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Composite Quadrature Divide and Conquer; Example — Simpson’s Rule

Generalization
Collecting the Error...

Divide and Conquer with Simpson’s Rule

The exact solution:
4
/ e¥dx = e* — ¥ = 53.50815
0
Simpson’s Rule with h =2
4 2
/ eXdx ~ g(eo + 4e? + e*) = 56.76958.
0

The error is —3.17143 (5.92%).
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Composite Quadrature Divide and Conquer; Example — Simpson’s Rule

Generalization
Collecting the Error...

Divide and Conquer with Simpson’s Rule

The exact solution:

4
/ e¥dx = e* — ¥ = 53.50815
0
Simpson’s Rule with h =2
4 2
/ eXdx ~ g(eo + 4e? + e*) = 56.76958.
0

The error is —3.17143 (5.92%).
Divide-and-Conquer: Simpson’s Rule with h =1

2 4 1 1
/ exdx—i—/ e*dx ~ g(e0+4e1+e2)+§(e2+4e3+e4) = 53.86385
0 2

The error is —0.26570. (0.50%) Improvement by a factor of 10! S050
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Composite Quadrature Divide and Conquer; Example — Simpson’s Rule

Generalization
Collecting the Error...

Divide and Conquer with Simpson’s Rule /11

The exact solution:
4
/ e¥dx = e* — ¥ = 53.50815
0

Divide-and-Conquer: Simpson’s Rule with h =1/2

/ / / / edx ~ = (0 + 4e'/? + &) + (e + 4632 4 &2)

1
6(e +4e5% %) + 6(e +4e"/% 1 &*) = 53.61622
The error has been reduced to —0.01807 (0.034%).
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Composite Quadrature Divide and Conquer; Example — Simpson’s Rule

Generalization
Collecting the Error...

Divide and Conquer with Simpson’s Rule /11

The exact solution:
4
/ e¥dx = e* — ¥ = 53.50815
0

Divide-and-Conquer: Simpson’s Rule with h =1/2

/ / / / edx ~ = (0 + 4e'/? + &) + (e + 4632 4 &2)

1
6( —|—4e5/2+e)~|—6( +4e7/2+e) 53.61622

The error has been reduced to —0.01807 (0.034%).

h  abs-error err/h err/h? err/h3 err/h*
2 3.17143 | 1.585715 0.792857 0.396429 0.198214
1 0.26570 | 0.265700 0.265700 0.265700 0.265700
1/2  0.01807 | 0.036140 0.072280 0.144560 0.289120 S0S0
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Composite Quadrature Divide and Conquer; Example — Simpson’s Rule

Generalization
Collecting the Error...

Divide and Conquer with Simpson’s Rule /i

Extending the table...

h  abs-error err/h err/h? err/h3 err/h* err/h°
2 3.171433 | 1.585716 0.792858 0.396429  0.198215  0.099107
1 0.265696 | 0.265696 0.265696 0.265696 0.265696  0.265696
1/2  0.018071 | 0.036142 0.072283 0.144566 0.289132 0.578264
1/4 0.001155 | 0.004618 0.018473 0.073892 0.295566 1.182266
1/8 0.000073 | 0.000580 0.004644 0.037152 0.297215 2.377716

Clearly, the err/h* column seems to converge (to a non-zero
constant) as h \, 0. The columns to the left seem to converge to
zero, and the err/h° column seems to grow.

This is numerical evidence that the composite Simpson's rule has
a convergence rate of O (h*). But, isn't Simpson’s rule 5th

order???
SDSO
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Composite Quadrature Divide and Conquer; Example — Simpson’s Rule

Generalization
Collecting the Error...

