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Quick Review
Example

Picking Up Where We Left Off... Discrete Least Squares, I

The Idea: Given the data set (x̃, f̃), where x̃ = {x0, x1, . . . , xn}T

and f̃ = {f0, f1, . . . , fn}T we want to fit a simple
model (usually a low degree polynomial, pm(x)) to
this data.

We seek the polynomial, of degree m, which minimizes the residual:

r(x̃) =
n∑

i=0

[pm(xi ) − f (xi )]
2 .

Joe Mahaffy, 〈mahaffy@math.sdsu.edu〉 Least Squares & Orthogonal Polynomials — (3/28)



Discrete Least Squares Approximation
Continuous Least Squares Approximation

Orthogonal Polynomials

Quick Review
Example

Picking Up Where We Left Off... Discrete Least Squares, II

We find the polynomial by differentiating the sum with respect to
the coefficients of pm(x). — If we are fitting a fourth degree
polynomial p4(x) = a0 + a1x + a2x

2 + a3x
3 + a4x

4, we must
compute the partial derivatives wrt. a0, a1, a2, a3, a4.

In order to achieve a minimum, we must set all these partial
derivatives to zero. — In this case we get 5 equations, for the 5
unknowns; the system is known as the normal equations.
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The Normal Equations — Second Derivation

Last time we showed that the normal equations can be found with purely
a Linear Algebra argument. Given the data points, and the model (here
p4(x)), we write down the over-determined system:







a0 + a1x0 + a2x
2
0 + a3x

3
0 + a4x

4
0 = f0

a0 + a1x1 + a2x
2
1 + a3x

3
1 + a4x

4
1 = f1

a0 + a1x2 + a2x
2
2 + a3x

3
2 + a4x

4
2 = f2

...
a0 + a1xn + a2x

2
n + a3x

3
n + a4x

4
n = fn.

We can write this as a matrix-vector problem:

X ã = f̃,

where the Vandermonde matrix X is tall and skinny. By multiplying
both the left- and right-hand-sides by XT (the transpose of X ), we get a
“square” system — we recover the normal equations:

XTX ã = XT f̃.
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Discrete Least Squares: A Simple, Powerful Method.

Given the data set (x̃, f̃), where x̃ = {x0, x1, . . . , xn} and
f̃ = {f0, f1, . . . , fn}, we can quickly find the best polynomial fit for
any specified polynomial degree!

Notation: Let x̃j be the vector {x j
0, x

j
1, . . . , x

j
n}.

E.g. to compute the best fitting polynomial of degree 4,
p4(x) = a0 + a1x + a2x

2 + a3x
3 + a4x

4, define:

X =






| | | | || | | | |
1̃ x̃ x̃2 x̃3 x̃4

| | | | || | | | |




 , and compute ã = (XTX )−1(XT f̃)

︸ ︷︷ ︸

Not like this!
See math 543!

.
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Example: Fitting pi (x), i = 0, 1, 2, 3, 4 Models.

Figure: We revisit the ex-
ample from last time; and
fit polynomials up to degree
four to the given data. The
figure shows the best p0(x),
p1(x), and p2(x) fits.

Below: the errors give us
clues when to stop.

0 1 2 3 4 5

0

2

4

6

8

Underlying function f(x) = 1 + x + x^2/25
Measured Data
Average
Linear Best Fit
Quadratic Best Fit

Model Sum-of-squares-error

p0(x) 205.45
p1(x) 52.38
p2(x) 51.79
p3(x) 51.79
p4(x) 51.79

Table: Clearly in this example there is very
little to gain in terms of the least-squares-
error by going beyond 1st or 2nd degree
models.
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Introduction: Defining the Problem.

Up until now: Discrete Least Squares Approximation applied
to a collection of data.

Now: Least Squares Approximation of Functions.

We consider problems of this type: —

Suppose f ∈ C [a, b] and we have the class Pn

which is the set of all polynomials of degree at most

n. Find the p(x) ∈ Pn which minimizes

∫ b

a

[p(x) − f (x)]2 dx .
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Finding the Normal Equations...

If p(x) ∈ Pn we write p(x) =
∑n

k=0 akxk . The
sum-of-squares-error, as function of the coefficients,
ã = {a0, a1, . . . , an} is

E (ã) =

∫ b

a

[
n∑

k=0

akxk − f (x)

]2

dx .
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Finding the Normal Equations...

