Numerical Analysis and Computing Lecture Notes #11 — Approximation Theory — Least Squares Approximation & Orthogonal Polynomials

Joe Mahaffy, \langle mahaffy@math.sdsu.edu \rangle

Department of Mathematics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

[http://www-rohan.sdsu.edu/](http://www-rohan.sdsu.edu/~jmahaffy)∼jmahaffy

Spring 2010

イロメ イ御 メイモメ イモメ

Outline

1 [Discrete Least Squares Approximation](#page-2-0)

- **[Quick Review](#page-2-0)**
- **•** [Example](#page-6-0)

2 [Continuous Least Squares Approximation](#page-7-0)

- **•** [Introduction... Normal Equations](#page-7-0)
- **•** [Matrix Properties](#page-21-0)

3 [Orthogonal Polynomials](#page-24-0)

- [Linear Independence... Weight Functions... Inner Products](#page-24-0)
- [Least Squares, Redux](#page-29-0)
- **•** [Orthogonal Functions](#page-33-0)

RANGER REA

KITCH

[Quick Review](#page-2-0) [Example](#page-6-0)

Picking Up Where We Left Off... The Discrete Least Squares, I

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

つのへ

The Idea: Given the data set $(\tilde{\mathbf{x}}, \tilde{\mathbf{f}})$, where $\tilde{\mathbf{x}} = \{x_0, x_1, \ldots, x_n\}^T$ and $\tilde{\mathbf{f}} = \{f_0, f_1, \ldots, f_n\}^T$ we want to fit **a simple model** (usually a low degree polynomial, $p_m(x)$) to this data.

We seek the polynomial, of degree *m*, which minimizes the residual:

$$
r(\widetilde{\mathbf{x}})=\sum_{i=0}^n\left[p_m(x_i)-f(x_i)\right]^2.
$$

[Quick Review](#page-2-0) [Example](#page-6-0)

Picking Up Where We Left Off... **Discrete Least Squares, II**

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

∽≏ດ

We find the polynomial by differentiating the sum with respect to the **coefficients** of $p_m(x)$. — If we are fitting a fourth degree polynomial $p_4(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$, we must compute the partial derivatives wrt. a_0 , a_1 , a_2 , a_3 , a_4 .

In order to achieve a minimum, we must set all these partial derivatives to zero. $-$ In this case we get 5 equations, for the 5 unknowns; the system is known as the **normal equations**.

[Quick Review](#page-2-0) [Example](#page-6-0)

The Normal Equations — Second Derivation

Last time we showed that the normal equations can be found with purely a Linear Algebra argument. Given the data points, and the model (here $p_4(x)$, we write down the over-determined system:

$$
\begin{cases}\n a_0 + a_1x_0 + a_2x_0^2 + a_3x_0^3 + a_4x_0^4 = f_0 \\
a_0 + a_1x_1 + a_2x_1^2 + a_3x_1^3 + a_4x_1^4 = f_1 \\
a_0 + a_1x_2 + a_2x_2^2 + a_3x_2^3 + a_4x_2^4 = f_2 \\
\vdots \\
a_0 + a_1x_0 + a_2x_0^2 + a_3x_0^3 + a_4x_0^4 = f_0.\n\end{cases}
$$

We can write this as a matrix-vector problem:

$$
X\tilde{\mathbf{a}}=\tilde{\mathbf{f}},
$$

where the **Vandermonde matrix** X is tall and skinny. By multiplying both the left- and right-hand-sides by $X^{\mathcal{T}}$ (the transpose of X), we get a "square" system — we recover the **normal equations:**

$$
X^T X \tilde{\mathbf{a}} = X^T \tilde{\mathbf{f}}.
$$

[Quick Review](#page-2-0) [Example](#page-6-0)

Discrete Least Squares: A Simple, Powerful Method.

Given the data set $(\tilde{\mathbf{x}}, \tilde{\mathbf{f}})$, where $\tilde{\mathbf{x}} = \{x_0, x_1, \dots, x_n\}$ and $\tilde{\mathbf{f}} = \{f_0, f_1, \ldots, f_n\}$, we can quickly find the best polynomial fit for any specified polynomial degree!