Generalized Composite Simpson’s Rule

For an even integer n: Subdivide the interval [a, b] into n
subintervals, and apply Simpson’s rule on each consecutive pair of
sub-intervals. With h = (b —a)/nand x; =a+jh, j=0,1,...,n
we have

/b f(X)dng/xQ f(x)dx

n/2 5

- Z { [ (j—2) + 4f (xzj-1) + f(xzj)] N ;)f(4)(§j)} ’

for some & € [xoj_2, xoj], if f € C*[a, b].
Since all the interior “even” xy; points appear twice in the sum, we
can simplify the expression a bit... SDSO
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Composite Quadrature Divide and Conquer; Example — Simpson’s Rule

Generalization
Collecting the Error...

Generalized Composite Simpson’s Rule

n/2

b
/a f(x)dx = g f(x0) = F(xn) + Y [4f(xzj_1) + 2f (xo))

Jj=1
n/2

h® 4)
% > ).
=1

The error term is:

n/2
h5
E(f) = ~90 > G, & € baj2 )]
=1
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Composite Quadrature Divide and Conquer; Example — Simpson’s Rule

Generalization
Collecting the Error...

The Error for Composite Simpson’s Rule

If f € C*{a, b], the Extreme Value Theorem implies that f(*)
assumes its max and min in [a, b]. Now, since

in F®(x) < fF® () < £(4)
min (x) < (61)_X@[gfz] (x),
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Composite Quadrature Divide and Conquer; Example — Simpson’s Rule

Generalization
Collecting the Error...

The Error for Composite Simpson’s Rule

If f € C*{a, b], the Extreme Value Theorem implies that f(*)
assumes its max and min in [a, b]. Now, since

min F®(x) < F®(&) < max P (x),

x€[a,b] x€[a,b]
[ﬁ] min ®)(x <nz/%f(4) [ﬁ} max_(4)(x)
21 xe[a,b] 2] xe[a,b] ’
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Composite Quadrature Divide and Conquer; Example — Simpson’s Rule

Generalization
Collecting the Error...

The Error for Composite Simpson’s Rule

If f € C*{a, b], the Extreme Value Theorem implies that f(*)
assumes its max and min in [a, b]. Now, since

min F®(x) < F®(&) < max P (x),

x€|a,b] x€la,b]
. n/2
2].miny 160 = 3279 < [5] may 7900,
min f®)(x) < [2] nz/éf(‘l)(g ) < max f®(x),
x€[a,b] ~|n = x€[a,b]
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Composite Quadrature Divide and Conquer; Example — Simpson’s Rule

Generalization
Collecting the Error...

The Error for Composite Simpson’s Rule

If f € C*{a, b], the Extreme Value Theorem implies that f(*)
assumes its max and min in [a, b]. Now, since

min F®(x) < F®(&) < max P (x),

x€[a,b] x€[a,b]
[ﬁ] min ®)(x <nz/%f(4) [f} max_(4)(x)
21 xe[a,b] x€[a,b] ’
n/2

Fla)( <H () < max F@
iy = 5] 2 R

By the Intermediate Value Theorem Ju € (a, b) so that
”/2 n/2

F& () = Z F4 YN —f(4) Z F4

Joe Mahaffy, (mahaffy@math.sdsu.edu) Composite-Romberg-Adaptive-Gaussian — (8/43)



Composite Quadrature Divide and Conquer; Example — Simpson’s Rule

Generalization
Collecting the Error...

The Error for Composite Simpson’s Rule

We can now rewrite the error term:

or, since h=(b—a)/n< n=(b— a)/h, we can write

_(b—

(b—2a) 4
h*f
180 (1)

E(f) =
Hence Composite Simpson’s Rule has degree of accuracy 3
(since it is exact for polynomials up to order 3), and the error is
proportional to h® — Convergence Rate O (h?).
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Composite Quadrature Divide and Conquer; Example — Simpson’s Rule
Generalization
Collecting the Error...

