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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

Numerical Differentiation: The Big Picture

The goal of numerical differentiation is to compute an accurate
approximation to the derivative(s) of a function.

Given measurements {f;}? , of the underlying function f(z) at the

node values {z;}",, our task is to estimate f’(x) (and, later, higher
derivatives) in the same nodes.

The strategy: Fit a polynomial to a cleverly selected subset of the
nodes, and use the derivative of that polynomial as
the approximation of the derivative.
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

Numerical Differentiation

Definition (Derivative as a limit)

The derivative of f at g is

The obvious approximation is to fix A “small” and compute

f’(ﬂfo) ~ f(ﬂ?o + h})L - f(xo) ]

Problems: Cancellation and roundoff errors. — For small values of
h, f(zo+h) = f(xq) so the difference may have very few
significant digits in finite precision arithmetic.

Smaller h is not necessarily better numerically.
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

Main Tools for Numerical Differentiation

Again Taylor’s Theorem is critical for determining accuracy of our
algorithms...

Theorem (Taylor’s Theorem)

Suppose f € C™[a,b], f*FY) exists on [a,b], and z¢ € [a,b]. Then for
all z € (a,b), there exists £(x) € (min(zg, z), max(zg, z)) with
f(x) = P,(x) + Ry, (z) where

f(k>(x0 _ SV (E() (n+1)
)_Z (z — zo)¥, Rn(z)—w(x—xo) Y,

P, (z) is the Taylor polynomial of degree n, and
R, (z) is the remainder term (truncation error).
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

Main Tools for Numerical Differentiation

Our second tool for building Differentiation and Integration schemes
are the Lagrange Coefficients

n
Xr — X
Lix(x)= ] —=

X — L5
j=0j#k " F T

Recall: L, ;(z) is the nth degree polynomial which is 1 in z; and 0
in the other nodes (z;, j # k).

Previously we have used the family L,, o(x), Ly 1(x), ..., Ly n(z) to
build the Lagrange interpolating polynomial. A good tool for
providing polynomial behavior.

Now, lets combine our tools and look at differentiation.
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

Getting an Error Estimate — Taylor Expansion

f<wo+h;—f<xo> =} [/@0) + ' (wo) + 5 (E@)) — flo)]
= f'(mo) + BE"(E())

If f”(£(x)) is bounded, i.e.
[f"(€()] < M, V&(x) € (w0, w0 + h)

then we have
h) — h
I (wo) = Jwo + i)z f(xo), with an error less than L

This is the approximation error, which is O (h).
(Roundoff error, ~ €macn = 10716, not taken into account).

—(7/33)
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

Using Higher Degree Polynomials to get Better Accuracy

Suppose {zg,z1,...,T,} are distinct points in an interval Z, and
f € C"(T), we can write

[Ti—o(z — o)
(n+1)!

Error Term

fl@)= > flax)Lnkx) + FOr ()
k=0

Lagrange Interp. Poly.

Formal differentiation of this expression gives:

e d [T 0] ey,
P = S S + g [Fe] e

e 4 ).

Note: When we evaluate f'(z;) at the node points (x;) the last term
gives no contribution. (= we don’t have to worry about it...) spsg
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

Exercising the Product Rule for Differentiation

% [HZ(_;;(E ;)!xk)} _

oy (@~ @ =22 @ =) = 0) (= a2 )+ =

n

1 n
v | AL e

§=0 | k=0,k#j

Now, if we let © = x, for some particular value of ¢, only the product
which skips that value of j = ¢ is non-zero... e.g.

n n

IR 1
mz H (ilfka) :mkn (’M*‘Tk)

=0 | k=0,k#j _— =0,k#£L
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

The (n + 1) point formula for approximating f'(x;)

Putting it all together yields what is known as the (n + 1) point
formula for approximating f'(z;):

(n+1) n
foﬂk e %)+f(n+1()£) II =)

Note: The formula is most useful when the node points are equally
spaced (it can be computed once and stored), i.e

T = xo + kh.

