

1.1: Review of Calculus Important Theorems for Numerical Methods

S. K. Hyde Burden and Faires, any ed.

Winter 2025

1 Topics

1.1 Why Review Calculus?

- What do we need Calculus concepts for?
- They help us to develop ways to manipulate and solve problems.
- Either they are unsolvable analytically or we want an easier way (e.g. we're lazy).
- The calculus will help us to make sure that the algorithms make sense.
- 1.2 Important Theorems and Ideas in Calculus:
 - Limits, Continuity, Differentiability, Convergence
 - Rolle's Theorem
 - The Mean Value Theorm (MVT) (or Weighted MVT for Integrals).
 - Extreme Value Theorem (EVT)
 - Intermediate Value Theorem (IVT)
 - Taylor's Polynomials

Definition of Limit

Definition. [1.1] Let f(x) be a function defined on a set X of real numbers. f is said to have the **limit** L at x_0 , written $\lim_{x \to x_0} f(x) = L$ if:

 $\forall \varepsilon > 0, \exists \, \delta(\varepsilon) \, \, such \, \, that \, |f(x) - L| < \varepsilon \, \, whenever \, x \in X \, \, and \, 0 < |x - x_0| < \delta(\varepsilon)$

Definition of Continuous

Definition. [1.2] Let f be a function defined on a set X and $x_0 \in X$.

If $\lim_{x \to x_0} f(x) = f(x_0)$, then f is continuous at x_0 .

Notation of Sets of functions

Definition. The "C" indicates continuous function, and the power indicates derivatives. So

- C(X) is the set of all continuous functions on X.
- $C^n(X)$ is the set of all functions having n continuous derivatives on X.
- $C^{\infty}(X)$ is the set of all functions having contin. derivatives of all orders on X.

Definition of Limit of a sequence

Definition. [1.3] Let $\{x_n\}$ be an infinite sequence of numbers. The sequence is said to converge to a **limit** x, if:

 $\forall \varepsilon > 0, \exists a \text{ positive integer } N(\varepsilon) \text{ such that for all } n > N(\varepsilon) \text{ implies } |x_n - x| < \varepsilon$

and we write " $\lim_{n \to \infty} x_n = x$ " or " $x_n \to x$ as $n \to \infty$."

Definition of Continuous of a sequence

Definition. [1.4] Let f be a function defined on a set X of real numbers and let $x_0 \in X$. The following are equivilent:

- f is continuous at x_0 .
- If $\{x_n\}$ is any infinite sequence converging to x_0 (written $\lim_{n\to\infty} x_n = x_0$), then

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right) = f(x_0)$$

Definitions of Differentiable

Definition. [1.5] Suppose f is defined on (a, b) and $x_0 \in (a, b)$. Then the function f is differentiable at x_0 if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \text{ exists.}$$

When it exists, we define the limit to be the derivative of f at x_0 : $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$ $f'(x_0) \text{ is the slope of the tangent line to the graph of } f(x) \text{ at } x_0.$

Differentiability implies Continuous

Theorem. [1.6] If f is differentiable at x_0 , then f is continuous at x_0 .

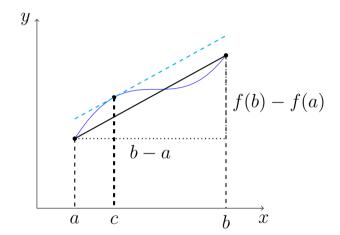
Rolle's Theorem

Theorem. [1.7] Suppose
$$f \in C[a, b]$$
 and f' exists on (a, b) .
If $f(a) = f(b) = 0$, then $\exists c \in (a, b)$ such that $f'(c) = 0$.

Mean Value Theorem

Theorem. [1.8] Suppose $f \in C[a, b]$ and f' exists on (a, b). It follows that $\exists c \in (a, b)$ such that

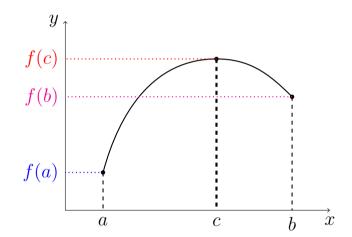
$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$



Extreme Value Theorem

Theorem. [1.9] Suppose $f \in C[a, b]$. Suppose the minimizer c_1 and maximizer c_2 over (a, b) exist, which means $f(c_1) \leq f(x) \leq f(c_2)$ ($\forall x \in [a, b]$).