Composite Simpson's Rule — Algorithm

Algorithm (Composite Simpson's Rule)

Given the end points a and b and an even positive integer n:
(1] h=(b—a)/n
[2] ENDPTS = f(a)+f(b)

ODDPTS = 0O
EVENPTS = 0O
[31] FOR i=1,...,n—1 — (interior points)
x=a-+ixh

if / is even: EVENPTS += f(x)
if / is odd: ODDPTS += f(x)
END

[4] INTAPPROX = h*(ENDPTS+2*EVENPTS+4*0DDPTS) /3
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Composite Quadrature Divide and Conquer; Example — Simpson’s Rule

Generalization
Collecting the Error...

Homework #7 — Due Friday 11/13/2009, 12-noon

(Part-1)

Implement Composite Simpson’s Rule, and use your code to solve
BF-4.4.3-a,b,c,d.

Joe Mahaffy, (mahaffy@math.sdsu.edu) Composite-Romberg-Adaptive-Gaussi — (11/43)



Romberg Quadrature Applying Richardson’s Extrapolation
Romberg Quadrature — Code Outline

Romberg Integration The Return of Richardson’s Extrapolation

Romberg Integration is the combination of the Composite
Trapezoidal Rule (CTR)

b h )2//
/af(x)dx:z F(a) + F(b +2foj _ 1 R (1)

and Richardson Extrapolation.

Here, we know that the error term for regular Trapezoidal Rule is
O(h®). By the same argument as for Composite Simpson's Rule,
this gets reduced to O(h?) for the composite version.
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Romberg Quadrature Applying Richardson’s Extrapolation
Romberg Quadrature — Code Outline

Romberg Integration Step-1: CTR Refinement

Let Rk 1 denote the Composite Trapezoidal Rule with k-1
sub-intervals, and hy = (b — a)/2k~1. We get:
Rip = BI[f(a) +f(b)
Roa = 2[f(a)+2f(a+ h)+ f(b)]
= 23 [£(a) + £(b) + 2F(a + hy)]
= Z[Ri1+ mf(a+ h)]

2k—2
1 .
Ri1 = 5 Ri—11+ hk—1 Z; f(a+ (20 — 1)hk)

Update formula, using previous value 4+ new points
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Romberg Quadrature Applying Richardson’s Extrapolation
Romberg Quadrature — Code Outline

k Ri1
1 0
2 1.5707963267949
3 1.8961188979370
4 1.9742316019455
5 1.9935703437723
6  1.9983933609701
7  1.9995983886400

Joe Mahaffy, (mahaffy@math.sdsu.edu) Composite-Romberg-Adaptive-Gaussian — (14/43)



Romberg Quadrature Applying Richardson’s Extrapolation
Romberg Quadrature — Code Outline

Extrapolate using Richardson

We know that the error term is O(h?), so in order to eliminate this
term we combine to consecutive entries R,_1 1 and Ry ; to form a
higher order approximation Ry > of the integral.

Rk1 — Rk-11

Rz =R+ =557
Re1 — O (%) Rea

0 0

1.5707963267949  2.09439510239
1.8961188979370  2.00455975498
1.9742316019455  2.00026916994
1.9935703437723  2.00001659104
1.9983933609701  2.00000103336
1.9995983886400 2.00000006453
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Romberg Quadrature Applying Richardson’s Extrapolation
Romberg Quadrature — Code Outline

Extrapolate, again...

It turns out (Taylor expand to check) that the complete error term
for the Trapezoidal rule only has even powers of h:

b 00 _
/ f(X) = Rk,l — Z Ezihil.
a i=1
Hence the Ry > approximations have error terms that are of size
(’)(h“).

To get O(h®) approximations, we compute

Rk2 — Rk-12

Rk3 =R
k,3 k2 T 22 1
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Romberg Quadrature

Applying Richardson’s Extrapolation
Romberg Quadrature — Code Outline

Extrapolate, yet again...