Now, we have to compute the derivatives of the Lagrange coefficients,
i.e. Ly, (z)... [We can no longer dodge this task!]
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

Example: 3-point Formulas, I/111

Building blocks:

(@ —m)(z — ) - (1) + (v x2)
Laol@) = (o — @1)(z0 — 22)’ Laolz) = (w0 — 21)(0 — 22)
L2,1($) = (Z : ig;g:—x;i) L/271($) = ((Z:j:(;)o)(;g(f:;j))

N (l‘ _ .%'0)(1' _ $1) () — (.%' - xo) (CL‘ — CEl)
Laale) = (z2 — o) (x2 — 1)’ L22(@) (x2 — o) (w2 — 71)
Formulas:

Play) = fan) | o=t oy | 2

(o — 1) (z0 — T2)

o @)(e) 2
b st [t O ] )

(z2 — z0) (22 — 21)
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

Example: 3-point Formulas, IT/111

When the points are equally spaced...

2
(@0) = 5 -3 (o) + 4f(@2) ~ (a2)] + = £ €o)
F@) = 5 [-Fw) + @) - = 1O &)
F/(@2) = 5 L (wo) — 4 () + 37 (@) + 5 £ (€2)

Use zg as the reference point — zp = x¢ + kh:

2
(wo) = 5 18 (o) + 4f (o + h) — f(zo +2h)] + = O ()
o+ ) = g [ Flao) + Flro +20)) — o F9 (e
2
f/((E(] + 2h) = % [f(x()) — 4f($() + h) —+ 3f(9c0 + 2h)] + %f(3) (52)

SDSO
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

Example: 3-point Formulas, I11 /111

2
F'(a0) = 513 (o) + 4f (w0 + k) — f(zo + 2h)] + = O (&)
F(xg) = 5 [~Fxg — ) + £l +h)] — =19 (&y)

2
Fad) = o [Fla —2h) — 4 (g — )+ 37()] + = FO @)

After the substitution zy + h — z{; in the second equation, and
xg + 2h — xf in the third equation.

Note#1: The third equation can be obtained from the first one by setting h — —h.
Note#£2: The error is smallest in the second equation.

Note#3: The second equation is a two-sided approximation, the first and third
one-sided approximations.

Note#4: We can drop the superscripts *,% ...
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

3-point Formulas: Illustration Centered Formula

Consider f(z) = e " sin(z).
5x=1/1, dP(0) = 1.2985, df(0) = 1

-2 -15 -1 -0.5 0 0.5 1 15 2
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Numerical Differentiation

Ideas and Fundamental Tools

Moving Along...

Forward Formula

3-point Formulas: Illustration

3x=1/1, dP(0) = 0.55759, df(0) = 1

2h

0.5 1 1.5 2

13 (r0) + 4f mo + ) — flzo +20)] + %2f<3><§o>

SDSO
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

3-point Formulas: Illustration Backward Formula

ox=1/1, dP(0) = 1.2153, df(0)=1

I I I I I I I
-2 -15 -1 -0.5 0 0.5 1 1.5 2
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

5-point Formulas

If we want even better approximations we can go to 4-point, 5-point,
6-point, etc. .. formulas.

The most accurate (smallest error term) 5-point formula is:

To— — To— x —f(x 4
#'(xo) = f(zo—2h)—8f(xo hi;:f( o+h)—f(zo+2h) + %f(s)(g)

Sometimes (e.g for end-point approximations like the clamped
splines), we need one-sided formulas

f,(%) _ —25f(m0)+48f(9c0+h)—36f(z102-',;L?h)+16f(xo+3h)—3f(mo+4h)+%4f(5) (5).
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