If f' exists on (a, b), then c_1 and c_2 occur where f' = 0 or at the endpoints (a or b).



The Riemann integral

Definition. [1.10] The Riemann integral of the function f on the interval [a, b] is the following limit, provided it exists:

$$\int_{a}^{b} f(x) \, dx = \lim_{\max \Delta \boldsymbol{x_i} \to \boldsymbol{0}} \sum_{i=1}^{n} f(\boldsymbol{z_i}) \Delta \boldsymbol{x_i},$$

where $a = x_0 \leqslant x_1 \leqslant x_2 \leqslant \cdots \leqslant x_n = b$, $z_i \in [x_{i-1}, x_i]$, and $\Delta x_i = x_i - x_{i-1}$. Note this says that no matter the spacing, the limit is the same! So let's make it easier to analyze! Let's do even spacing. If the spacing is even, then

$$oldsymbol{x}_i = oldsymbol{a} + oldsymbol{i} \Delta oldsymbol{x}, where \ \Delta oldsymbol{x} = rac{oldsymbol{b} - oldsymbol{a}}{n} and$$

$$\int_a^b f(x) \ dx = \lim_{n \to \infty} \sum_{i=1}^n f(oldsymbol{z}_i) \Delta oldsymbol{x}$$

i=1

Weighted MVT for Integrals

Theorem. [1.11] If $f \in C[a, b]$, g is integrable on [a, b], and g does not change sign on [a, b], then there exists a number $c \in (a, b)$ with

$$\int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx.$$

When g(x) = 1, then this gives the average value over [a, b]:

$$\int_{a}^{b} f(x)dx = f(c) \int_{a}^{b} dx = f(c)(b-a).$$

It follows that the average value is

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

Generalized Rolle's Theorem

Theorem. [1.12] Let $f \in C[a, b]$ and $f \in C^n(a, b)$. If f vanishes at the n + 1 distinct pts x_0, \dots, x_n in [a, b], then there exists $c \in (a, b)$ such that $f^{(n)}(c) = 0$.

Intermediate Value Theorem

Theorem. [1.13] If $f \in C[a, b]$ and k is any number in between f(a) and f(b), then there exists $c \in (a, b)$ such that f(c) = k. In other words, if f(a) < f(b), then f(a) < k < f(b), then $\exists c \in [a, b]$ such that f(a) < f(c) < f(b).

Example: Show $f(x) = x^5 - 2x^3 + 3x^2 - 1 = 0$ has a root on [0, 1].

Note that f is continuous and f(0) = -1 and f(1) = 1 - 2 + 3 - 1 = 1.

Since -1 = f(0) < 0 < f(1) = 1, then $\exists c \in [0, 1]$ such that -1 = f(0) < f(c) < f(1) = 1.

Thus, f has a root on [0,1] (f(c) = 0).

So how about the <u>Generalized Mean Value Theorem</u>? That's also known as Taylor's Theorem!!!

Taylor's Theorem (Thm 1.14)

Theorem. Suppose $f \in C^n[a,b]$, $f^{(n+1)}$ exists on [a,b], and $x_0 \in [a,b]$. For every $x \in [a,b]$, there exists $\xi(x)$ between x_0 and x (meaning either $\xi(x) \in (x_0,x)$ or $\xi(x) \in (x,x_0)$) with

$$f(x)=P_n(x)+R_n(x), \,\, where$$

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \text{ and } R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{n+1}$$

- This theorem is **EXTREMELY IMPORTANT** for numerical analysis and is used MANY times in the development of procedures. You must have a good basic understanding of the idea.
- When n = 1, this simplifies to the Mean Value Theorem, so consider this an extension of that theorem. It truly is the "Generalized Mean Value Theorem" (similar to the Generalized Rolle's Theorem).
- Note that the remainder term $(R_n(x))$ is the first neglected term in the infinite series, but $f^{(n+1)}$ is evaluated at the sweet spot $\xi(x)$ which maintains equality!