If p(x) ∈ Pn we write p(x) =
∑n

k=0 akxk . The
sum-of-squares-error, as function of the coefficients,
ã = {a0, a1, . . . , an} is

E (ã) =

∫ b

a

[
n∑

k=0

akxk − f (x)

]2

dx .

Differentiating with respect to aj (j = {0, 1, . . . , n}) gives

∂E (ã)

∂aj

= 2
n∑

k=0

ak

∫ b

a

x j+k dx − 2

∫ b

a

x j f (x) dx .
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Finding the Normal Equations...

If p(x) ∈ Pn we write p(x) =
∑n

k=0 akxk . The
sum-of-squares-error, as function of the coefficients,
ã = {a0, a1, . . . , an} is

E (ã) =

∫ b

a

[
n∑

k=0

akxk − f (x)

]2

dx .

Differentiating with respect to aj (j = {0, 1, . . . , n}) gives

∂E (ã)

∂aj

= 2
n∑

k=0

ak

∫ b

a

x j+k dx − 2

∫ b

a

x j f (x) dx .

At the minimum, we require ∂E(ã)
∂aj

= 0, which gives us a system of

equations for the coefficients ak , the normal equations.
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The Normal Equations.

The (n + 1)-by-(n + 1) system of equations is:

n∑

k=0

ak

∫ b

a

x j+k dx =

∫ b

a

x j f (x) dx , j = 0, 1, . . . , n.
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The Normal Equations.

The (n + 1)-by-(n + 1) system of equations is:

n∑

k=0

ak

∫ b

a

x j+k dx =

∫ b

a

x j f (x) dx , j = 0, 1, . . . , n.

Some notation, let:

〈f (x), g(x)〉 =

∫ b

a

f (x)g(x)∗ dx ,

where g(x)∗ is the complex conjugate of g(x) (everything we do in this
class is real, so it has no effect...)

This is known as an inner product on the interval [a, b]. (But, if you
want, you can think of it as a notational shorthand for the integral...)
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The Normal Equations: Inner Product Notation, I

In inner product notation, our normal equations:

n∑

k=0

ak

∫ b

a

x j+k dx =

∫ b

a

x j f (x) dx , j = 0, 1, . . . , n.

become:
n∑

k=0

ak〈x j , xk〉 = 〈x j , f (x)〉, j = 0, 1, . . . , n.
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The Normal Equations: Inner Product Notation, I

In inner product notation, our normal equations:

n∑

k=0

ak

∫ b

a

x j+k dx =

∫ b

a

x j f (x) dx , j = 0, 1, . . . , n.

become:
n∑

k=0

ak〈x j , xk〉 = 〈x j , f (x)〉, j = 0, 1, . . . , n.

Recall the Discrete Normal Equations:

n∑

k=0

[

ak

N∑

i=0

x
j+k
i

]

=

N∑

i=0

x
j
i fi , j = 0, 1, . . . , n.

Hmmm, looks quite similar!
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More Notation, Defining the Discrete Inner Product.

If we have two vectors

ṽ = {v0, v1, . . . , vN}
w̃ = {w0, w1, . . . ,wN},

we can define the discrete inner product

[v , w ] =

N∑

i=0

viw
∗

i ,

where, again w∗

i is the complex conjugate of wi .

Equipped with this notation, we revisit the Normal Equations...

Joe Mahaffy, 〈mahaffy@math.sdsu.edu〉 Least Squares & Orthogonal Polynomials — (12/28)



Discrete Least Squares Approximation
Continuous Least Squares Approximation

Orthogonal Polynomials

Introduction... Normal Equations
Matrix Properties

The Normal Equations: Inner Product Notation, II

Discrete Normal Equations in
∑

Notation:

n∑

k=0

[

ak

n∑

i=0

x
j+k
i

]

=
n∑

i=0

x
j
i fi , j = 0, 1, . . . , n.

Joe Mahaffy, 〈mahaffy@math.sdsu.edu〉 Least Squares & Orthogonal Polynomials — (13/28)



Discrete Least Squares Approximation
Continuous Least Squares Approximation

Orthogonal Polynomials

Introduction... Normal Equations
Matrix Properties

The Normal Equations: Inner Product Notation, II

Discrete Normal Equations in
∑

Notation:

n∑

k=0

[

ak

n∑

i=0

x
j+k
i

]

=
n∑

i=0

x
j
i fi , j = 0, 1, . . . , n.

Discrete Normal Equations, in Inner Product Notation:
n∑

k=0

ak

[
x̃j , x̃k

]
=

[

x̃j , f̃
]

, j = 0, 1, . . . , n.