In general, since we only have even powers of h in the error

expansion:
Rij—1 — Rk—1j-1
Rk,j = de-,l + 41_1
Revisiting ;" sin(x)dx:
R — O (F) R — O (A R — O () Rea — O (F)
0

1.570796326794897
1.896118897937040
1.974231601945551
1.993570343772340
1.998393360970145
1.999598388640037

2.094395102393195
2.004559754984421
2.000269169948388
2.000016591047935
2.000001033369413
2.000000064530001

1.998570731823836
1.999983130945986
1.999999752454572
1.999999996190845
1.999999999940707

2.000005549979671
2.000000016288042
2.000000000059674
2.000000000000229
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Romberg Quadrature Applying Richardson’s Extrapolation
Romberg Quadrature — Code Outline

Homework? No, enough already — Here's the code outline!

Code (Romberg Quadrature)

Romberg Integration for sin(x) over [0,pil
a = 0; b = pi; % The Endpoints
R = zeros(7,7);
R(1,1) = (b— a)/2x*(sin(a) +sin(b));
for k=2:7
h = (b—a)/2tk—1);
R(k,1)=1/2 % (R(k —1,1) + 2% h* > (sin(a + (2 * (1 : (2k=2))) — 1) * h)));
end
for j=2:7
for k=j:7
R(k,3) = R(k,j—1)+ (R(k,j— 1) — R(k — 1,j — 1))/(4U~1-1);
end
end

==

disp(R)
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Introduction

Building the Adaptive CSR Scheme
Adaptive Quadrature Example...

Putting it Together...

More Advanced Numerical Integration Ideas

Adaptive and Gaussian Quadrature
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Introduction

Building the Adaptive CSR Scheme
Adaptive Quadrature Example...

Putting it Together...

Introduction Adaptive Quadrature

The composite formulas require equally spaced nodes.

This is not good if the function we are trying to integrate has both
regions with large fluctuations, and regions with small variations.

15

05

-05

- | L 1 n 1
5 -10 0 10

We need many points where the function fluctuates, but few
points where it is close to constant or linear. SDSJO
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Introduction

Building the Adaptive CSR Scheme
Adaptive Quadrature Example...

Putting it Together...

Introduction — Adaptive Quadrature Methods

Idea Cleverly predict (or measure) the amount of variation and au-
tomatically add more points where needed.

We are going to discuss this in the context of Composite
Simpson’s rule, but the approach can be adopted for other
integration schemes.

First we are going to develop a way to measure the error —
a numerical estimate of the actual error in the numerical
integration. Note: just knowing the structure of the error
term is not enough! (We will however use the structure of the
error term in our derivation of the numerical error estimate.)
Then we will use the error estimate to decide whether to accept the
value from CSR, or if we need to refine further (recompute
with smaller h). SDST
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Introduction

Building the Adaptive CSR Scheme
Adaptive Quadrature Example...

Putting it Together...

Some Notation — One-step Simpson's Rule

Notation — “One-step” Simpson’s Rule:

b 5
/ F(x) dx = S(F: a,b) — "LE@ (), s € (a,b),
a N—

90
E(f; hy,u1)
where
S(f; a,b) = (bg 2) [f(a) +4f (Z2) + F(b)|, M= (b; a).
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Introduction

Building the Adaptive CSR Scheme
Adaptive Quadrature Example...

Putting it Together...

Composite Simpson's Rule (CSR)

With this notation, we can write CSR with n =4, and
h2 = (b— a)/4 = h1/22

b
/ f(x)dx = S(f; a, 2£2) + S(f; 2£b b) — E(f; ho, o).
We can squeeze out an estimate for the error by noticing that

1 /h° 1
B i) = 15 (g lu)) = J6ELFi o).

Now, assuming f*) (1) ~ f*)(12), we do a little bit of algebra
magic with our two approximations to the integral...
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Introduction

Building the Adaptive CSR Scheme
Adaptive Quadrature Example...

Putting it Together...

Wait! Wait! Wait! — | pulled a fast one!

E(F: houpiz) = = (Bp0 ) + L (M e,z
’ 32 190 2 32 \ 90 2

where i3 € [a, 252], 13 € [252, b].

