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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

Introduction: Matching a Few Parameters to a Lot of Data.

Sometimes we get a lot of data, many observations, and
want to fit it to a simple model.

0 1 2 3 4 5

0

2

4

6

8

Underlying function f(x) = 1 + x + x^2/25
Measured Data
Average
Linear Best Fit
Quadratic Best Fit

PDF-link: code.
Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉

Discrete Least Squares Approximation —
(3/97)



Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

Why a Low Dimensional Model?

Low dimensional models (e.g. low degree polynomials) are easy to
work with, and are quite well behaved (high degree polynomials
can be quite oscillatory.)

All measurements are noisy, to some degree. Often, we want to use a
large number of measurements in order to “average out” random
noise.

Approximation Theory looks at two problems:

[1] Given a data set, find the best fit for a model (i.e. in a class of
functions, find the one that best represents the data.)

[2] Find a simpler model approximating a given function.
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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

Interpolation: A Bad Idea?

We can probably agree that trying to interpolate this data set:
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with a 50th degree polynomial is not the best idea in the world...
Even fitting a cubic spline to this data gives wild oscillations!
[I tried, and it was not pretty!]
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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

Defining “Best Fit” — the Residual.

We are going to relax the requirement that the approximating
function must pass through all the data points.

Now we need a measurement of how well our approximation
fits the data. — A definition of “best fit.”

If f(xi) are the measured function values, and a(xi) are the values of
our approximating functions, we can define a function,
r(xi) = f(xi)− a(xi) which measures the deviation (residual) at xi.
Notice that r̃ = {r(x0), r(x1), . . . , r(xn)}

T is a vector.

Notation: From now on, fi = f(xi), ai = a(xi), and ri = r(xi).
Further, f̃ = {f0, f1, . . . , fn}

T , ã = {a0, a1, . . . , an}
T , and

r̃ = {r0, r1, . . . , rn}
T .
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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

What is the Size of the Residual?

There are many possible choices, e.g.

• The abs-sum of the deviations:

E1 =

n∑

i=0

|ri| ⇔ E1 = ‖r̃‖1

• The sum-of-the-squares of the deviations:

E2 =

√
√
√
√

n∑

i=0

|ri|2 ⇔ E2 = ‖r̃‖2

• The largest of the deviations:

E∞ = max
0≤i≤n

|ri| ⇔ E∞ = ‖r̃‖∞

In most cases, the sum-of-the-squares version is the easiest to work
with. (From now on we will focus on this choice...)Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

Discrete Least Squares Approximation

We have chosen the sum-of-squares measurement for errors. Lets find
the constant that best fits the data, minimize

E(C) =

n∑

i=0

(fi − C)2.

If C∗ is a minimizer, then E′(C∗) = 0 [derivative at a max/min is zero]

E′(C) = −

n∑

i=0

2(fi − C) = −2

n∑

i=0

fi + 2(n+ 1)C,

︸ ︷︷ ︸

Set =0, and solve for C

E′′(C) = 2(n+ 1)
︸ ︷︷ ︸

Positive

hence

C∗ =
1

n+ 1

n∑

i=0

fi, it is a min since E′′(C∗) = 2(n+ 1) > 0.

is the constant that best the fits the data. (Note: C∗ is the average.)
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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

Discrete Least Squares: Linear Approximation.

The form of Least Squares you are most likely to see: Find the
Linear Function, p1(x) = a0 + a1x, that best fits the data. The
error E(a0, a1) we need to minimize is:

E(a0, a1) =

n∑

i=0

[(a0 + a1xi)− fi]
2
.

The first partial derivatives with respect to a0 and a1 better be zero
at the minimum:

∂

∂a0
E(a0, a1) = 2

n∑

i=0

[(a0 + a1xi)− fi] = 0

∂

∂a1
E(a0, a1) = 2

n∑

i=0

xi [(a0 + a1xi)− fi] = 0.

We “massage” these expressions to get the Normal Equations...
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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

Linear Approximation: The Normal Equations p1(x)







a0(n+ 1) + a1

n∑

i=0

xi =

n∑

i=0

fi

a0

n∑

i=0

xi + a1

n∑

i=0

x2
i =

n∑

i=0

xifi.

Since everything except a0 and a1 is known, this is a 2-by-2 system
of equations.








(n+ 1)
n∑

i=0

xi

n∑

i=0

xi

n∑

i=0

x2
i








[
a0
a1

]

=








n∑

i=0

fi

n∑

i=0

xifi







.
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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

Alternate Linear Least Squares

For the Linear Least Squares model, p1(x) = a0 + a1x, where the
error

E(a0, a1) =

n∑

i=0

[(a0 + a1xi)− fi]
2

is minimized for data set (xi, fi), i = 0, ..., n, there is an easy
formulation without matrices often stated in Statistics texts

Define the averages

x̄ =
1

n+ 1

n∑

i=0

xi and f̄ =
1

n+ 1

n∑

i=0

fi.

The best fitting slope and intercept are

a1 =

∑n
i=0

(xi − x̄)fi
∑n

i=0
(xi − x̄)2

and a0 = f̄ − a1x̄.
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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

Quadratic Model, p2(x)

For the quadratic polynomial p2(x) = a0 + a1x+ a2x
2, the error is

given by

E(a0, a1, a2) =
n∑

i=0

[
a0 + a1xi + a2x

2
i − fi

]2

At the minimum (best model) we must have

∂

∂a0
E(a0, a1, a2) = 2

n∑

i=0

[
(a0 + a1xi + a2x

2
i )− fi

]
= 0

∂

∂a1
E(a0, a1, a2) = 2

n∑

i=0

xi

[
(a0 + a1xi + a2x

2
i )− fi

]
= 0

∂

∂a2
E(a0, a1, a2) = 2

n∑

i=0

x2
i

[
(a0 + a1xi + a2x

2
i )− fi

]
= 0.
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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

Quadratic Model: The Normal Equations p2(x)

Similarly for the quadratic polynomial p2(x) = a0 + a1x+ a2x
2, the

normal equations are:







a0(n+ 1) + a1

n∑

i=0

xi + a2

n∑

i=0

x2
i =

n∑

i=0

fi

a0

n∑

i=0

xi + a1

n∑

i=0

x2
i + a2

n∑

i=0

x3
i =

n∑

i=0

xifi.

a0

n∑

i=0

x2
i + a1

n∑

i=0

x3
i + a2

n∑

i=0

x4
i =

n∑

i=0

x2
i fi.

