
7 s(i) = 1/i;
8 f(i) = (i-1)*f(i-1);
9 end

10 n = 0:20;
11 z = [n; x; s; f];
12 fprintf(1, '\n\n n x(n) 1/(n+1) n!\n\n')
13 fprintf(1, '%2.0f %13.8f %10.8f %10.3g\n',z)

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Lecture Notes – Computer Arithmetic and Finite Precision
— (19/33)



Finite Precision
Numerical Errors

Algorithms and Convergence

Sources of Numerical Error
Subtractive Cancellation

Subtractive Cancellation Example: Output

n xn n! n xn n!
0 0.63212056 1 11 0.07735223 3.99e+007
1 0.36787944 1 12 0.07177325 4.79e+008
2 0.26424112 2 13 0.06694778 6.23e+009
3 0.20727665 6 14 0.06273108 8.72e+010
4 0.17089341 24 15 0.05903379 1.31e+012
5 0.14553294 120 16 0.05545930 2.09e+013
6 0.12680236 720 17 0.05719187 3.56e+014
7 0.11238350 5.04e+003 18 −0.02945367 6.4e+015
8 0.10093197 4.03e+004 19 1.55961974 1.22e+017
9 0.09161229 3.63e+005 20 −30.19239489 2.43e+018
10 0.08387707 3.63e+006
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Subtraction Error

Consider the MatLab computation near x = 1 of

y = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1

compared to y = (x− 1)7

1 % Rounding Error Graph
2

3 x = 0.988:0.0001:1.012;
4 y = x.ˆ7 - 7*x.ˆ6 + 21*x.ˆ5 - 35*x.ˆ4 + ...
5 35*x.ˆ3 - 21*x.ˆ2 + 7*x - 1;
6 yy = (x - 1).ˆ7;
7

8 plot(x,y,'k-','linewidth',1.5);
9 hold on

10 plot(x,yy,'r-','linewidth',1.5);
11 grid
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Subtraction Error

The program graphs x ∈ [0.988, 1.012] with the two forms of function:

y = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1 = (x− 1)7

0.985 0.99 0.995 1 1.005 1.01 1.015
x

-5

0

5

y

×10-14 Rounding Error

Polynomial
y = (x− 1)7
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Algorithms

Definition (Algorithm)

An algorithm is a procedure that describes, in an
unambiguous manner, a finite sequence of steps to be
performed in a specific order.

In this class, the objective of an algorithm is to implement a
procedure to solve a problem or approximate a solution to a
problem.

There are many collection of algorithms “out there” called
Numerical Recipes
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Key Concepts for Numerical Algorithms Stability

Definition (Stability )

An algorithm is said to be stable if small changes in the input,
generates small changes in the output.

At some point we need to quantify what “small” means!

If an algorithm is stable for a certain range of initial data,
then is it said to be conditionally stable .

Stability issues are discussed in great detail in Math 543
and our Dynamical Systems classes.
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Key Concepts for Numerical Algorithms Error Growth

Suppose E0 > 0 denotes the initial error, and En represents the error
after n operations.

If En ≈ CE0 · n (for a constant C, which is independent of n),
then the growth is linear.

If En ≈ CnE0, C > 1, then the growth is exponential — in this
case the error will dominate very fast(undesirable scenario).

Linear error growth is usually unavoidable, and in the case
where C and E0 are small the results are generally acceptable. —
Stable algorithm.

Exponential error growth is unacceptable. Regardless of the
size of E0 the error grows rapidly. — Unstable algorithm.

One property of chaos in a dynamical system is the
exponential growth of any error in initial conditions – leading
to unpredictable behavior
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Example 1 of 2

The recursive equation

pn =
10

3
pn−1 − pn−2, n = 2, 3, . . . ,∞

has the exact solution

pn = c1

(
1

3

)n
+ c23n

for any constants c1 and c2. (Determined by starting values.)

In particular, if p0 = 1 and p1 = 1
3 , we get c1 = 1 and c2 = 0, so

pn =
(
1
3

)n
for all n.

What happens with some rounding error, as we don’t know 1
3 exactly?
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Example 2 of 2

Consider what happens in 5-digit rounding arithmetic, where the
initial starting conditions are rounded.

p∗0 = 1.0000, p∗1 = 0.33333

which modifies the constants (by solving the general solution for c1
and c2 with the p∗0 and p∗1)

c∗1 = 1.0000, c∗2 = −0.12500 · 10−5

The generated sequence is

p∗n = 1.0000 (0.33333)
n − 0.12500 · 10−5(3.0000)n︸ ︷︷ ︸

Exponential Growth

p∗n quickly becomes a very poor approximation to pn due to the
exponential growth of the initial roundoff error.
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Reducing the Effects of Roundoff Error

The effects of roundoff error can be reduced by using
higher-order-digit arithmetic such as the double or
multiple-precision arithmetic available on most
computers.

Disadvantages in using double precision arithmetic are
that it takes more computation time, and the growth of
the roundoff error is not eliminated but only
postponed.

Sometimes, but not always, it is possible to reduce the
growth of the roundoff error by restructuring the
calculations.
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Key Concepts Rate of Convergence

Definition (Rate of Convergence)

Suppose the sequence β = {βn}∞n=1 converges to zero, and
α = {αn}∞n=1 converges to a number α.

If there exists K > 0: |αn − α| < Kβn, for n large enough, then we
say that {αn}∞n=1 converges to α with a Rate of Convergence
O(βn) (“Big Oh of βn”).

We write
αn = α+O(βn)

Note: The sequence β = {βn}∞n=1 is usually chosen to be

βn =
1

np

for some positive value of p.
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Examples: Rate of Convergence

Example 1:
If

αn = α+
1√
n

then for any ε > 0

|αn − α| =
1√
n
≤ (1 + ε)︸ ︷︷ ︸

K

1√
n︸︷︷︸

βn

Hence,

αn = α+O
(

1√
n

)
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Examples: Rate of Convergence

Example 2: Consider the sequence (as n→∞)

αn = sin

(
1

n

)
− 1

n

The Maclaurin series expansion for sin(x) is:

sin

(
1

n

)
∼ 1

n
− 1

6n3
+O

(
1

n5

)
Hence

|αn| =
∣∣∣∣ 1

6n3
+O

(
1

n5

)∣∣∣∣
It follows that

αn = 0 +O
(

1

n3

)
Note:

O
(

1

n3

)
+O

(
1

n5

)
= O

(
1

n3

)
, since

1

n5
� 1

n3
, as n→∞

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Lecture Notes – Computer Arithmetic and Finite Precision
— (31/33)



Finite Precision
Numerical Errors

Algorithms and Convergence
Rate of Convergence

Generalizing to Continuous Limits

Definition (Rate of Convergence)

Suppose
lim
h→0

G(h) = 0, and lim
h→0

F (h) = L

If there exists K > 0:

|F (h)− L| ≤ K |G(h)|

for all h < H (for some H > 0), then

F (h) = L+O(G(h))

we say that F (h) converges to L with a Rate of Convergence
O(G(h)).

Usually G(h) = hp, p > 0.
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Examples: Rate of Convergence

Example 2-b: Consider the function α(h) (as h→ 0)

α(h) = sin (h)− h

The Maclaurin series expansion for sin(x) is:

sin (h) ∼ h− h3

6
+O

(
h5
)

Hence

|α(h)| =
∣∣∣∣h36 +O

(
h5
)∣∣∣∣

It follows that
lim
h→0

α(h) = 0 +O
(
h3
)

Note:

O
(
h3
)

+O
(
h5
)

= O
(
h3
)
, since h5 � h3, as h→ 0
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