If f € C*[a, b], then we can use our old friend, the intermediate
value theorem:

F®(ud) + F®(13)

Juz € [p5, 3] C [a, b] : (H2)

So it follows that
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Introduction

Building the Adaptive CSR Scheme
Adaptive Quadrature Example...

Putting it Together...

Back to the Error Estimate...

Now we have

5
S(F 2, 252) + S(F; 252,b) — (”lf“)(uz))

16 \ 90
h2
= S(f; a,b) — LFW(u
Now use the assumption £(*)(y;) ~ f(4)(,u2) (and replace p;1 and

p2 by p):
90f (1) = 15 S(f; a,b)—S(f; a,(a+b)/2)—S(f; (a+b)/2,b)],
notice that g—(l)f(4)(u) = E(f; h1, ) = 16E(f; ho, pu). Hence

E(f; hy,p) =~ 11[5(1‘ a,b)—5(f; a,(a+b)/2)—S5(f; (a+b)/2, b)L
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Introduction

Building the Adaptive CSR Scheme
Adaptive Quadrature Example...

Putting it Together...

Finally, we have the error estimate in hand...

. . h5 4)
Using the estimate of 9—(1)7‘( (1), we have

Error Estimate for CSR

/b f(x)dx — S(f; a, (a + b)/2) — S(f; (a+b)/2, b)‘

a

~ Tlg-, S(f; a,b) — S(f; a,(a +b)/2) — S(f; (a + b)/2,b)‘

v

Notice!!! S(f; a,(a + b)/2) + S(f; (a + b)/2,b) approximates
fab f(x)dx 15 times better than it agrees with the

known quantity S(f; a, b)!!!
quantity S( ) J—
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Introduction

Building the Adaptive CSR Scheme
Adaptive Quadrature [SETT

Putting it Together...

Example — Error Estimates

We will apply Simpson’s rule to

/2
/ sin(x) dx = 1.
0
Here,

S1(sin(x); 0,7/2) = S(sin(x); 0,7/2)

- [sin(O) +4sin(7/4) + Si"(”/2)] -5 [2f2+ 1}

= 1.00227987749221.
Sa(sin(x); 0,7/2) = S(sin(x); 0,7/4) + S(sin(x); 7/4,7/2)

= % [sin(O) + 4sin(mw/8) + 2sin(w/4) + 4sin(37/8) + sin(7r/2)]
= 1.00013458497419. SDSO
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Introduction

Building the Adaptive CSR Scheme
Adaptive Quadrature [SETT

Putting it Together...

Example — Error Estimates

The error estimate is given by

% [Sl(sin(x); 0,7/2) — Sa(sin(x); 0,77/2)}

= % [1.00227987749221 — 1.00013458497419}

= 0.00014301950120.

This is a very good approximation of the actual error, which is
0.000134584974109.

OK, we know how to get an error estimate. How do we use
this to create an adaptive integration scheme???
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Introduction

Building the Adaptive CSR Scheme
Adaptive Quadrature Example...

Putting it Together...

Adaptive Quadrature

We want to approximate Z = fab f(x) dx with an error less than €
(a specified tolerance).

[1] Compute the two approximations
S1(f(x); a, b) = S(f(x); a, b), and
Sa(f(x); a,b) = S(f(x); a,252) + S(f(x); 252, b).

[2] Estimate the error, if the estimate is less than ¢, we are done.
Otherwise...

[3] Apply steps [1] and [2] recursively to the intervals
[a, 2£2] and [252, b] with tolerance €/2.
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Introduction

Building the Adaptive CSR Scheme
Adaptive Quadrature Example...

Putting it Together...

Adaptive Quadrature, Interval Refinement Example #1

The funny figure above is supposed to illustrate a possible
sub-interval refinement hierarchy. Red dashed lines illustrate
failure to satisfy the tolerance, and black lines illustrate satisfied

tolerance.
level tol interval
1 € [a, b]
2 €/2 [a,a+ b;zba] [a+ (b—a)/2,b]
3 e/4 [a,a+¥] [a+2F2,a+ bga]
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Introduction

Building the Adaptive CSR Scheme
Adaptive Quadrature Example...