Note: Even though the model is quadratic, the resulting (normal)
equations are linear. — The model is linear in its parameters,
a0, a1, and a2.
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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

The Normal Equations — As Matrix Equations.

We rewrite the Normal Equations as:













(n+ 1)

n∑

i=0

xi

n∑

i=0

x2
i

n∑

i=0

xi

n∑

i=0

x2
i

n∑

i=0

x3
i

n∑

i=0

x2
i

n∑

i=0

x3
i

n∑

i=0

x4
i

















a0
a1
a2



 =













n∑

i=0

fi

n∑

i=0

xifi.

n∑

i=0

x2
i fi.













.

It is not immediately obvious, but this expression can be written in
the form ATAã = AT f̃ . Where the matrix A is very easy to write in
terms of xi. [Jump Forward].
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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

The Polynomial Equations in Matrix Form pm(x)

We can express the mth degree polynomial, pm(x), evaluated at the
points xi:

a0 + a1xi + a2x
2
i + · · ·+ amxm

i = fi, i = 0, . . . , n

as a product of an (n+ 1)-by-(m+ 1) matrix, A and the (m+ 1)-by-1
vector ã and the result is the (n+ 1)-by-1 vector f̃ , usually n ≫ m:












1 x0 x2
0 · · · xm

0

1 x1 x2
1 · · · xm

1

1 x2 x2
2 · · · xm

2

1 x3 x2
3 · · · xm

3

...
...

...
...

...
1 xn x2

n · · · xm
n












︸ ︷︷ ︸

A








a0
a1
...

am








︸ ︷︷ ︸

ã

=












f0
f1
f2
f3
...
fn












︸ ︷︷ ︸

f̃

.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Discrete Least Squares Approximation —
(15/97)



Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

Building a Solvable System from Aã = f̃

We cannot immediately solve the linear system

Aã = f̃

when A is a rectangular matrix (n+ 1)-by-(m+ 1), m 6= n.

We can generate a solvable system by multiplying both the left- and
right-hand-side by AT , i.e.

ATAã = AT f̃

Now, the matrix ATA is a square (m+ 1)-by-(m+ 1) matrix, and
AT f̃ an (m+ 1)-by-1 vector.

Let’s take a closer look at ATA, and AT f̃ ...
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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

Computing ATA.










1 1 1 1 . . . 1
x0 x1 x2 x3 . . . xn

x2
0 x2

1 x2
2 x2

3 . . . x2
n

...
...

...
...

...
...

xm
0 xm

1 xm
2 xm

3 . . . xm
n





















1 x0 x2
0 · · · xm

0

1 x1 x2
1 · · · xm

1

1 x2 x2
2 · · · xm

2

1 x3 x2
3 · · · xm

3

...
...

...
...

...
1 xn x2

n · · · xm
n












=








n+ 1
∑n

i=0
x1
i · · ·

∑n
i=0

xm
i∑n

i=0
x1
i

∑n
i=0

x2
i · · ·

∑n
i=0

xm+1

i
...

...
. . .

...
∑n

i=0
xm
i

∑n
i=0

xm+1

i · · ·
∑n

i=0
x2m
i







.
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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

Computing ATf .










1 1 1 1 . . . 1
x0 x1 x2 x3 . . . xn

x2
0 x2

1 x2
2 x2

3 . . . x2
n

...
...

...
...

...
...

xm
0 xm

1 xm
2 xm

3 . . . xm
n





















f0
f1
f2
f3
...
fn












=










∑n
i=0

fi∑n
i=0

xifi∑n
i=0

x2
i fi

...
∑n

i=0
xm
i fi.










We have recovered the Normal Equations...

[Jump Back].
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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

Discrete Least Squares: A Simple, Powerful Method.

Given the data set (x̃, f̃), where x̃ = {x0, x1, . . . , xn}
T and

f̃ = {f0, f1, . . . , fn}
T , we can quickly find the best polynomial fit for

any specified polynomial degree!

Notation: Let x̃j be the vector {xj
0, x

j
1, . . . , x

j
n}

T .

E.g. to compute the best fitting polynomial of degree 3,
p3(x) = a0 + a1x+ a2x

2 + a3x
3, define:

A =






| | | || | | |

1̃ x̃ x̃2 x̃3

| | | || | | |




 , and compute ã = (ATA)−1(AT f̃ ).

︸ ︷︷ ︸

not necessarily
like this
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Approximation Theory: Discrete Least Squares

Introduction
Discrete Least Squares
A Simple, Powerful Approach

Discrete Least Squares: Matlab Example.

I used this code to generate the data for the plots on slide 2.

x = (0:0.1:5)’; % The x-vector

f = 1+x+x.∧2/25; % The underlying function

n = randn(size(x)); % Random perturbations

fn = f+n; % Add randomness

A = [x ones(size(x))]; % Build A for linear fit

%a = (A’*A)\(A’*fn); % Solve: Using Normal Eqns.

a = A\fn; % Solve: Better, Equivalent

p1 = polyval(a,x); % Evaluate

A = [x.∧2 x ones(size(x))]; % A for quadratic fit

%a = (A’*A)\(A’*fn); % Solve: Using Normal Eqns.

a = A\fn; % Solve: Better, Equivalent

p2 = polyval(a,x); % Evaluate
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Application: Cricket Thermometer

Polynomial fits
Model Selection - BIC and AIC
Different Norms
Weighted Least Squares

Cricket Thermometer Application Example source: Bessey and

Bessey, 1897

There is a folk method of approximating the temperature (in
Fahrenheit). This entered the scientific literature in 1896 by Dolbear
with data collected by the Bessey brothers in 1898.