Notation: Let $\tilde{\mathbf{x}}^j$ be the vector $\{x_0^j\}$ $j\atop 0, x_1^j$ $j_1^j,\ldots,x_n^j\}.$

E.g. to compute the best fitting polynomial of degree 4, $p_4(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$, define:

$$
X = \begin{bmatrix} \begin{vmatrix} \begin{vmatrix} \begin{vmatrix} \end{vmatrix} & \begin{vmatrix} \end{vmatrix} & \begin{vmatrix} \end{vmatrix} & \begin{vmatrix} \end{vmatrix} \\ \begin{vmatrix} \end{vmatrix} & \begin{vmatrix} \end{vmatrix} \\ \begin{vmatrix} \end{vmatrix} & \begin{vmatrix} \end{vmatrix} \end{vmatrix} \end{bmatrix}, \text{ and compute } \tilde{a} = \underbrace{(X^T X)^{-1} (X^T \tilde{f})}_{\text{Not like this!}}.
$$
\nSee math 543! See math 543! See math 543! See Math 544! See $\overline{a} \rightarrow a$ and $\overline{a} \rightarrow a$ are a and a are a and a

[Quick Review](#page-2-0) [Example](#page-6-0)

Example: Fitting $p_i(x)$, $i = 0, 1, 2, 3, 4$ Models.

Figure: We revisit the example from last time; and fit polynomials up to degree four to the given data. The figure shows the best $p_0(x)$, $p_1(x)$, and $p_2(x)$ fits.

Below: the errors give us clues when to stop.

Table: Clearly in this example there is very little to gain in terms of the least-squareserror by going beyond 1st or 2nd degree models.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-21-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

つのへ

Introduction: Defining the Problem.

Up until now: Discrete Least Squares Approximation applied to a collection of data.

Now: Least Squares Approximation of Functions.

We consider problems of this type: $-$

Suppose $f \in C[a, b]$ *and we have the class* P_n *which is the set of all polynomials of degree at most n.* Find the $p(x) \in \mathcal{P}_n$ which minimizes

$$
\int_a^b [p(x) - f(x)]^2 dx.
$$

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-21-0)

Finding the Normal Equations...

If $p(x) \in \mathcal{P}_n$ we write $p(x) = \sum_{k=0}^n a_k x^k$. The sum-of-squares-error, as function of the coefficients, $\tilde{\mathbf{a}} = \{a_0, a_1, \dots, a_n\}$ is

$$
E(\mathbf{\tilde{a}})=\int_{a}^{b}\left[\sum_{k=0}^{n}a_{k}x^{k}-f(x)\right]^{2}dx.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

 Ω

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-21-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

つへへ

Finding the Normal Equations...

If $p(x) \in \mathcal{P}_n$ we write $p(x) = \sum_{k=0}^n a_k x^k$. The sum-of-squares-error, as function of the coefficients, $\tilde{\mathbf{a}} = \{a_0, a_1, \dots, a_n\}$ is

$$
E(\mathbf{\tilde{a}})=\int_{a}^{b}\left[\sum_{k=0}^{n}a_{k}x^{k}-f(x)\right]^{2}dx.
$$

Differentiating with respect to a_i $(j = \{0, 1, ..., n\})$ gives

$$
\frac{\partial E(\mathbf{\tilde{a}})}{\partial a_j} = 2 \sum_{k=0}^n a_k \int_a^b x^{j+k} dx - 2 \int_a^b x^j f(x) dx.
$$

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-21-0)

Finding the Normal Equations...