Continuous Normal Equations in Inner Product Notation:
n∑

k=0

ak〈x j , xk〉 = 〈x j , f (x)〉, j = 0, 1, . . . , n.
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The Normal Equations: Inner Product Notation, II

Discrete Normal Equations in
∑

Notation:

n∑

k=0

[

ak

n∑

i=0

x
j+k
i

]

=
n∑

i=0

x
j
i fi , j = 0, 1, . . . , n.

Discrete Normal Equations, in Inner Product Notation:
n∑

k=0

ak

[
x̃j , x̃k

]
=

[

x̃j , f̃
]

, j = 0, 1, . . . , n.

Continuous Normal Equations in Inner Product Notation:
n∑

k=0

ak〈x j , xk〉 = 〈x j , f (x)〉, j = 0, 1, . . . , n.

Hey! It’s really the same problem!!! The only thing that
changed is the inner product — we went from summation to
integration!
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Normal Equations for the Continuous Problem: Matrices.

The bottom line is that the polynomial p(x) that minimizes

∫ β

α

[p(x) − f (x)]
2

dx

is given by the solution of the linear system X~a = ~b, where

Xi,j = 〈x i , x j〉, bi = 〈x i , f (x)〉.
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Normal Equations for the Continuous Problem: Matrices.

The bottom line is that the polynomial p(x) that minimizes

∫ β

α

[p(x) − f (x)]
2

dx

is given by the solution of the linear system X~a = ~b, where

Xi,j = 〈x i , x j〉, bi = 〈x i , f (x)〉.

We can compute 〈x i , x j〉 =
βi+j+1 − αi+j+1

i + j + 1
explicitly.

A matrix with these entries is known as a Hilbert Matrix; —
classical examples for demonstrating how numerical solutions
run into difficulties due to propagation of roundoff errors.

— We need some new language, and tools!
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The Condition Number of a Matrix

The condition number of a matrix is the ratio of the largest
eigenvalue and the smallest eigenvalue:

If A is an n × n matrix, and its eigenvalues are
|λ1| ≤ |λ2| ≤ · · · ≤ |λn|, then the condition number is

cond(A) =
|λn|
|λ1|

The condition number is one important factor determining the
growth of the numerical (roundoff) error in a computation.
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The Condition Number of a Matrix

The condition number of a matrix is the ratio of the largest
eigenvalue and the smallest eigenvalue:

If A is an n × n matrix, and its eigenvalues are
|λ1| ≤ |λ2| ≤ · · · ≤ |λn|, then the condition number is

cond(A) =
|λn|
|λ1|

The condition number is one important factor determining the
growth of the numerical (roundoff) error in a computation.

We can interpret the condition number as a separation of scales.

If we compute with sixteen digits of precision ǫmach ≈ 10−16, the
best we can expect from our computations (even if we do
everything right), is accuracy ∼ cond(A) · ǫmach.
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The Condition Number for Our Example
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Figure: Ponder, yet again, the example of fitting polynomials to the
data (Right). The plot on the left shows the condition numbers for
0th, through 4th degree polynomial problems. Note that for the 5-by-5
system (Hilbert matrix) corresponding to the 4th degree problem the
condition number is already ∼ 107.

Joe Mahaffy, 〈mahaffy@math.sdsu.edu〉 Least Squares & Orthogonal Polynomials — (16/28)



Discrete Least Squares Approximation
Continuous Least Squares Approximation

Orthogonal Polynomials

Linear Independence... Weight Functions... Inner Products
Least Squares, Redux
Orthogonal Functions

Linearly Independent Functions.

Definition (Linearly Independent Functions)

The set of functions {Φ0(x), Φ1(x), . . . ,Φn(x)} is said to be
linearly independent on [a, b] if, whenever

n∑

i=0

ciΦi (x) = 0, ∀x ∈ [a, b],

then ci = 0, ∀i = 0, 1, . . . , n. Otherwise the set is said to be
linearly dependent.

Theorem

If Φj(x) is a polynomial of degree j, then the set

{Φ0(x), Φ1(x), . . . ,Φn(x)} is linearly independent on any interval

[a, b].
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Linearly Independent Functions: Polynomials.

Theorem

If Φj(x) is a polynomial of degree j, then the set

{Φ0(x), Φ1(x), . . . ,Φn(x)} is linearly independent on any interval

[a, b].
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Linearly Independent Functions: Polynomials.