5-Point Formulas Reference

f(zo) = ﬁ [ —25f(x0) +48f(x1) — 36 f(x2) + 16 f(x3) — 3f(x4)}

1

f'(o) = h

[— 3f(2-1) — 10f(z0) + 18f (1) — 6 (z2) + f<x3>}

o) = o5 [f(m) —8f(x_1) +8f(z1) - f(xz)}

1

f/(xo) = 1oh

|:— f(.f,g) + Gf(x,g) - ].8']((1',1) + 10(%0) + 3f((171):|

Fa0) = 37 [#-1) = 167 o-2) 4 367 0-5) — 48(0-1) + 25/ oo

SDSO
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

5-point Formulas: Illustration Centered Formula

&x=1/1, dP(0) = 1.1611, df(0) =1

F (o) = {028 o= IABS ot h)=fat2h) 4 i £(5) )
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Ide and Fundamental Tools

Moving Along...

Numerical Differentiation

and 5-point Formulas

5=1/1, dP(0) = 0.55759, df(0) = 1 5x=1/1, dP(0) = 1.2153, df(0) = 1

2 -15 -1 -05 0 05 1 15 2

-2 -15 -1 -05 0 05 1 15 2
&=1/1, dP(0) = 1.1611, df(0)=1

&x=1/1, dP(0) = 1.2985, df(0) =1
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Ide and Fundamental Tools

Moving Along...

Numerical Differentiation

and 5-point Formulas

&=1/2, dP(0) = 0.85359, df(0) = 1
1 1
0 0|
-1 -1
-2| g -2
-3 _a|
[ ;.
JrS -

-2 -15 -1 -05 o 05 1 15 2 5 -1 -05 o 05 1 15 2
&=1/2, dP(0) = 1.0812, df(0) = 1 8x=1/2, dP(0) = 1.0088, df(0) = 1

(21/33)
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Numerical Differentiation Ide and Fundamental Tools

Moving Along...

and 5-point Formulas

5x=1/4, dP(0) = 0.95985, df(0) = 1

1
0 o

-1 -1

-2 g -2

3| 3| s
i .

| B3

-1 -05 o 05 1 15 2
x=1/4, dP(0) = 1.0005, df(0) = 1

-7
-2 -15 -1 -05 o 05 1 15
&=1/4, dP(0) = 1.0207, df(0) = 1

- (22/33)
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

3-point and 5-point Formulas Summary

For the example: f(z) = e *sin(z) around x = 0.

da 3-Point Formulas 5-point
Backward Center Forward | Formula

1 1.2153 1.2985 0.55759 1.1611
1/2 0.8744 1.0812 0.8536 1.0088
1/4 0.96051 1.0207 0.95985 1.0005

Table: “Clearly” the centered 3-point formula beats
out the backward and forward formulas; but the 5-
point formula is big winner here.
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

Higher Order Derivatives

We can derive approximations for higher order derivatives in the same

way. — Fit a kth degree polynomial to a cluster of points
{zi, f(x;) ?jf“, and compute the appropriate derivative of the

polynomial in the point of interest.

The standard centered approximation of the second derivative is given
by

f(xo+h) —2f(x0) + f(wo — h)
h2

[ (2o) = +0(h?)
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Numerical Differentiation Ideas and Fundamental Tools
Moving Along...

Wrapping Up Numerical Differentiation

We now have the tools to build high-order accurate approximations to
the derivative.

We will use these tools and similar techniques in building integration
schemes in the following lectures.

Also, these approximations are the backbone of finite difference
methods for numerical solution of differential equations (see Math 542,
and Math 693b).

Next, we develop a general tool for combining low-order accurate
approximations (to derivatives, integrals, anything! (almost))... in
order to hierarchically constructing higher order approximations.
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Richardson’s Extrapolation

What it is: A general method for generating high-accuracy results
using low-order formulas.

Applicable when: The approximation technique has an error term
of predictable form, e.g.
o0

M — N;j(h) = > Eih,
k=j

where M is the unknown value we are trying to approximate, and
N;(h) the approximation (which has an error O(h7).)