If $p(x) \in \mathcal{P}_n$ we write $p(x) = \sum_{k=0}^n a_k x^k$. The sum-of-squares-error, as function of the coefficients, $\tilde{\mathbf{a}} = \{a_0, a_1, \dots, a_n\}$ is

$$
E(\mathbf{\tilde{a}})=\int_{a}^{b}\left[\sum_{k=0}^{n}a_{k}x^{k}-f(x)\right]^{2}dx.
$$

Differentiating with respect to a_i $(j = \{0, 1, ..., n\})$ gives

$$
\frac{\partial E(\mathbf{\tilde{a}})}{\partial a_j} = 2 \sum_{k=0}^n a_k \int_a^b x^{j+k} dx - 2 \int_a^b x^j f(x) dx.
$$

At the minimum, we require $\frac{\partial E(\mathbf{\tilde{a}})}{\partial a_j}=0$, which gives us a system of e[q](#page-11-0)[u](#page-7-0)[a](#page-8-0)[ti](#page-10-0)[o](#page-11-0)[n](#page-6-0)[s](#page-7-0) for the coefficients a_k , the norm[al e](#page-9-0)quations[.](#page-20-0) つくい

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-21-0)

The Normal Equations.

The $(n + 1)$ -by- $(n + 1)$ system of equations is:

$$
\sum_{k=0}^{n} a_k \int_a^b x^{j+k} dx = \int_a^b x^j f(x) dx, \quad j = 0, 1, ..., n.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

 $2Q$

扂

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-21-0)

The Normal Equations.

The $(n + 1)$ -by- $(n + 1)$ system of equations is:

$$
\sum_{k=0}^{n} a_k \int_a^b x^{j+k} dx = \int_a^b x^j f(x) dx, \quad j = 0, 1, \dots, n.
$$

Some **notation**, let:

$$
\langle f(x), g(x) \rangle = \int_a^b f(x)g(x)^* dx,
$$

where $g(x)^*$ is the complex conjugate of $g(x)$ (everything we do in this class is real, so it has no effect...)

This is known as an inner product on the interval [*a*, *b*]. (But, if you want, you can think of it as a notational shorthand for the integral...)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-21-0)

The Normal Equations: Inner Product Notation, I

In inner product notation, our normal equations:

$$
\sum_{k=0}^n a_k \int_a^b x^{j+k} dx = \int_a^b x^j f(x) dx, \quad j = 0, 1, \dots, n.
$$

become:

$$
\sum_{k=0}^n a_k \langle x^j, x^k \rangle = \langle x^j, f(x) \rangle, \quad j = 0, 1, \ldots, n.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

 $2Q$

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-21-0)

イロメ マ桐 メラミン マラメ

 Ω

The Normal Equations: Inner Product Notation, I

In inner product notation, our normal equations:

$$
\sum_{k=0}^n a_k \int_a^b x^{j+k} dx = \int_a^b x^j f(x) dx, \quad j = 0, 1, \dots, n.
$$

become:

$$
\sum_{k=0}^n a_k \langle x^j,\, x^k \rangle = \langle x^j,\, f(x) \rangle, \quad j=0,1,\ldots,n.
$$

Recall the Discrete Normal Equations:

$$
\sum_{k=0}^{n} \left[a_k \sum_{i=0}^{N} x_i^{j+k} \right] = \sum_{i=0}^{N} x_i^{j} f_i, \quad j = 0, 1, \dots, n.
$$

Hmmm, looks quite similar!

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-21-0)

More Notation, Defining the Discrete Inner Product.

If we have two vectors

$$
\widetilde{\mathbf{v}} = \{v_0, v_1, \ldots, v_N\}
$$

$$
\widetilde{\mathbf{w}} = \{w_0, w_1, \ldots, w_N\},
$$

we can define the discrete inner product

$$
[v, w] = \sum_{i=0}^N v_i w_i^*,
$$

where, again *w* ∗ i_i^* is the complex conjugate of w_i .

Equipped with this notation, we revisit the Normal Equations...

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

つのへ

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-21-0)

The Normal Equations: Inner Product Notation, II

Discrete Normal Equations in \sum Notation:

$$
\sum_{k=0}^{n} \left[a_k \sum_{i=0}^{n} x_i^{j+k} \right] = \sum_{i=0}^{n} x_i^{j} f_i, \quad j = 0, 1, \ldots, n.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

 $2Q$

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-21-0)

The Normal Equations: Inner Product Notation, II

Discrete Normal Equations in \sum Notation:

$$
\sum_{k=0}^{n} \left[a_k \sum_{i=0}^{n} x_i^{j+k} \right] = \sum_{i=0}^{n} x_i^{j} f_i, \quad j = 0, 1, \ldots, n.
$$