The temperature is approximated from the rate of crickets chirping by
taking the number of chirps/min dividing by 4 and adding 40.

80 100 120 140 160 180 200

60
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90

Chirps per minute (N)

T
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tu
re

 (
 o F

)

Bessey:  T = 0.21 N + 40.4
Dolbear: T = 0.25 N + 40
Bessey data
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Application: Cricket Thermometer

Polynomial fits
Model Selection - BIC and AIC
Different Norms
Weighted Least Squares

Cricket Data Analysis

C. A. Bessey and E. A. Bessey collected data on eight different
crickets that they observed in Lincoln, Nebraska during August and
September, 1897. The number of chirps/min was N and the
temperature was T .

Create matrices

A1 =






1 N1

1 N2

...
...




 A2 =






1 N1 N2
1

1 N2 N2
2

...
...

...






A3 =






1 N1 N2
1 N3

1

1 N2 N2
2 N3

2

...
...

...
...




 A4 =






1 N1 N2
1 N3

1 N4
1

1 N2 N2
2 N3

2 N4
2

...
...

...
...





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Application: Cricket Thermometer

Polynomial fits
Model Selection - BIC and AIC
Different Norms
Weighted Least Squares

Cricket An Matrices

How do we efficiently create the An matrices from the previous slide?

The data for the number of chirps/min stored as a vector,

N = [N1, N2, ..., Nm]T ,

so we use the MatLab function below with x = N and n entered as
the degree of the polynomial fit desired

1 function A = vanA(x,n)
2 %Least Squares Matrix for x and n poly
3 A = [ones( length (x),1)];
4 for i = 1:n
5 A = [A,x.ˆi];
6 end
7 end

The output forms the matrices on the previous slide
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Application: Cricket Thermometer

Polynomial fits
Model Selection - BIC and AIC
Different Norms
Weighted Least Squares

Cricket Linear Model

If you compute the matrix which you never should!

AT
1 A1 =

(
52 7447
7447 1133259

)

,

it has eigenvalues

λ1 = 3.0633 and λ2 = 1, 133, 308,

which gives the condition number

cond(AT
1 A1) =

λ2

λ1

= 3.6996× 105.

Whereas
cond(A1) = 608.2462.

In Matlab
A1\T

gives the parameters for best linear model

T1(N) = 0.2155N + 39.7441.
Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
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Application: Cricket Thermometer

Polynomial fits
Model Selection - BIC and AIC
Different Norms
Weighted Least Squares

Polynomial Fits to the Data: Linear

Linear Fit
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Application: Cricket Thermometer

Polynomial fits
Model Selection - BIC and AIC
Different Norms
Weighted Least Squares

Cricket Quadratic Model

Similarly, the matrix

AT
2 A2 =





52 7447 1133259
7447 1133259 1.8113× 108

1133259 1.8113× 108 3.0084× 1010



 ,

has eigenvalues

λ1 = 0.1957, λ2 = 42, 706, λ3 = 3.00853× 1010

which gives the condition number

cond(AT
2 A2) =

λ3

λ1

= 1.5371× 1011.

Whereas,
cond(A2) = 3.9206× 105,

and
A2\T,

gives the parameters for best quadratic model

T2(N) = −0.00064076N2 + 0.39625N + 27.8489.Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
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Polynomial Fits to the Data: Quadratic

Quadratic Fit
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Cricket Cubic and Quartic Models

The condition numbers for the cubic and quartic rapidly get larger
with

cond(AT
3 A3) = 6.3648× 1016 and cond(AT

4 A4) = 1.1218× 1023

These last two condition numbers suggest that any coefficients
obtained are highly suspect.

However, if done right, we are “only” subject to the condition
numbers

cond(A3) = 2.522× 108, cond(A4) = 1.738× 1011.

The best cubic and quartic models are given by

T3(N) = 0.0000018977N3− 0.001445N2 + 0.50540N + 23.138

T4(N) = −0.00000001765N4+ 0.00001190N3 − 0.003504N2

= +0.6876N + 17.314
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Polynomial Fits to the Data: Cubic

Cubic Fit
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Polynomial Fits to the Data: Quartic

Quartic Fit
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Best Cricket Model

So how does one select the best model?

Visually, one can see that the linear model does a very good job, and
one only obtains a slight improvement with a quadratic. Is it worth
the added complication for the slight improvement.

It is clear that the sum of square errors (SSE) will improve as the
number of parameters increase.

From statistics, it is hotly debated how much penalty one should pay
for adding parameters.
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Best Cricket Model - Analysis

Bayesian Information Criterion

Let n be the number of data points, SSE be the sum of square errors,
and let k be the number of parameters in the model.

BIC = n ln(SSE/n) + k ln(n).

Akaike Information Criterion

AIC = 2k + n(ln(2πSSE/n) + 1).
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Best Cricket Model - Analysis Continued

The table below shows the by the Akaike information criterion that
we should take a quadratic model, while using a Bayesian Information
Criterion we should use a cubic model.

Linear Quadratic Cubic Quartic
SSE 108.8 79.08 78.74 78.70
BIC 46.3 33.65 33.43 37.35
AIC 189.97 175.37 177.14 179.12

Returning to the original statement, we do fairly well by using the
folk formula, despite the rest of this analysis!
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What About Different Norms?

The Least Squares Analysis is based on minimizing the sum of
square errors, which uses setting the partial derivatives equal to
zero

What about different norms?

1 The best linear function fit in the 1-norm satisfies

min
a0,a1

(
n∑

i=0

|(a1xi + a0)− yi|

)

2 The best linear function fit in the ∞-norm satisfies

min
a0,a1

(

max
i

|(a1xi + a0)− yi|
)

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Discrete Least Squares Approximation —
(34/97)



Application: Cricket Thermometer

Polynomial fits
Model Selection - BIC and AIC
Different Norms
Weighted Least Squares

MatLab for Different Linear Fits

The previous slide shows the minimization problems in different
norms. Below is the MatLab code for solving this.

