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1 Topics

1.1 Why Review Calculus?

• What do we need Calculus concepts for?

• They help us to develop ways to manipulate and solve problems.

• Either they are unsolvable analytically or we want an easier way (e.g. we’re lazy).

• The calculus will help us to make sure that the algorithms make sense.

1.2 Important Theorems and Ideas in Calculus:

• Limits, Continuity, Differentiability, Convergence

• Rolle’s Theorem

• The Mean Value Theorm (MVT) (or Weighted MVT for Integrals).

• Extreme Value Theorem (EVT)

• Intermediate Value Theorem (IVT)

• Taylor’s Polynomials
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Definition of Limit

Definition. [1.1] Let f(x) be a function defined on a set X of real numbers. f is
said to have the limit L at x0, written lim

x→x0

f(x) = L if:

∀ε > 0,∃ δ(ε) such that |f(x)− L| < ε whenever x ∈ X and 0 < |x− x0| < δ(ε)

Definition of Continuous

Definition. [1.2] Let f be a function defined on a set X and x0 ∈ X.

If lim
x→x0

f(x) = f(x0), then f is continuous at x0.

Notation of Sets of functions

Definition. The “C” indicates continuous function, and the power indicates
derivatives. So

• C(X) is the set of all continuous functions on X.

• Cn(X) is the set of all functions having n continuous derivatives on X.

• C∞(X) is the set of all functions having contin. derivatives of all orders on X.
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Definition of Limit of a sequence

Definition. [1.3] Let {xn} be an infinite sequence of numbers. The sequence is
said to converge to a limit x, if:

∀ε > 0,∃ a positive integer N(ε) such that for all n > N(ε) implies |xn − x| < ε

and we write “ lim
n→∞

xn = x” or “xn → x as n → ∞.”

Definition of Continuous of a sequence

Definition. [1.4] Let f be a function defined on a set X of real numbers and let
x0 ∈ X. The following are equivilent:

• f is continuous at x0.
• If {xn} is any infinite sequence converging to x0 (written lim

n→∞
xn = x0), then

lim
n→∞

f(xn) = f
(
lim
n→∞

xn

)
= f(x0)
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Definitions of Differentiable

Definition. [1.5] Suppose f is defined on (a, b) and x0 ∈ (a, b). Then the function
f is differentiable at x0 if

lim
x→x0

f(x)− f(x0)

x− x0
exists.

When it exists, we define the limit to be the derivative of f at x0:

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
.

f ′(x0) is the slope of the tangent line to the graph of f(x) at x0.

Differentiability implies Continuous

Theorem. [1.6] If f is differentiable at x0, then f is continuous at x0.

Rolle’s Theorem

Theorem. [1.7] Suppose f ∈ C[a, b] and f ′ exists on (a, b).
If f(a) = f(b) = 0, then ∃ c ∈ (a, b) such that f ′(c) = 0.
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Mean Value Theorem

Theorem. [1.8] Suppose f ∈ C[a, b] and f ′ exists on (a, b). It follows that
∃ c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

y

xca b

f(b)− f(a)

b− a
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Extreme Value Theorem

Theorem. [1.9] Suppose f ∈ C[a, b]. Suppose the mimimizer c1 and maximizer c2
over (a, b) exist, which means f(c1) ⩽ f(x) ⩽ f(c2) (∀x ∈ [a, b]).

If f ′ exists on (a, b), then c1 and c2 occur where f ′ = 0 or at the endpoints (a or b).

y

xca b

f(b)

f(c)

f(a)
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The Riemann integral

Definition. [1.10] The Riemann integral of the function f on the interval [a, b] is
the following limit, provided it exists:∫ b

a

f(x) dx = lim
max∆xi→0

n∑
i=1

f(zi)∆xi,

where a = x0 ⩽ x1 ⩽ x2 ⩽ · · · ⩽ xn = b, zi ∈ [xi−1, xi], and ∆xi = xi − xi−1.
Note this says that

:::
no

:::::::::
matter

:::::
the

::::::::::
spacing, the limit is the same! So let’s make it

easier to analyze! Let’s do even spacing. If the spacing is even, then

xi = a+ i∆x, where ∆x =
b − a

n
and∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(zi)∆x
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Weighted MVT for Integrals

Theorem. [1.11] If f ∈ C[a, b], g is integrable on [a, b], and g does not change
sign on [a, b], then there exists a number c ∈ (a, b) with∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx.

When g(x) = 1, then this gives the average value over [a, b]:∫ b

a

f(x)dx = f(c)

∫ b

a

dx = f(c)(b− a).

It follows that the average value is

f(c) =
1

b− a

∫ b

a

f(x)dx.

Generalized Rolle’s Theorem

Theorem. [1.12] Let f ∈ C[a, b] and f ∈ Cn(a, b). If f vanishes at the n+ 1
distinct pts x0, · · · , xn in [a, b], then there exists c ∈ (a, b) such that f (n)(c) = 0.
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Intermediate Value Theorem

Theorem. [1.13] If f ∈ C[a, b] and k is any number in between f(a) and f(b),
then there exists c ∈ (a, b) such that f(c) = k.

In other words, if f(a) < f(b), then

f(a) < k < f(b), then ∃ c ∈ [a, b] such that

f(a) < f(c) < f(b).

Example: Show f(x) = x5 − 2x3 + 3x2 − 1 = 0 has a root on [0, 1].