Discrete Normal Equations, in Inner Product Notation:

$$
\sum_{k=0}^{n} a_k \left[\tilde{\mathbf{x}}^j, \tilde{\mathbf{x}}^k \right] = \left[\tilde{\mathbf{x}}^j, \tilde{\mathbf{f}} \right], \quad j = 0, 1, \ldots, n.
$$

Continuous Normal Equations in Inner Product Notation:

$$
\sum_{k=0}^n a_k \langle x^j, x^k \rangle = \langle x^j, f(x) \rangle, \quad j = 0, 1, \ldots, n.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-21-0)

The Normal Equations: Inner Product Notation, II

Discrete Normal Equations in \sum Notation:

$$
\sum_{k=0}^{n} \left[a_k \sum_{i=0}^{n} x_i^{j+k} \right] = \sum_{i=0}^{n} x_i^{j} f_i, \quad j = 0, 1, \ldots, n.
$$

Discrete Normal Equations, in Inner Product Notation:

$$
\sum_{k=0}^{n} a_k \left[\tilde{\mathbf{x}}^j, \, \tilde{\mathbf{x}}^k \right] = \left[\tilde{\mathbf{x}}^j, \, \tilde{\mathbf{f}} \right], \quad j = 0, 1, \ldots, n.
$$

Continuous Normal Equations in Inner Product Notation:

$$
\sum_{k=0}^n a_k \langle x^j, x^k \rangle = \langle x^j, f(x) \rangle, \quad j=0,1,\ldots,n.
$$

Hey! It's really the same problem!!! The only thing that changed is the inner product — we went from summation to integration! イロト イ押ト イミト イミト

つのへ

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-21-0)

Normal Equations for the Continuous Problem: Matrices.

 $\ddot{}$

The bottom line is that the polynomial $p(x)$ that minimizes

$$
\int_{\alpha}^{\beta} \left[p(x) - f(x) \right]^2 dx
$$

is given by the solution of the linear system $X\vec{a} = \vec{b}$, where

$$
X_{i,j}=\langle x^i, x^j\rangle, \quad b_i=\langle x^i, f(x)\rangle.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

 Ω

Normal Equations for the Continuous Problem: Matrices.

 \cdot

The bottom line is that the polynomial $p(x)$ that minimizes

$$
\int_{\alpha}^{\beta} \left[p(x) - f(x) \right]^2 dx
$$

is given by the solution of the linear system $X\vec{a} = \vec{b}$, where

$$
X_{i,j}=\langle x^i, x^j\rangle, \quad b_i=\langle x^i, f(x)\rangle.
$$

We can compute $\langle x^i, x^j \rangle = \frac{\beta^{i+j+1} - \alpha^{i+j+1}}{i+i+1}$ $\frac{a}{i+j+1}$ explicitly.

A matrix with these entries is known as a Hilbert Matrix; classical examples for demonstrating how numerical solutions run into difficulties due to propagation of roundoff errors.

— *We need some new language, and tools!*

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-22-0)

The Condition Number of a Matrix

The **condition number** of a matrix is the ratio of the largest eigenvalue and the smallest eigenvalue:

If A is an $n \times n$ matrix, and its eigenvalues are $|\lambda_1| \leq |\lambda_2| \leq \cdots \leq |\lambda_n|$, then the **condition number** is

$$
\mathsf{cond}(\mathsf{A}) = \frac{|\lambda_n|}{|\lambda_1|}
$$

The condition number is one important factor determining the growth of the numerical (roundoff) error in a computation.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-21-0)

つくい

The Condition Number of a Matrix

The **condition number** of a matrix is the ratio of the largest eigenvalue and the smallest eigenvalue:

If A is an $n \times n$ matrix, and its eigenvalues are $|\lambda_1| \leq |\lambda_2| \leq \cdots \leq |\lambda_n|$, then the **condition number** is

$$
\mathsf{cond}(\mathsf{A}) = \frac{|\lambda_n|}{|\lambda_1|}
$$

The condition number is one important factor determining the growth of the numerical (roundoff) error in a computation.