1 function [a,err] = normfit(x,y,xmin,xmax)
2 %Take data and find best 1, 2, and infinity norm ...

fits to a line
3 p = polyfit (x,y,1);
4 err(1) = ( sum(((p(1) * x + p(2)) - y).ˆ2)).ˆ0.5;
5 a(1) = p(1); a(2) = p(2);
6 [q,err1] = fminsearch(@norm1err,p,[],x,y);
7 err(2) = err1;
8 a(3) = q(1); a(4) = q(2);
9 [w,errinf] = fminsearch(@norminferr,p,[],x,y);

10 err(3) = errinf;
11 a(5) = w(1); a(6) = w(2);

Next slide has the norm functions
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MatLab for Different Linear Fits

Below are the MatLab code for the norm functions.

1 function err1 = norm1err(p,x,y)
2 %Compute 1-norm residual error for line with data
3 err1 = sum( abs ((p(1) * x + p(2)) - y));
4 end

1 function errinf = norminferr(p,x,y)
2 %Compute infinity-norm residual error for line ...

with data
3 errinf = max( abs ((p(1) * x + p(2)) - y));
4 end
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Different Norm Fits

The MatLab program uses the polyfit to find the least squares
best fit to the Cricket data

It gives the best fitting linear model as before as

T = 0.215476N + 39.77407

and the 2-norm

‖Error‖2 = min
a0,a1

(
n∑

i=0

((a1Ni + a0)− Ti)
2

)1/2

= 10.4315
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Different Norm Fits

The MatLab program uses the nonlinear solver fminsearch to find
the best fit to the Cricket data in the 1-norm and ∞-norm

Best linear models are

T = 0.215255N + 39.79479

with 1-norm

‖Error‖1 = min
a0,a1

(
n∑

i=0

|(a1Ni + a0)− Ti|

)

= 57.2170

and
T = 0.207874N + 41.09332

with ∞-norm

‖Error‖∞ = min
a0,a1

(

max
i

|(a1Ni + a0)− Ti|
)

= 3.4311
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Graphing the Cricket Thermometer Models

The best fitting models with the 3 different norms are shown below
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Weighted Least Squares

Often we know that some observations are better than others, so
these data should be weighted more heavily

The least squares error becomes

‖r‖2w =
m∑

i=0

wir
2
i

It becomes harder to count the chirps as the chirping rate increases,
so assume the error is proportional to the chirp rate or ei = kNi. An
appropriate weight is

wi =
100

Ni

The residual becomes

‖r‖2w =

m∑

i=0

wi [(a1Ni + a0)− Ti]
2
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Weighted Least Squares

With the residual above the normal equations become

a0

m∑

i=0

wi + a1

m∑

i=0

wiNi =

m∑

i=0

wiTi

a0

m∑

i=0

wiNi + a1

m∑

i=0

wiN
2
i =

m∑

i=0

wiNiTi

Recall from before we defined A and create the diagonal weighting
matrix W

A1 =








1 N1

1 N2

...
...

1 Nm








and W =









w1 0 · · · 0

0 w2

. . .
...

...
. . .

. . . 0
0 · · · 0 wm








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Weighted Least Squares

With these definitions it follows that we can write the matrix equation

W






1 N1

...
...

1 Nm






(
a0
a1

)

= W






T1

...
Tm






Following the theory from before, we can generate the solvable system

(WA)T(WA)ã = (WA)TWT̃

This is readily solved in MatLab with the backslash operator

(W*A)\(W*T)
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Weighted Least Squares Model

The unbiased model and weighted model (wi = 100/Ni) satisfy:

T = 0.215476N + 39.77407 and T = 0.226451N + 39.25686

50 100 150 200 250
N , Chirps/min

50

60

70

80

90

100

T
em

p
er
a
tu
re
,
◦
F

Cricket Thermometer

Data
Unbiased
Weighted

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Discrete Least Squares Approximation —
(43/97)



Application: U. S. Population
Polynomial fits
Exponential Models

U. S. Population Models Source: Census Data

In this example we examine various population models for the U. S.
population

Year Pop (M) Year Pop (M) Year Pop (M)
1790 3.929 1870 39.818 1950 150.697
1800 5.308 1880 50.189 1960 179.323
1810 7.240 1890 62.948 1970 203.302
1820 9.638 1900 76.212 1980 226.546
1830 12.866 1910 92.228 1990 248.710
1840 17.069 1920 106.022 2000 281.422
1850 23.192 1930 122.775 2010 308.746
1860 31.443 1940 132.165

We’ll use t = 0 as 1790
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U. S. Population Analysis

Create a vector from the years after 1790, t, and the population (in
millions), P

Create matrices

A1 =

(
1 t1
...

...

)

A2 =

(
1 t1 t21
...

...
...

)

A3 =

(
1 t1 t21 t31
...

...
...

...

)

As before, we use the MatLab backslash operator to find the
coefficients for polynomial models

Ai\P,

where the matrices Ai are formed from vanA.m (or alternately,
coefficients come from polyfit )
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Polynomial U. S. Population Models

With the coefficients found on previous slides we obtain the Linear
Model:

P1(t) = 1.359627t− 45.568207,

the Quadratic Model:

P2(t) = 0.00677199t2 − 0.130210t+ 6.576104,

the Cubic Model:

P3(t) = 0.00000623775t3+ 0.00471353t2 + 0.0469419t+ 3.694263.

Clearly, the Linear Model has serious problems with its negative
intercept
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Polynomial U. S. Population Models
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Polynomial Population - Analysis

The models are compared to data, finding the norm of the error and
sum of square errors (SSE)

The table below shows that both the Akaike information criterion and
the Bayesian information criterion suggest that we should use a cubic
model.

Linear Quadratic Cubic
‖Err‖ 128.20 13.83 12.05
SSE 16434.8 191.27 145.20
BIC 157.42 58.13 54.92
AIC 220.42 119.99 115.65

The graph and the two information criteria show that the Quadratic
and Cubic models do quite well matching the data

However, polynomials are only qualitative fits and NOT based on
dynamics of populations
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Exponential Models

The most basic population model is the Malthusian growth
model, which comes from the linear differential equation

dP

dt
= rP, P (0) = P0.