- When $n \to \infty$, $P_n(x)$ converges to the Taylor Series for f(x). However, this requires $f \in C^{\infty}[a, b]$.
- Let $x_0 = 0$. We refer to these as "Maclaurin" series. (Although "Taylor's" is used just as much even when $x_0 = 0$)

• Two forms: (Call them "regular form" and "h-form")

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 + \cdots$$
(1)

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + \frac{f'''(x_0)}{3!}h^3 + \cdots$$

• To switch between the two, just remember

$$x = x_0 + h$$

• It's more common for the subscript of x_0 to be dropped in the "*h*-form":

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f'''(x)}{3!}h^3 + \cdots$$
 (2)

Example:

Suppose $f(x) = e^x$, (so $f^{(k)}(x) = e^x$). Let $x_0 = 0$. Taylor's theorem with n = 2 is thus:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + f''(\xi)(x - x_0)^2$$

$$f(x) = f(0) + f'(0)(x - 0) + f''(\xi)\frac{(x - 0)^2}{2!}$$

$$f(x) = 1 + x + f''(\xi)\frac{x^2}{2!}$$

Estimate the error in an interval

Suppose we want to estimate the error over [-1, 1]. By Def, the error is

$$f(x) - P_1(x) = R_1(x) = \frac{f''(\xi)x^2}{2} = \frac{e^{\xi}x^2}{2}$$

Next, we use the Extreme Value Theorem to find an upper bound. $f(x) = e^x$ has no turning points in [-1, 1], and since $-1 < \xi(x) < 1$, then $e^{-1} < e^{\xi} < e^1$. So an upper bound on the error is $ex^2/2$. Thus, for $x \in [-1, 1]$,

$$e^x \approx 1 + x + kx^2$$
, where $k = e/2$, and x is near zero.

"Big-O" Notation

Definition. $a_n = \mathcal{O}(b_n)$ (Read as: a_n is big O of b_n) if the ratio $|a_n/b_n|$ is **bounded** for large n; in detail, if there exists a number K and an integer N(K) such that for all n > N(K), it follows that

 $|a_n| < K|b_n|.$

An equivalent definition is that $f(x) = \mathcal{O}(g(x))$ as $x \to 0$ means

 $|f(x)| \leqslant c|g(x)|,$

whenever x is sufficiently small. Note that in either case, we talk about terms where $n \to \infty$ or $x \to 0$. Otherwise it doesn't make sense.

For example, the following are equivalent

$$e^{x} = 1 + x + cx^{2}$$
 $e^{x} = 1 + x + \mathcal{O}(x^{2})$

This allows us to work with series and only use a finite number of terms to do our work. We keep only the most significant parts and gather all the other parts into the Big-O term. We also have another notation, called "Little-o" notation, which is defined in a similar manner:

"Little-O" Notation

Definition. $a_n = \mathcal{O}(b_n)$ (Read as: a_n is little o of b_n) if the ratio $|a_n/b_n|$ converges to 0; in detail, if, for any $\varepsilon > 0$, there exists an integer $N(\varepsilon)$ such that if n exceeds $N(\varepsilon)$, then

 $|a_n| < \varepsilon |b_n|.$

An equivalent definition is that f(x) = O(g(x)) as $x \to 0$ means

$$\frac{|f(x)|}{|g(x)|} \to 0$$

as $x \to 0$. Note that in either case, we talk about terms where $n \to \infty$ or $x \to 0$.

It is difficult to tell the difference between writing $\mathcal{O}(x)$ and writing $\mathcal{O}(x)$ on paper, so I will try and emphasize the size of the o when writing.

Note that "Big-O" contains MORE INFORMATION about the relation between a_n and b_n , so is preferred where possible.

Additional Assignments for Section 1.1-1.3

- There is an additional homework assignment on Canvas entitled "Taylor Series / Big-O Assignment" with a paper for you to read called "Taylor Series, Taylor Polynomials, and Big-O Notation".
- Read through the whole document and answer the questions in the Exercises. Scan your solutions to the exercises and submit on Canvas.
- There are additional examples in the paper to help you understand Big-O, little-o notation. Be prepared to ask questions in class.
- If you work through that document, and ask questions in class for it, you will have a good understanding of the notation.