We can interpret the condition number as a **separation of scales**. If we compute with sixteen digits of precision $\epsilon_{\text{mach}} \approx 10^{-16}$, the best we can expect from our computations (even if we do everything right), is accuracy $\sim \text{cond(A)} \cdot \epsilon_{\text{mach}}$ $\sim \text{cond(A)} \cdot \epsilon_{\text{mach}}$ $\sim \text{cond(A)} \cdot \epsilon_{\text{mach}}$ [.](#page-23-0)

[Introduction... Normal Equations](#page-7-0) [Matrix Properties](#page-21-0)

The Condition Number for Our Example

Figure: Ponder, yet again, the example of fitting polynomials to the data (Right). The plot on the left shows the condition numbers for 0th, through 4th degree polynomial problems. Note that for the 5-by-5 system (Hilbert matrix) corresponding to the 4th degree problem the condition number is already $\sim 10^7$. イロメ イ御 メイモメ イモメ

Joe Mahaffy, $\langle \text{mahaffy@math.sdsu.edu} \rangle$ [Least Squares & Orthogonal Polynomials](#page-0-0) — (16/28)

 Ω

[Linear Independence... Weight Functions... Inner Products](#page-24-0) [Least Squares, Redux](#page-29-0) [Orthogonal Functions](#page-33-0)

Linearly Independent Functions.

Definition (Linearly Independent Functions)

The set of functions $\{\Phi_0(x), \Phi_1(x), \ldots, \Phi_n(x)\}\)$ is said to be linearly independent on [*a*, *b*] if, whenever

$$
\sum_{i=0}^n c_i \Phi_i(x) = 0, \quad \forall x \in [a, b],
$$

then $c_i = 0$, $\forall i = 0, 1, \ldots, n$. Otherwise the set is said to be linearly dependent.

Theorem

If $\Phi_i(x)$ *is a polynomial of degree j, then the set* $\{\Phi_0(x), \Phi_1(x), \ldots, \Phi_n(x)\}\$ is linearly independent on any interval [*a*, *b*]*.*

[Linear Independence... Weight Functions... Inner Products](#page-24-0) [Least Squares, Redux](#page-29-0) [Orthogonal Functions](#page-33-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

つへへ

Linearly Independent Functions: Polynomials.

Theorem

If Φj(*x*) *is a polynomial of degree j, then the set* $\{\Phi_0(x), \Phi_1(x), \ldots, \Phi_n(x)\}\$ is linearly independent on any interval $[a, b]$.

[Linear Independence... Weight Functions... Inner Products](#page-24-0) [Least Squares, Redux](#page-29-0) **[Orthogonal Functions](#page-33-0)**

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

∽≏ດ

Linearly Independent Functions: Polynomials.

Theorem

If Φj(*x*) *is a polynomial of degree j, then the set* $\{\Phi_0(x), \Phi_1(x), \ldots, \Phi_n(x)\}\$ is linearly independent on any interval [*a*, *b*]*.*

Proof.

Suppose $c_i \in \mathbb{R}$, $i = 0, 1, ..., n$, and $P(x) = \sum_{i=0}^{n} c_i \Phi_i(x) = 0$ ∀*x* ∈ [*a*, *b*]. Since *P*(*x*) vanishes on [*a*, *b*] it must be the zero-polynomial, *i.e.* the coefficients of all the powers of *x* must be zero. In particular, the coefficient of x^n is zero. $\Rightarrow c_n = 0$, hence $P(x) = \sum_{i=0}^{n-1} c_i \Phi_i(x)$. By repeating the same argument, we find $c_i = 0$, $i = 0, 1, \ldots, n$. \Rightarrow $\{\Phi_0(x), \Phi_1(x), \ldots, \Phi_n(x)\}\$ is linearly independent.