This model says that the population growth is proportional to the
population, and this works well for most uncrowded populations

This has the solution
P (t) = P0e

rt

First, re-cast the problem as a set of linear equations:

P0e
rti = Pi, i = 0, . . . ,m

compute the natural logarithm on both sides:

lnP0
︸ ︷︷ ︸

a0

+ r
︸︷︷︸

a1

ti = lnPi
︸︷︷︸

fi

.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Discrete Least Squares Approximation —
(49/97)



Application: U. S. Population
Polynomial fits
Exponential Models

Malthusian Growth Model

From the Malthusian growth model,

P (t) = P0e
rt

we obtained:
P0e

rti = Pi, i = 0, . . . ,m,

which with natural logarithms becomes a linear model:

lnP0 + rti = a0 + a1ti = lnPi.

Now, apply a linear least squares fit to the problem and obtain
coefficients (a0, a1), where

P0 = ea0 and r = a1.

Note: This does not give the least squares fit to the original prob-
lem!!! (It gives us an estimate on the log-scale.)
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Malthusian Growth Model

Using the U. S. population data and fitting the ln(P ), we find

a0 = 1.843853 and a1 = 0.0196234,

so the best fitting Malthusian growth model is

P (t) = 6.320851e0.0196234t

We find the norm of the error and sum of square errors (SSE)
for this model are

‖Err‖ = 220.66606 and SSE = 48693.51,

which is even worse than the linear model fit

This large error is largely caused by the bias of the logarithmic scale
to over emphasize the early points.
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Malthusian Growth Model - Graph
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The graph shows the log fit parameters perform poorly for recent
history. However, this was the linear fit to the logarithm of the
population data.
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Nonlinear Least Squares - Malthusian Growth

The nonlinear sum of square errors satisfies

E(P0, r) =

n∑

i=0

(
P0e

rti − Pi

)2

Taking partial derivatives gives

∂E

∂P0

= 2

n∑

i=0

(
P0e

rti − Pi

)
erti

∂E

∂r
= 2

n∑

i=0

(
P0e

rti − Pi

)
P0tie

rti

The minimum occurs when these partial derivatives are zero

This requires solving two nonlinear equations for the parameters, P0

and r
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Nonlinear Least Squares - Malthusian Growth

Setting the partial derivative equations to zero gives the nonlinear
system to solve for the parameters, P0 and r:

P0

n∑

i=0

e2rti =
n∑

i=0

Pie
rti

P0

n∑

i=0

tie
2rti =

n∑

i=0

Pitie
rti

Note that the first equation could be solved for P0 easily, which could
be substituted into the second equation

The resulting highly nonlinear equation could be solved by Newton’s
method or one of our other routine for solving f(x) = 0
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Nonlinear Least Squares with MatLab

Recall that the function we want to minimize is the nonlinear sum
of square errors:

E(P0, r) =

n∑

i=0

(
P0e

rti − Pi

)2

In MatLab

1 function LS = mallstsq(p,t,y)
2 %Least Squares sum of square errors to Malthusian ...

growth model
3 LS = sum((p(1) * exp (p(2) * t)-y).ˆ2);
4 end

MatLab has a function fminsearch , which handles multidimensional
unconstrained nonlinear minimization (Nelder-Mead), so we type

[p,err]=fminsearch(@mallstsq,p0,[],t,pop)
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Nonlinear Least Squares with MatLab

The output from the MatLab command

[p,err]=fminsearch(@mallstsq,p0,[],t,pop)

is p = [16.345612, 0.0136284] and err = 2875.53

This gives the Nonlinear Least Squares Best Model

P (t) = 16.345612e0.0136284t,

with a substantially improved sum of square error = 2875.53. This is
worse than the Quadratic fit, but quite good for only 2 parameters.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉
Discrete Least Squares Approximation —
(56/97)



Application: U. S. Population
Polynomial fits
Exponential Models

Malthusian Growth Model
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We see the best fitting Malthusian growth model tracks the
population much better than the one using logarithms and a linear fit.
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Malthusian Growth Model
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This graph shows the models on a logarithmic scale allowing a better
understanding of what is happening.
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U. S. Population Model Summary

1 The polynomial fits are the best for these population data, but
they fail to capture any dynamics

2 The modified problem (Linear fit to logarithms of the population
data) does not give the least squares fit to the original problem.
It weights the early data too heavily, leaving a poor fit

3 Nonlinear Least Squares Best model gives a reasonable fit
and correlates to what is known about populations

Finding the true least squares fit requires knowing how to
find roots and/or minima/maxima of non-linear systems of
equations
Introduced the MatLab fminsearch to solve this, but it
remains a Black Box at this time
What we need: Math 693a — Numerical Optimization
Techniques.
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Pharmokinetics - Introduction Modeling

Pharmokinetic Modeling

Primarily uses Compartmental Models

Two compartment examines fast distribution phase
and slow elimination phase
Multi-compartment examines multiple time scale
distribution phases and an elimination phase

Compartmental Models usually composed of linear differential
equations

Parameters are notoriously hard to estimate

Controversial how to refine model

How many compartments make sense?
Are nonlinear interactions more important?
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Pharmokinetics - Diagram

Diagrams for Compartmental Models1

C2(t) = a1e
−λ1t + a2e

−λ2t C3(t) = a1e
−λ1t + a2e

−λ2t + a3e
−λ3t

I(t) is the injection amount, Vi is the volume of each compartment,
kij is the flow between compartments and exterior (or metabolism),
Ci is the concentration is each compartment, and the parameters to
be found are ai and λi

1Steven L. Shafer, Pharmacokinetics and Pharmacodynamics: The Anesthesiologists

Perspective, (downloaded from Google accessed 12/03/2016)
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Pharmokinetics - Description/Definitions

The Drug Compartmental Model generally only measures the
plasma concentration of the drug