Putting it Together...

Adaptive Quadrature, Interval Refinement Example #2

Adaptive CSR ——— The Function Adaptive CSR ——— Reiineemem Levels
20 .
°
18 o
°
15[ °
°
14 o
3 °
% 12r °
bot °
g wof °
5 -
£ of [}
@ 000 600
6F -0 000
o—o—o o—o
02l 1 at o——o o0———o—o
o————o
oaf 1 2F
o o1 oz 03 os o5 o6 07 o8 s 1 o o1 oz 03 o4 o5 o6 07 o5 o5 1
X X

Figure: Application of adaptive CSR to the function f(x) = 1— §/(x — 35)2. Here,

we have required that the estimated error be less than 1078, The left panel shows
the function, and the right panel shows the number of refinement levels needed to
reach the desired accuracy. At completion we have the value of the integral being
0.61692712, with an estimated error of 3.93 - 10~ 7. SDST
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Ideas...

2-point Gaussian Quadrature

Higher-Order Gaussian Quadrature — Legendre Polynomials
Gaussian Quadrature Examples: Gaussian Quadrature in Action; HW#7

Gaussian Quadrature

Idea: Evaluate the function at a set of optimally chosen points
in the interval.

We will choose {xg, x1,...,Xn} € [a, b] and coefficients ¢;, so that
the approximation

b n
/ f(x)dx =~ Zc,-f(x,-)
a i=0

is exact for the largest class of polynomials possible.

We have already seen that the open Newton-Cotes formulas

sometimes give us better “bang-for-buck” than the closed formulas

(e.g. the mid-point formula uses only 1 point and is as accurate as

the two-point trapezoidal rule). — Gaussian quadrature takes this

one step further. S0sJ
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Quadrature Types — A Comparison

Newton-Cotes Gaussian
Open Closed

Qulgd_rature egree of egree of egree of
oints ccuracy ccuracy ccuracy

1 1* — 1

2 1 17 3

3 3 37 5

4 3 3 7

5 5 5 9

* — The mid-point rule.
- Trapezoidal rule.
# — Simpson’s rule.

The mid-point rule is the only optimal scheme we have see so far. SDST

— (33/43)
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Gaussian Quadrature — Example 2-Point Formula

Suppose we want to find an optimal two-point formula:

1
/ 7 de = af() + eaf o).

Since we have 4 parameters to play with, we can generate a
formula that is exact up to polynomials of degree 3. We get
the following 4 equations:

—_

ldx = 2 = ag+o aq =

—_

C =
xdx = 0 = cx3+ ox

= c1x12 + C2X22

wInNy

Xy =
Xdx = 0 = C1Xf+C2X23

=L
ol%

«[&
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Higher Order Gaussian Quadrature Formulas

We could obtain higher order formulas by adding more points,
computing the integrals, and solving the resulting non-linear
system of equations... but it gets very painful, very fast.

The Legendre Polynomials come to our rescue!

The Legendre polynomials P,(x) are orthogonal on [—1, 1] with
respect to the weight function w(x) =1, i.e.

/  B(X)P(x) dx = i — {

-1

0 m#n

a, m=n.
If P(x) is a polynomial of degree less than n, then

/1 Pn(x)P(x) dx = 0.

-1 SDSO
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A Quick Note on Legendre Polynomials

We will see Legendre polynomials in more detail later. For now,
all we need to know is that they satisfy the property

1
/ Pn(x)Pm(x) dx = apdp,m.

-1
and the first few Legendre polynomials are

Po(x) = 1

Pi(x) = x

Py(x) = x*-1/3

P3y(x) = x3-3x/5

Py(x) = x*—6x?/7+3/35
Ps(x) = x®—10x3/9 4 5x/21.