[Linear Independence... Weight Functions... Inner Products](#page-24-0) [Least Squares, Redux](#page-29-0) [Orthogonal Functions](#page-33-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

つくい

More Definitions and Notation... Weight Function

Theorem

If $\{\Phi_0(x), \Phi_1(x), \ldots, \Phi_n(x)\}\$ *is a collection of linearly independent polynomials in* P_n , then any $p(x) \in P_n$ can be written uniquely as *a linear combination of* $\{\Phi_0(x), \Phi_1(x), \ldots, \Phi_n(x)\}.$

Definition (Weight Function)

An integrable function *w* is called a weight function on the interval $[a, b]$ if $w(x) \ge 0$ $\forall x \in [a, b]$, but $w(x) \ne 0$ on any subinterval of $[a, b]$.

[Linear Independence... Weight Functions... Inner Products](#page-24-0) [Least Squares, Redux](#page-29-0) [Orthogonal Functions](#page-33-0)

イロト イ押ト イミト イミト

つくい

Weight Function... Inner Product

A weight function will allow us to assign different degrees of importance to different parts of the interval. *E.g.* with $w(x) = 1/\sqrt{1-x^2}$ on $[-1, 1]$ we are assigning more weight away from the center of the interval.

Inner Product, with a weight function:

$$
\langle f(x), g(x) \rangle_{w(x)} = \int_a^b f(x)g(x)^* w(x) dx.
$$

Revisiting Least Squares Approximation with New Notation.

Suppose $\{\Phi_0(x), \Phi_1(x), \ldots, \Phi_n(x)\}\$ is a set of linearly independent functions on $[a, b]$, $w(x)$ a weight function on $[a, b]$, and $f(x) \in C[a, b]$.

We are now looking for the linear combination

$$
p(x) = \sum_{k=0}^{n} a_k \Phi_k(x)
$$

which minimizes the sum-of-squares-error

$$
E(\widetilde{\mathbf{a}})=\int_a^b[p(x)-f(x)]^2 w(x)dx.
$$

When we differentiate with respect to a_k , $w(x)$ is a constant, so the system of normal equations can be writt[en](#page-28-0).[..](#page-30-0) $A \cap B$ is a $B \cap A$ $B \cap B$

[Linear Independence... Weight Functions... Inner Products](#page-24-0) [Least Squares, Redux](#page-29-0) [Orthogonal Functions](#page-33-0)

The Normal Equations, Revisited for the *n* th Time.

$$
\sum_{k=0}^n a_k \langle \Phi_k(x), \Phi_j(x) \rangle_{w(x)} = \langle f(x), \Phi_j(x) \rangle_{w(x)}, \quad j=0,1,\ldots,n.
$$

What has changed?

$$
\left\{\begin{array}{ccc} x^k & \to & \Phi_k(x) \\ \langle \circ, \circ \rangle & \to & \langle \circ, \circ \rangle_{w(x)} \end{array}\right.
$$

New basis functions. New inner product.

イロト イ押ト イミト イミト

 Ω

[Linear Independence... Weight Functions... Inner Products](#page-24-0) [Least Squares, Redux](#page-29-0) [Orthogonal Functions](#page-33-0)

The Normal Equations, Revisited for the *n* th Time.

$$
\sum_{k=0}^n a_k \langle \Phi_k(x), \Phi_j(x) \rangle_{w(x)} = \langle f(x), \Phi_j(x) \rangle_{w(x)}, \quad j=0,1,\ldots,n.
$$

What has changed?

$$
\left\{\begin{array}{ccc} x^k & \to & \Phi_k(x) \\ \langle \circ, \circ \rangle & \to & \langle \circ, \circ \rangle_{w(x)} \end{array}\right.
$$

New basis functions. New inner product.

イロト イ押ト イミト イミト

 $2Q$

$Q:$ \rightarrow Is he ever going to get to the point?!?

[Linear Independence... Weight Functions... Inner Products](#page-24-0) [Least Squares, Redux](#page-29-0) [Orthogonal Functions](#page-33-0)

イロト イ押ト イミト イミト

The Normal Equations, Revisited for the *n* th Time.

$$
\sum_{k=0}^n a_k \langle \Phi_k(x), \Phi_j(x) \rangle_{w(x)} = \langle f(x), \Phi_j(x) \rangle_{w(x)}, \quad j=0,1,\ldots,n.
$$

What has changed?

$$
\left\{\begin{array}{ccc} x^k & \to & \Phi_k(x) & \text{New basis functions.} \\ \langle \circ, \circ \rangle & \to & \langle \circ, \circ \rangle_{w(x)} & \text{New inner product.} \end{array}\right.
$$

Why are we doing this?