C(t) =

m∑

i=1

aie
−λit

The parameters ai and λi reflect information about the volumes
of the compartments, kinetics of the drug, and flow between
compartments

The smallest λi relates to the terminal or elimination phase
of the drug, key to how long a drug is active in the body

The largest λi is called the rapid distribution phase of the
drug, reflecting the initial movement of the drug to the tissues or
filtering by the kidneys

For the 3 compartment model the intermediate λi reflects the
drug entering well perfused organs, such as the liver
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Pharmokinetics - Finding Parameters

Consider the model

C(t) =
m∑

i=1

aie
−λit

If the parameters λi are known, then our Least Squares
techniques from above are readily used

Nonlinear least squares methods can be applied

Often poor fits, as square errors have similar values over
wide range of parameters
Use weighted least squares, such as logarithmic scale, to
improve fit
Use Exponential Peeling, starting with the terminal, λi,
values to sequentially obtain a good fit

Demonstrate some of these techniques with an Example
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Pharmokinetics - Fentanyl Dog Study

A study including 6 dogs were injected with the opioid 3H-fentanyl
citrate

Below is a table2 of the time evolution of plasma concentration
(ng/ml), where t is in min

t C t C t C
5 7.42 60 0.95 240 0.24
7 3.87 90 0.67 270 0.21
11 3.21 120 0.52 300 0.20
13 2.80 150 0.42 330 0.17
22 1.86 180 0.32 360 0.16
30 1.46 210 0.27

2Murphy, M. R., Olson, W. A., and Hug, Jr, C. C., Pharmacokinetics of 3H-Fentanyl in the

dog anesthetized with enflurane, Anethesiology, 50: 13-19, 1979
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Pharmokinetics - Fentanyl Dog Study

The data are graphed using a logarithmic scale, which shows this is
not simple exponential decay (not a straight line)
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Observe that the tail is almost linear, while the first part has a
significant steep drop
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Drug Study - 2-Compartment Model

2-Compartment Model is the sum of 2 decaying exponentials

C2(t) = a1e
−λ1t + a2e

−λ2t

We will later show (exponential peeling) that a good choice is
λ1 = 0.1601 and λ2 = 0.003794

The set {φ1(t), φ2(t)} = {e−λ1t, e−λ2t} creates a good basis for a least
squares analysis

A2 =






e−λ1t1 e−λ2t1

...
...

e−λ1tm e−λ2tm






with plasma drug concentration, cd = [c1, · · · , cm]T , so our least
squares technique finds a1 and a2 with the MatLab command

A2\cd
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Drug Study - 3-Compartment Model

3-Compartment Model is the sum of 3 decaying exponentials

C3(t) = b1e
−λ1t + b2e

−λ2t + b3e
−λ3t

We will later show that a good choice is λ1 = 0.1601, λ2 = 0.02078,
and λ3 = 0.003794

The set {φ1(t), φ2(t), φ3(t)} = {e−λ1t, e−λ2t, e−λ3t} creates a good
basis for a least squares analysis

B3 =






e−λ1t1 e−λ2t1 e−λ3t1

...
...

...
e−λ1tm e−λ2tm e−λ3tm






with drug data, cd = [c1, · · · , cm]T , so our least squares technique
finds b1, b2, and b3 with the MatLab command

B3\cd
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Drug Study - Compartment Models

The program to obtain the coefficients is

1 function A = vanAexp(t,L)
2 %Least Squares Matrix for column data t and
3 %L vector for columns of exp(-L(i)t) functions
4 n = length (L);
5 A = [ exp (-L(1) * t)];
6 for i = 2:n
7 y = [ exp (-L(i) * t)];
8 A = [A,y];
9 end

10 end

So A = vanAexp(t,L) with a = A\cd, where t and cd are the
column time and plasma drug data and L is the appropriate vector of
λi’s, produces the desired least squares best fitting coefficients a
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Drug Study - Compartment Models

The 2-Compartment Model is

C2(t) = a1e
−λ1t + a2e

−λ2t,

where [a1, a2] = [12.46300, 1.06818] and [λ1, λ2] = [0.1601, 0.003794]

The SSE between C2(t) and the data is 2.88615, while the SSE
between ln(C2(t)) and ln(data) is 2.75940.

The 3-Compartment Model is

C3(t) = b1e
−λ1t + b2e

−λ2t + b3e
−λ3t,

where [b1, b2, b3] = [11.02014, 0.94518, 0.71575] and
[λ1, λ2, λ3] = [0.1601, 0.02078, 0.003794]

The SSE between C3(t) and the data is 2.54328, while the SSE
between ln(C3(t)) and ln(data) is 0.41208, substantially better.
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Compartmental Model Fits

1 load 'dog'
2 t = dog(:,1); d = dog(:,2);
3 L2 =[0.1601,0.003794];
4 A2 = vanAexp(t,L2);
5 a2 = A2\d
6 model2d = a2(1) * exp (-L2(1) * t)+a2(2) * exp (-L2(2) * t);
7 sse2 = sum((d-model2d).ˆ2)
8 lnsse2 = sum(( log (d)- log (model2d)).ˆ2)
9 L3 =[0.1601,0.02078,0.003794];

10 A3 = vanAexp(t,L3);
11 a3 = A3\d
12 model3d = a3(1) * exp (-L3(1) * t) + ...

a3(2) * exp (-L3(2) * t) + a3(3) * exp (-L3(3) * t);
13 sse3 = sum((d-model3d).ˆ2)
14 lnsse3 = sum(( log (d)- log (model3d)).ˆ2)
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Graphs of Least Squares Fits

Below are graphs of the data and the least squares best fit of the 2
and 3-compartment models
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Drug Study - Least Squares Fit

The Compartment Model was fit with the sum of 2 or 3 decaying
exponentials, using our least squares best fit routine

The linear scale graph shows a very good model fit of the data

The early rapid decline and late slow elimination match
data very well
The data compares very well with both models
2-compartment model has a corner at the phase transitions

The semilog fit shows the deficiencies better

The early rapid distribution phase still matches
extremely well
The late elimination phase parallels the data, showing
the correct rate of decay, but a vertical shift
The 3-compartment model is clearly a better fit

The problem with the transition shows the dynamics of the drug
absorption and decay are more complex
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Exponential Peeling - Basis Set

The linear least squares method above requires a reasonable set of
exponentially decaying functions to use as a basis set

Earlier discussion of the graphes pointed to stretches where the data
appear almost linear

The basis set is derived from Exponential Peeling

One subjectively decides which data at the tail are almost linear
on a log scale

This tail is fit with an exponential

This exponential tail is subtracted from the data, then process is
repeated
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Exponential Peeling 1

Exponential Peeling

Graph data with either a semilog scale or log of the data

Observe the linear tail and select data related to the tail
(Subjective!)