Note that f is continous and f(0) = −1 and f(1) = 1− 2 + 3− 1 = 1.

Since −1 = f(0) < 0 < f(1) = 1, then ∃ c ∈ [0, 1] such that

−1 = f(0) < f(c) < f(1) = 1.

Thus, f has a root on [0, 1] ( f(c) = 0 ).

So how about the
::::::::::::::
Generalized

::::::::
Mean

::::::::
Value

:::::::::::::
Theorem? That’s also known as Taylor’s

Theorem!!!
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Taylor’s Theorem (Thm 1.14)

Theorem. Suppose f ∈ Cn[a, b], f (n+1) exists on [a, b], and x0 ∈ [a, b]. For every
x ∈ [a, b], there exists ξ(x) between x0 and x (meaning either ξ(x) ∈ (x0, x) or
ξ(x) ∈ (x, x0)) with

f(x) = Pn(x)+Rn(x), where

Pn(x) =

n∑∑∑
k=0

f (k)(x0)

k!
(x− x0)

k and Rn(x) =
f (n+1)(ξ(x))

(n + 1)!
(x− x0)

n+1.

• This theorem is EXTREMELY IMPORTANT for numerical
analysis and is used MANY times in the development of procedures. You must
have a good basic understanding of the idea.

• When n = 1, this simplifies to the Mean Value Theorem, so consider this an
extension of that theorem. It truly is the “Generalized Mean Value Theorem”
(similar to the Generalized Rolle’s Theorem).

• Note that the remainder term (Rn(x)) is the first neglected term in the infinite
series, but f (n+1) is evaluated at the sweet spot ξ(x) which maintains equality!
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• When n → ∞, Pn(x) converges to the Taylor Series for f(x). However, this
requires f ∈ C∞[a, b].

• Let x0 = 0. We refer to these as “Maclaurin” series. (Although “Taylor’s” is used
just as much even when x0 = 0)

• Two forms: (Call them “regular form” and “h-form”)

f(x)= f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2 +
f ′′′(x0)

3!
(x− x0)

3 + · · ·
(1)

f(x0 + h) = f(x0) + f ′(x0)h+
f ′′(x0)

2
h2 +

f ′′′(x0)

3!
h3 + · · ·

• To switch between the two, just remember

x = x0 + h

• It’s more common for the subscript of x0 to be dropped in the “h-form”:

f(x+ h)= f(x) + f ′(x)h+
f ′′(x)

2
h2 +

f ′′′(x)

3!
h3 + · · · (2)
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Example:

Suppose f(x) = ex, (so f (k)(x) = ex). Let x0 = 0.
Taylor’s theorem with n = 2 is thus:

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(ξ)(x− x0)
2

f(x) = f(0) + f ′(0)(x− 0) + f ′′(ξ)
(x− 0)2

2!

f(x) = 1 + x+ f ′′(ξ)
x2

2!

Estimate the error in an interval
Suppose we want to estimate the error over [−1, 1]. By Def, the error is

f(x)− P1(x) = R1(x) =
f ′′(ξ)x2

2
=

eξx2

2

Next, we use the Extreme Value Theorem to find an upper bound. f(x) = ex has no
turning points in [−1, 1], and since −1 < ξ(x) < 1, then e−1 < eξ < e1. So an upper
bound on the error is ex2/2. Thus, for x ∈ [−1, 1],

ex ≈ 1 + x+ kx2, where k = e/2, and x is near zero.
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“Big-O” Notation

Definition. an = O(bn) (Read as: an is big O of bn) if the ratio |an/bn| is
bounded for large n; in detail, if there exists a number K and an integer N(K)
such that for all n > N(K), it follows that

|an| < K|bn|.

An equivalent definition is that f(x) = O(g(x)) as x → 0 means

|f(x)| ⩽ c|g(x)|,

whenever x is sufficiently small. Note that in either case, we talk about terms
where n → ∞ or x → 0. Otherwise it doesn’t make sense.

For example, the following are equivalent

ex = 1 + x+ cx2 ex = 1 + x+O
(
x2
)

This allows us to work with series and only use a finite number of terms to do our
work. We keep only the most significant parts and gather all the other parts into the
Big-O term. We also have another notation, called “Little-o” notation, which is defined
in a similar manner:
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“Little-O” Notation

Definition. an = O(bn) (Read as: an is little o of bn) if the ratio |an/bn| converges
to 0; in detail, if, for any ε > 0, there exists an integer N(ε) such that if n exceeds
N(ε), then

|an| < ε|bn|.
An equivalent definition is that f(x) = O(g(x)) as x → 0 means

|f(x)|
|g(x)|

→ 0

as x → 0. Note that in either case, we talk about terms where n → ∞ or x → 0.

It is difficult to tell the difference between writing O(x) and writing O(x) on paper, so I
will try and emphasize the size of the o when writing.

Note that “Big-O” contains MORE INFORMATION about the relation between an
and bn, so is preferred where possible.
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Additional Assignments for Section 1.1-1.3

• There is an additional homework assignment on Canvas entitled “Taylor Series /
Big-O Assignment” with a paper for you to read called “Taylor Series, Taylor
Polynomials, and Big-O Notation”.

• Read through the whole document and answer the questions in the Exercises. Scan
your solutions to the exercises and submit on Canvas.

• There are additional examples in the paper to help you understand Big-O, little-o
notation. Be prepared to ask questions in class.

• If you work through that document, and ask questions in class for it, you will have
a good understanding of the notation.
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