We are going to select the basis functions $\Phi_k(x)$ so that the normal equations are easy to solve!

Orthogonal Functions

Definition (Orthogonal Set of Functions)

 $\{\Phi_0(x), \Phi_1(x), \ldots, \Phi_n(x)\}\$ is said to be an orthogonal set of **functions** on [a, b] with respect to the weight function $w(x)$ if

$$
\langle \Phi_i(x), \Phi_j(x) \rangle_{w(x)} = \begin{cases} 0, & \text{when } i \neq j, \\ a_i, & \text{when } i = j. \end{cases}
$$

If in addition $a_i = 1$, $i = 0, 1, \ldots, n$ the set is said to be orthonormal.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

つのへ

The Payoff — No Matrix Inversion Needed.

Theorem

If $\{\Phi_0(x), \Phi_1(x), \ldots, \Phi_n(x)\}\$ *is a set of orthogonal functions on an interval* [*a*, *b*]*, with respect to the weight function w*(*x*)*, then the least squares approximation to f(x) on [a, b] with respect to* $w(x)$ *is*

$$
p(x) = \sum_{k=0}^n a_k \Phi_k(x),
$$

where, for each $k = 0, 1, \ldots, n$.

$$
a_k = \frac{\langle \Phi_k(x), f(x) \rangle_{w(x)}}{\langle \Phi_k(x), \Phi_k(x) \rangle_{w(x)}}
$$

We can find the coefficients without solving $X^TX\vec{a} = X^T\vec{b}$!!!

.

イロト イ押ト イミト イミト

The Payoff — No Matrix Inversion Needed.

Theorem

If $\{\Phi_0(x), \Phi_1(x), \ldots, \Phi_n(x)\}\$ *is a set of orthogonal functions on an interval* [*a*, *b*]*, with respect to the weight function w*(*x*)*, then the least squares approximation to f(x) on [a, b] with respect to* $w(x)$ *is*

$$
p(x) = \sum_{k=0}^n a_k \Phi_k(x),
$$

where, for each $k = 0, 1, \ldots, n$.

$$
a_k = \frac{\langle \Phi_k(x), f(x) \rangle_{w(x)}}{\langle \Phi_k(x), \Phi_k(x) \rangle_{w(x)}}
$$

.

We can find the coefficients without solving $X^TX\vec{a} = X^T\vec{b}$!!!

Where do we get a set of orthogonal functions??? (Costco???) $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Joe Mahaffy, $\langle \text{mahaffy@math>math.sdsu.edu} \rangle$ [Least Squares & Orthogonal Polynomials](#page-0-0) $- (24/28)$

Building Orthogonal Sets of Functions — The Gram-Schmidt Process

Theorem (Gram-Schmidt Orthogonalization)

The set of polynomials $\{\Phi_0(x), \Phi_1(x), \ldots, \Phi_n(x)\}\$ *defined in the following way is orthogonal on* [a, b] with respect to $w(x)$ *:*

$$
\Phi_0(x) = 1, \quad \Phi_1(x) = (x - b_1)\Phi_0,
$$

where

$$
b_1=\frac{\langle x\Phi_0(x),\,\Phi_0(x)\rangle_{w(x)}}{\langle \Phi_0(x),\,\Phi_0(x)\rangle_{w(x)}},
$$

for $k > 2$ *,*

$$
\Phi_k(x) = (x - b_k)\Phi_{k-1}(x) - c_k\Phi_{k-2}(x),
$$

where

$$
b_k=\frac{\langle x\Phi_{k-1}(x),\Phi_{k-1}(x)\rangle_{w(x)}}{\langle \Phi_{k-1}(x),\Phi_{k-1}(x)\rangle_{w(x)}},\quad c_k=\frac{\langle x\Phi_{k-1}(x),\Phi_{k-2}(x)\rangle_{w(x)}}{\langle \Phi_{k-2}(x),\Phi_{k-2}(x)\rangle_{w(x)}}.
$$