It turns out that the roots of the Legendre polynomials are the
nodes in Gaussian quadrature.
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Higher Order Gaussian Quadrature Formulas

Theorem

Suppose that {x1,X2,...,x,} are the roots of the n" Legendre
polynomial P,(x) and that for each i =1,2,...,n, the coefficients

c; are defined by
X=2
; - dx.
a= [ H x

J 76 i
If P(x) is any polynomial of degree less than 2n, then

/1 P(x) dx = Z ¢iP(x;)
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Proof of the Theorem [/11

Let us first consider a polynomial, P(x) with degree less than n.
P(x) can be rewritten as an (n — 1)-st Lagrange polynomial with
nodes at the roots of the n'" Legendre polynomial P,(x). This
representation is exact since the error term involves the nt"
derivative of P(x), which is zero. Hence,

/_11 P(x) dx:/1 [Z H ));_ZPW)] dx

i=1 j= 1
JFi
n 1 n X — x: n
-y {/ I 2= dx] Px) = > 6iP(x),
— -1 XX _
i=1 =1 i=1
e
which verifies the result for polynomials of degree less than n. SDST
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Proof of the Theorem [/

If the polynomial P(x) of degree [n,2n) is divided by the nth
Legendre polynomial P,(x), we get:

P(x) = Q(x)Pa(x) + R(x)
where both Q(x) and R(x) are of degree less than n.
[1] Since deg(Q(x)) < n

1
/1 Q(x)Pn(x) dx = 0.

[2] Further, since x; is a root of Pp(x):

P(X,') = Q(X,')P,,(X,') + R(X,') = R(X,’). SDST
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Proof of the Theorem i/l

[3] Now, since deg(R(x)) < n, the first part of the proof implies

1 n
/1 R(x) dx = Z GiR(xi).
i=1

Putting [1], [2] and [3] together we arrive at

1 1
[ Pes= [ [000pix) + R o

-1
n

1
= / R(x)dx =" ciR(x;)
1 i=1

= zn: C,'P(X,‘),
i=1

which shows that the formula is exact for all polynomials P(x) of
degree less than 2n. [
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Gaussian Quadrature beyond the interval [-1,1]

By a simple linear transformation,

t:2x—a—b - X:(b—a)t+(b+a)’
b—a 2

we can apply the Gaussian Quadrature formulas to any interval

[ o= [ (B erD) Gy,

-1
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Examples Al

Degree Pn(x) Roots / Quadrature points
2 x2—1/3 {-1/V3, 1/V/3}
3 x3 —3x/5 {-+/3/5, 0, \/3/5}

4 x*—-6x2/7+3/35 {-0.86114, —0.33998, 0.33998, 0.86114}
Table: Quadrature points on “standard interval.

/4 1
(cos(x))2dx = ~ + = = 0.642699081698724
0 4 8
Degree Quadrature points Coefficients
2 0.16597, 0.61942 1,1
3 0.08851, 0.39270, 0.69688 0.55556, 0.88889, 0.55556
4 | 0.05453, 0.25919, 0.52621, 0.73087 | 0.34785, 0.65215, 0.65215, 0.34735

Table: Quadrature points translated to interval of interest; with weight coefficients.

SDSO
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Examples /1

/4
/ (cos(x))2 dx = % + 5 = 0.642699081698724
JO

Degree Quadrature points Coefficients
2 0.16597, 0.61942 1,1
3 0.08851, 0.39270, 0.69688 0.55556, 0.88889, 0.55556
4 | 0.05453, 0.25919, 0.52621, 0.73087 | 0.34785, 0.65215, 0.65215, 0.34785

Table: Quadrature points translated to interval of interest; with weight coefficients.

Degree | Integral approximation | Error
2 0.642317235049753 | 0.0003818466489...
3 0.642701112090729 | 0.0000020303920...
4 0.642699075999924 | 0.0000000056988...

Table: Approximation and Error, for GQ.
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