Theorem

If Φj(x) is a polynomial of degree j, then the set

{Φ0(x), Φ1(x), . . . ,Φn(x)} is linearly independent on any interval

[a, b].

Proof.

Suppose ci ∈ R, i = 0, 1, . . . , n, and P(x) =
∑n

i=0 ciΦi (x) = 0
∀x ∈ [a, b]. Since P(x) vanishes on [a, b] it must be the
zero-polynomial, i.e. the coefficients of all the powers of x must be
zero. In particular, the coefficient of xn is zero. ⇒ cn = 0, hence
P(x) =

∑n−1
i=0 ciΦi (x). By repeating the same argument, we find

ci = 0, i = 0, 1, . . . , n. ⇒ {Φ0(x), Φ1(x), . . . ,Φn(x)} is linearly
independent.
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More Definitions and Notation... Weight Function

Theorem

If {Φ0(x), Φ1(x), . . . ,Φn(x)} is a collection of linearly independent

polynomials in Pn, then any p(x) ∈ Pn can be written uniquely as

a linear combination of {Φ0(x), Φ1(x), . . . ,Φn(x)}.

Definition (Weight Function)

An integrable function w is called a weight function on the interval
[a, b] if w(x) ≥ 0 ∀x ∈ [a, b], but w(x) 6≡ 0 on any subinterval of
[a, b].
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Weight Function... Inner Product

A weight function will allow us to assign different degrees of
importance to different parts of the interval. E.g. with
w(x) = 1/

√
1 − x2 on [−1, 1] we are assigning more weight away

from the center of the interval.

Inner Product, with a weight function:

〈f (x), g(x)〉w(x) =

∫ b

a

f (x)g(x)∗ w(x)dx .
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Revisiting Least Squares Approximation with New Notation.

Suppose {Φ0(x), Φ1(x), . . . ,Φn(x)} is a set of linearly independent
functions on [a, b], w(x) a weight function on [a, b], and
f (x) ∈ C [a, b].

We are now looking for the linear combination

p(x) =
n∑

k=0

akΦk(x)

which minimizes the sum-of-squares-error

E (ã) =

∫ b

a

[p(x) − f (x)]2 w(x)dx .

When we differentiate with respect to ak , w(x) is a constant, so
the system of normal equations can be written...
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The Normal Equations, Revisited for the nth Time.

n∑

k=0

ak〈Φk(x), Φj(x)〉w(x) = 〈f (x), Φj(x)〉w(x), j = 0, 1, . . . , n.

What has changed?

{
xk → Φk(x) New basis functions.
〈◦, ◦〉 → 〈◦, ◦〉w(x) New inner product.
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The Normal Equations, Revisited for the nth Time.

n∑

k=0

ak〈Φk(x), Φj(x)〉w(x) = 〈f (x), Φj(x)〉w(x), j = 0, 1, . . . , n.

What has changed?

{
xk → Φk(x) New basis functions.
〈◦, ◦〉 → 〈◦, ◦〉w(x) New inner product.

Q: — Is he ever going to get to the point?!?
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The Normal Equations, Revisited for the nth Time.

n∑

k=0

ak〈Φk(x), Φj(x)〉w(x) = 〈f (x), Φj(x)〉w(x), j = 0, 1, . . . , n.

What has changed?

{
xk → Φk(x) New basis functions.
〈◦, ◦〉 → 〈◦, ◦〉w(x) New inner product.

Why are we doing this?

We are going to select the basis functions Φk(x) so that the
normal equations are easy to solve!
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Orthogonal Functions

Definition (Orthogonal Set of Functions)

{Φ0(x), Φ1(x), . . . ,Φn(x)} is said to be an orthogonal set of
functions on [a, b] with respect to the weight function w(x) if

〈Φi (x), Φj(x)〉w(x) =

{
0, when i 6= j ,
ai , when i = j .

If in addition ai = 1, i = 0, 1, . . . , n the set is said to be
orthonormal.
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The Payoff — No Matrix Inversion Needed.

Theorem

If {Φ0(x), Φ1(x), . . . ,Φn(x)} is a set of orthogonal functions on an
interval [a, b], with respect to the weight function w(x), then the
least squares approximation to f (x) on [a, b] with respect to w(x)
is

p(x) =

n∑

k=0

akΦk(x),

where, for each k = 0, 1, . . . , n,

ak =
〈Φk(x), f (x)〉w(x)

〈Φk(x), Φk(x)〉w(x)
.

We can find the coefficients without solving XTX~a = XT~b!!!
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The Payoff — No Matrix Inversion Needed.