Example: Legendre Polynomials 1 of 2

つへへ

The set of Legendre Polynomials $\{P_n(x)\}\$ is orthogonal on $[-1,1]$ with respect to the weight function $w(x) = 1$.

$$
P_0(x) = 1, \quad P_1(x) = (x - b_1) \circ 1
$$

イロト イ押 トイチト イチト

Example: Legendre Polynomials 1 of 2

つへへ

The set of Legendre Polynomials $\{P_n(x)\}\$ is orthogonal on $[-1, 1]$ with respect to the weight function $w(x) = 1$.

$$
P_0(x) = 1, \quad P_1(x) = (x - b_1) \circ 1
$$

where

$$
b_1 = \frac{\int_{-1}^1 x \, dx}{\int_{-1}^1 \, dx} = 0
$$

i.e. $P_1(x) = x$.

 $\mathcal{A} \left(\overline{m} \right) \times \mathcal{A} \left(\overline{m} \right) \times \mathcal{A} \left(\overline{m} \right) \times$

Example: Legendre Polynomials 1 of 2

The set of Legendre Polynomials $\{P_n(x)\}\$ is orthogonal on $[-1, 1]$ with respect to the weight function $w(x) = 1$.

$$
P_0(x) = 1, \quad P_1(x) = (x - b_1) \circ 1
$$

where

$$
b_1 = \frac{\int_{-1}^1 x \, dx}{\int_{-1}^1 \, dx} = 0
$$

i.e. $P_1(x) = x$.

$$
b_2 = \frac{\int_{-1}^1 x^3 dx}{\int_{-1}^1 x^2 dx} = 0, \quad c_2 = \frac{\int_{-1}^1 x^2 dx}{\int_{-1}^1 1 dx} = 1/3,
$$

i.e. $P_2(x) = x^2 - 1/3$.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$

Example: Legendre Polynomials 2 of 2

The first six Legendre Polynomials are

$$
P_0(x) = 1\nP_1(x) = x\nP_2(x) = x2 - 1/3\nP_3(x) = x3 - 3x/5\nP_4(x) = x4 - 6x2/7 + 3/35\nP_5(x) = x5 - 10x3/9 + 5x/21.
$$

We encountered the Legendre polynomials in the context of numerical integration. It turns out that the **roots** of the Legendre polynomials are used as the nodes in Gaussian quadrature.

Now we have the machinery to manufacture Legendre polynomials of any degree.

イロト イ押 トイチト イチト

Example: Laguerre Polynomials

The set of Laguerre Polynomials $\{L_n(x)\}\$ is orthogonal on $(0,\infty)$ with respect to the weight function $w(x) = e^{-x}$. $L_0(x) = 1$,

イロト イ押 トイチト イチト

Example: Laguerre Polynomials

The set of Laguerre Polynomials $\{L_n(x)\}\$ is orthogonal on $(0,\infty)$ with respect to the weight function $w(x) = e^{-x}$. $L_0(x) = 1$,

$$
b_1=\frac{\langle x,\, 1\rangle_{e^{-x}}}{\langle 1,\, 1\rangle_{e^{-x}}}=1
$$

 $L_1(x) = x - 1$,

イロト イ押 トイチト イチト

Example: Laguerre Polynomials

The set of Laguerre Polynomials $\{L_n(x)\}\$ is orthogonal on $(0,\infty)$ with respect to the weight function $w(x) = e^{-x}$. $L_0(x) = 1$,

$$
b_1=\frac{\langle x,\, 1\rangle_{e^{-x}}}{\langle 1,\, 1\rangle_{e^{-x}}}=1
$$

 $L_1(x) = x - 1$,

$$
b_2 = \frac{\langle x(x-1), x-1 \rangle_{e^{-x}}}{\langle x-1, x-1 \rangle_{e^{-x}}} = 3, \quad c_2 = \frac{\langle x(x-1), 1 \rangle_{e^{-x}}}{\langle 1, 1 \rangle_{e^{-x}}} = 1,
$$

 $L_2(x) = (x-3)(x-1) - 1 = x^2 - 4x + 2.$

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$