Find the linear least squares best fit to the log of the data,
obtaining ci(t) = aie

λit, fitting the tail

Subtract ci(t) = aie
λit from the data

Repeat to obtain other decay rates
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Exponential Peeling 2

Graph of the fentanyl drug data
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The terminal/elimination phase on the right of the graph almost
forms a line (t ∈ [180, 360])

With a linear fit to the log of the data we produce the best fitting
function c3(t) = 0.6083e−0.003794t
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Exponential Peeling 3

Graph of the fentanyl drug data

0 50 100 150 200 250 300 350 400

10
−1

10
0

10
1

t (min)

C
(n
g
/
m
l)

Plasma Concentration of Fentanyl

The middle distribution phase on the right of the data after
subtracting the terminal phase almost forms a line (t ∈ [30, 150])

With a linear fit to the log of the data we produce the best fitting
function c2(t) = 1.6396e−0.02078t
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Exponential Peeling 4

1 % Plots of Dog data (2 Exponential Peeling Fits)
2 load 'dog' ; t = dog(:,1); d = dog(:,2);
3 % Divide data into 3 phases (rapid, middle, terminal)
4 t1 = t(1:5,:);t2 = t(6:10,:);t3 = t(11:17,:);
5 d1 = d(1:5,:);d2 = d(6:10,:);d3 = d(11:17,:);
6 % log of terminal data for exponential fit
7 ld3= log (d(11:17,:)); LA3 = vanA(t3,1);
8 aa3 = LA3 \ld3; % Least squares fit to log data
9 % Subtract terminal exponential from rapid and ...

middle data
10 d1a = d1 - exp (aa3(1)) * exp (aa3(2) * t1);
11 d2a = d2 - exp (aa3(1)) * exp (aa3(2) * t2);
12 % log of modified middle data
13 ld2= log (d2a); LA2 = vanA(t2,1);
14 aa2 = LA2 \ld2; % Least squares fit to log data
15 t4 = t(1:10,:); % Extended domain for graphing
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Exponential Peeling 5

17 %Plot Data and Models
18 tt = linspace (0,400,200);
19 semilogy (t1,d1, 'ro' ); % Rapid phase data
20 hold on
21 semilogy (t2,d2, 'ro' ); % Middle phase data
22 semilogy (t3,d3, 'bo' ); % Terminal phase data
23 % Graph best terminal phase exponential model
24 semilogy (t, exp (aa3(1)) * exp (aa3(2) * t), 'b-' );
25 % Graph data - terminal phase model
26 semilogy (t1,d1a, 'o' , 'color' ,[0.65,0.1,0.7]);
27 semilogy (t2,d2a, 'mo' );
28 % Graph best middle phase exponential model
29 semilogy (t4, exp (aa2(1)) * exp (aa2(2) * t4), 'm-' );
30 grid
31 ylim([0.07,10]);
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Exponential Peeling 6

Graph of the fentanyl drug data
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The rapid distribution phase from the data after subtracting the two
other phases almost forms a line (t ∈ [5, 22])

With a linear fit to the log of the data we produce the best fitting
function c1(t) = 8.1514e−0.1601t
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3-Compartment Models

3-Compartment Models: Used Least Squares and Exponential
Peeling methods
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Least squares model and Exponential peeling model:

C(t) = 11.02014e−0.1601t + 0.94518e−0.02078t + 0.71575e−0.003794t

C(t) = 8.1514e−0.1601t + 1.6396e−0.02078t + 0.6083e−0.003794t
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Nonlinear Least Squares

The Least squares model minimizes:

J(a1, a2, a3) = min
{a1,a2,a3}

(
Ci − (a1e

−0.1601t + a2e
−0.02078t + a3e

−0.003794t)
)2

,

where the λi values are fixed

This minimum is J(a1, a2, a3) = 2.5433, giving:

C(t) = 11.02014e−0.1601t + 0.94518e−0.02078t + 0.71575e−0.003794t.

The Exponential peeling model gives

C(t) = 8.1514e−0.1601t + 1.6396e−0.02078t + 0.6083e−0.003794t,

where J(a1, a2, a3) = 3.4859
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Nonlinear Least Squares

With exponentially decaying data it makes more sense to minimize
the logarithm of the data
Thus, we want the model that minimizes:

J2(a1, a2, a3) = min
{a1,a2,a3}

(

ln(Ci)− ln(a1e
−0.1601t + a2e

−0.02078t + a3e
−0.003794t)

)2
,

where the λi values are fixed

In this case, the Least squares model has a sum of square errors of

J2(11.02014, 0.94518, 0.71575) = 0.41208.