Theorem

If {Φ0(x), Φ1(x), . . . ,Φn(x)} is a set of orthogonal functions on an
interval [a, b], with respect to the weight function w(x), then the
least squares approximation to f (x) on [a, b] with respect to w(x)
is

p(x) =

n∑

k=0

akΦk(x),

where, for each k = 0, 1, . . . , n,

ak =
〈Φk(x), f (x)〉w(x)

〈Φk(x), Φk(x)〉w(x)
.

We can find the coefficients without solving XTX~a = XT~b!!!

Where do we get a set of orthogonal functions???
(Costco???)
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Building Orthogonal Sets of Functions — The Gram-Schmidt Process

Theorem (Gram-Schmidt Orthogonalization)

The set of polynomials {Φ0(x), Φ1(x), . . . ,Φn(x)} defined in the
following way is orthogonal on [a, b] with respect to w(x):

Φ0(x) = 1, Φ1(x) = (x − b1)Φ0,

where

b1 =
〈xΦ0(x), Φ0(x)〉w(x)

〈Φ0(x), Φ0(x)〉w(x)
,

for k ≥ 2,
Φk(x) = (x − bk)Φk−1(x) − ckΦk−2(x),

where

bk =
〈xΦk−1(x), Φk−1(x)〉w(x)

〈Φk−1(x), Φk−1(x)〉w(x)
, ck =

〈xΦk−1(x), Φk−2(x)〉w(x)

〈Φk−2(x), Φk−2(x)〉w(x)
.
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Example: Legendre Polynomials 1 of 2

The set of Legendre Polynomials {Pn(x)} is orthogonal on [−1, 1]
with respect to the weight function w(x) = 1.

P0(x) = 1, P1(x) = (x − b1) ◦ 1
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Example: Legendre Polynomials 1 of 2

The set of Legendre Polynomials {Pn(x)} is orthogonal on [−1, 1]
with respect to the weight function w(x) = 1.

P0(x) = 1, P1(x) = (x − b1) ◦ 1

where

b1 =

∫ 1
−1 x dx
∫ 1
−1 dx

= 0

i.e. P1(x) = x.
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Example: Legendre Polynomials 1 of 2

The set of Legendre Polynomials {Pn(x)} is orthogonal on [−1, 1]
with respect to the weight function w(x) = 1.

P0(x) = 1, P1(x) = (x − b1) ◦ 1

where

b1 =

∫ 1
−1 x dx
∫ 1
−1 dx

= 0

i.e. P1(x) = x.

b2 =

∫ 1
−1 x3 dx

∫ 1
−1 x2 dx

= 0, c2 =

∫ 1
−1 x2 dx
∫ 1
−1 1 dx

= 1/3,

i.e. P2(x) = x2 − 1/3.
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Example: Legendre Polynomials 2 of 2

The first six Legendre Polynomials are

P0(x) = 1
P1(x) = x

P2(x) = x2 − 1/3
P3(x) = x3 − 3x/5
P4(x) = x4 − 6x2/7 + 3/35
P5(x) = x5 − 10x3/9 + 5x/21.

We encountered the Legendre polynomials in the context of
numerical integration. It turns out that the roots of the Legendre
polynomials are used as the nodes in Gaussian quadrature.

Now we have the machinery to manufacture Legendre polynomials
of any degree.
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Example: Laguerre Polynomials

The set of Laguerre Polynomials {Ln(x)} is orthogonal on (0,∞)
with respect to the weight function w(x) = e−x .

L0(x) = 1,
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Example: Laguerre Polynomials

The set of Laguerre Polynomials {Ln(x)} is orthogonal on (0,∞)
with respect to the weight function w(x) = e−x .

L0(x) = 1,

b1 =
〈x , 1〉e−x

〈1, 1〉e−x

= 1

L1(x) = x − 1,
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Example: Laguerre Polynomials

The set of Laguerre Polynomials {Ln(x)} is orthogonal on (0,∞)
with respect to the weight function w(x) = e−x .

L0(x) = 1,

b1 =
〈x , 1〉e−x

〈1, 1〉e−x

= 1

L1(x) = x − 1,

b2 =
〈x(x − 1), x − 1〉e−x

〈x − 1, x − 1〉e−x

= 3, c2 =
〈x(x − 1), 1〉e−x

〈1, 1〉e−x

= 1,

L2(x) = (x − 3)(x − 1) − 1 = x2 − 4x + 2.
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