Procedure: Use two approximations of the same order, but with
different h; e.g. Nj(h) and N;(h/2). Combine the two
approximations in such a way that the error terms of
order h7 cancel.
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Richardson’s Extrapolation A Nice Biece of “Algebra Magic

Building High Accuracy Approximations

Consider two first order approximations to M:
(oo}
M — Ny(h) =) Eph",

and
M — Ny(h/2) = ZEk

If we let No(h) = 2Ny (h/2) — Ny (h )7 then

h n
M = No(h) = 2B 5 — Eah ) BV,
—_————— k=2

0
where 1
() _
E7 = Ey <2k_1 — 1) .
Hence, Ny(h) is now a second order appr0x1mat10n to M. SDSO
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Building High Accuracy Approximations 2 of 5

We can play the game again, and combine Ny(h) with Ny(h/2) to get
a third-order accurate approximation, etc.

Ny(h) = 4N2(h/2;— Na(h) _ No(h/2) + NQ(h/z)g_ Ny (h)
Na(h) = Ny(n/2) + 2/ 2)7— N3 (h)
Ns(h) = Ny4(h/2) + N4(h/;):1N4(h)

In general, combining two jth order approximations to get a
(j + 1)st order approximation:

Nj(h/2) — Nj(h)
21 -1

Njy1(h) = Nj(h/2) +
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Building High Accuracy Approximations 3 of 5

Let’s derive the general update formula. Given,

M —N;(h) = E; +0 (K1)
i :
M — N;j(h/2) = Ej§+0(hﬂ+1)

We let
Njt1(h) = a;Nj(h) + B;N;(h/2)

However, if we want N;1(h) to approximate M, we must have
a; + 8 = 1. Therefore

) hi )
M = Nja(h) = a; B + (1= ;) Ej57 + O (W)
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Building High Accuracy Approximations

Now,

M — Nji1(h) = E;b [aj +(1- Oéj)w} +0 (W)

We want to select a; so that the expression in the bracket is zero.

This gives
-1 27 (27 -1)+1
NToiy TN Ty T o1 tTaiod
Therefore,

N;(h/2) — N;(h)

Nji(h) = Nj(h/2) + 22—
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Building High Accuracy Approximations

The following table illustrates how we can use Richardson’s
extrapolation to build a 5th order approximation, using five 1st order

approximations:
O (h) OMm*) O0(Mm) 0Mlm*) Omd
Ni(h)
Ni(h/2) Ny(h)
Ny (h/4) Ny(h/2)  Ns(h)
Ny (h/8) Na(h/4) Na(h/2) Na(h)
N (h/16) Na(h/S) Ns(h/4) Na(h/2) Ns(h)
1 Measurements T Extrapolations T
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Example (c.f. slide#13, and slide#17)

The centered difference formula approximating f’(z) can be
expressed:

f/(x()) — f(x"" h)z_hf(x — h) _ %fm(f) + O(h4)

Na(h) error term

In order to eliminate the h2 part of the error, we let our new
approximation be

Ny (h/2) — Na(h)

N3(h) = N2(h/2) + 3

+h)— —h 42h)— f(z—2h
[ath)fh) f(eth)—fa=h) _{(z+2h)=f(=2h)
2h 3

8f(z+h)—8f(z—h) _ f(z+2h)—f(xz—2h)
6h 6h

Ns(2h)

= 135 [f(x — 2h) — 8f(x — h) + 8f(x + h) — f(x + 2h)]. gpeg
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Richardson’s Extrapolation

A Nice Piece of “Algebra Magic”

Example, f(z) = x%e®.

X

f(x)

1.70
1.80
1.90
2.00
2.10
2.20
2.30

15.8197
19.6009
24.1361
29.5562
36.0128
43.6811
52.7634

f'(@) = (22 + 2%)e”,
F/(2) = 82 = 59.112.

w = 64.566. (Fwd Difference, 2pt)
W = 59.384. (Ctr Difference, 3pt)

W = 60.201. (Ctr Difference)

(4% 59.384 — 60.201)/3 = 59.111. (Richardson)
f(1-8)—8f(1-9)1"."28f(2~1)—f(2<2) —59.111. (5pt)
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