The Exponential peeling model has a sum of square errors of

J2(8.1514, 1.6396, 0.6083) = 0.12778,

which is clearly closer to the minimum (as was seen on the graph).
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Nonlinear Least Squares

The Exponential peeling model gives very good parameters, so can be
used for a Nonlinear Least Squares using MatLab’s fminsearch

We want the model that minimizes:

J3(p) = min
p

(
ln(Ci)− ln(p1e

−p2t + p3e
−p4t + p5e

−p6t)
)2

for our 6-dimensional parameter p, as the exponential peeling used
guesses for peeling off exponentials

With fminsearch for this nonlinear least squares functional and the
initial guess from the exponential peeling, we obtain the model

C(t) = 14.1472e−0.24226t + 2.0063e−0.020695t + 0.4928e−0.0031957t

This J2(p) = 0.08607, which improves on the exponential peeling

It also shows the exponential peeling overestimates the rate of
elimination, as has been noted in the literature
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Fentanyl Drug Models
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Nonlinear Least Squares

The Exponential peeling model gives very good parameters, so can be
used for a Nonlinear Least Squares using MatLab’s fminsearch

The standard least squares fit uses our 6-dimensional parameter p

J3(p) = min
p

(
Ci − (p1e

−p2t + p3e
−p4t + p5e

−p6t)
)2

With fminsearch for this nonlinear least squares functional gives

C(t) = 2364.1e−1.3165t + 4.2249e−0.07100t + 1.21415e−0.006696t

This J3(p) = 0.05247, which improves substantially over the other
models

However, the leading coefficients relate to the modeling volumes of
the compartments (important in the physiology), and these are
unreasonable because of the heavy weighting of the initial data

From a modeling perspective, this model is NOT as good!
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Fentanyl Drug Models
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Climate Modeling Source: NASA

Global Climate Change is a HOT area of study.

The last 3 years have seen the hottest
Global average temperatures on Earth.

Below is a graph showing the
variation in temperature (◦C) from the
average global surface temperature from 1951-1980.
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Climate Modeling - Polynomial Fits

The NASA hyperlink gives access to the data on the previous slide.

Variables are created for the t data (in years after 1880) and the V
data representing the variation from the average global surface
temperature from 1951-1980.

Observation of the data suggests that a low degree (perhaps
quadratic) polynomial fits the data reasonably well.

From before, we create the Vandermonde matrices for the appropriate
polynomial fits

1 function A = vanA(x,n)
2 %Least Squares Matrix for x and n poly
3 A = [ones( length (x),1)];
4 for i = 1:n
5 A = [A,x.ˆi];
6 end
7 end
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Climate Modeling - Polynomial Fits

The program below illustrates how to obtain the best quadratic fit
to the data (climt, climd).

In addition to the best fitting coefficients, it computes the least sum
of square errors and plots the model.

18 A2 = vanA(climt',2);
19 a2 = A2\climd';
20 qfit = a2(1) + a2(2) * tt + a2(3) * tt.ˆ2;
21 qfite = a2(1) + a2(2) * climt + a2(3) * climt.ˆ2;
22 err2 = qfite - climd;
23 lst2 = err2 * err2'
24 plot (tt,qfit, '-' , 'color' ,[0,0.5,0], 'linewidth' ,1.5);
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Climate Modeling - Polynomial Fits

The best linear, quadratic, and cubic fits are given by:

Linear: V = 0.0072034 t− 0.46757.

Quadratic: V = 0.000082216 t2 − 0.0040601 t− 0.21226.

Cubic: V = 3.3119 × 10−7 t3 + 1.4157 × 10−5 t2 − 0.00034401 t− 0.25391.

The least sum of square errors for these fits are

Linear: SSE = 3.7290.

Quadratic: SSE = 1.8500..

Cubic: SSE = 1.8127..
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Climate Modeling - Polynomial Fits

The best linear, quadratic, and cubic fits give the following graph:
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Climate Modeling - Trigonometric

The graph shows very stochastic behavior, but could there be
underlying periodic phenomenon?

The sun has an approximately 11 year cycle, so the frequency of the
trig functions would be:

ω =
2π

11
≈ 0.5712.

The polynomial study showed that a quadratic model fit the data
quite well, so consider a quadratic model with trig functions:

V (t) = a0 + a1t+ a2t
2 + a3 cos(ωt) + a4 sin(ωt).
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Climate Modeling - Trignometric

For a model of the form:

V (t) = a0 + a1t+ a2t
2 + a3 cos(ωt) + a4 sin(ωt).

We create a Vandermonde matrix for this model

1 function A = vanA2cosin(x)
2 %Least Squares Matrix for x and n poly
3 A = [ones( length (x),1)];
4 A = [A,x,x.ˆ2, cos (2 * pi * x/11), sin (2 * pi * x/11)];
5 end
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Climate Modeling - Trigonometric

The program below illustrates how to obtain the best quadratic
model with trig functions to the data (climt, climd).

In addition to the best fitting coefficients, it computes the least sum
of square errors and plots the model.

37 Acs = vanA2cosin(climt');
38 acs = Acs \climd';
39 model3 = acs(1) + acs(2) * tt + acs(3) * tt.ˆ2 ...
40 + acs(4) * cos (2 * pi * tt/11) + ...

acs(5) * sin (2 * pi * tt/11);
41 model3e = acs(1) + acs(2) * climt + acs(3) * climt.ˆ2 ...
42 + acs(4) * cos (2 * pi * climt/11) + ...

acs(5) * sin (2 * pi * climt/11);
43 errm = model3e - climd;
44 lstm = errm * errm'
45 plot (tt,model3, 'r-' , 'linewidth' ,1.5);
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Climate Modeling - Trigonometric

The best quadratic and trigonometric models are given by:

Quadratic: V = 0.000082216 t2 − 0.0040601 t− 0.21226.

Trig: V = 0.000081757 t2 − 0.0039972 t− 0.21399
+0.0024086 cos(ωt) + 0.011336 sin(ωt).

The least sum of square errors for these fits are

Quadratic: SSE = 1.8500.

Trig: SSE = 1.8409.

which show only a small difference.
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Climate Modeling - Trigonometric

The best linear, quadratic, cubic, and trig model fits give the
following graph:
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Climate Modeling - Models

It remains to compare the models developed with the Bayesian and
Akaike Information Criteria.

Below is a Table of all the models developed above:

Linear Quadratic Cubic Trigonometric
SSE 3.72902 1.85005 1.81274 1.84088
BIC −488.48 −580.28 −578.16 −571.11
AIC −102.71 −197.43 −198.25 −194.12

The BIC indicates that the quadratic model is the best model.

The AIC indicates that the cubic model is the best model.

The addition of trigonometric functions does NOT create a
significantly better model.
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