
Math 311
Numerical Methods

1.2: Computer Arithmetic
Floating Point Arithmetic, Relative and Absolute Errors,Truncation and

Rounding Errors.

S. K. Hyde
Burden and Faires, any ed.

Winter 2025

Introduction

• It is impossible to represent all real numbers on a computer. Why?

• Easy answer - a computer has finite storage - some numbers cannot be stored.

• For example, π is irrational, so it contains infinte, non repeating digits.

• Others are not terminating rational numbers. They have infinite digits.

• Computers use base 2. Base 10 is what we all use.

• Whether or not a fraction has a terminating expansion depends on the base:

– In base 10, 1
10 is terminating (0.1), but 1

3 is not (0.3).

– In base 2, 3
16 is terminating (0.00112), but

1
10 is not (0.000112).

• This means that some numbers which appear to be short and exact in decimal, are
no longer that way in binary. This leads to inaccuracies.

• We also need to be able to represent large numbers.

• So, we need to invent a way to describe a lot of real numbers, but with just a finite
number of digits. - Enter Floating Point Numbers.

Math 311–Sec1.2: Computer Arithmetic (Floating Point Arithmetic, Relative and Absolute
Errors,Truncation and Rounding Errors.)

GoBack 2

Floating Point Standards:

• There is not a unique way to store numbers in a computer.

• Each way is called a standard. Some other examples:

– IBM 3000 & 4300 Series computer standard (book examples use this).

– IEEE Standard 754-1985 single precision (32 bit numbers)

– IEEE Standard 754 double precision numbers (64 bit)

– BigDecimal (arbitary precision) - used with monetary calculations

• How the numbers are encoded depends on the standard used.

• Our goal is to get a good range of real numbers using finite number of digits.

• Single 32-bit numbers - there are 4,294,967,296 number of choices, so we need to
assign them out carefully.

• We can represent numbers as small as ≈ 10−45 and as large as ≈ 3.4× 1038 - pretty
wide for only 4 billion numbers to choose from!

• How? Think Scientific Notation.

• Let’s illustrate how using base 10 first.

• To get a bigger range of values, split every number up into three things:

sign×mantissa× baseexponent.

Math 311–Sec1.2: Computer Arithmetic (Floating Point Arithmetic, Relative and Absolute
Errors,Truncation and Rounding Errors.)

GoBack 3

Base 10 Example:

• Suppose the number is −47.7531 in base 10.

• The sign is “−” (store 0 for positive number and 1 for negative number.)

• The mantissa (or fraction or characteristic) is .477531 (with decimal point)

• The exponent is 2 with a base of 10 =⇒ (102). This is how many decimals places to
move the mantissa to the number being represented)

• So the number is −.477531× 102 and is stored as a sequence of digits.

• For example, suppose a 1 digit sign, a 4 digit exponent, and a 6 digit mantissa.

• Then -47.7531 would be stored as [10002477531] (it looks like about 10 billion as a
number, but it is encoded as [1|0002|477531]!)

• A computer does it similarly, but with a limited number of bits for each number.

• They typically only store bits (0’s or 1’s) and the base is usually 2.

• Originally, every computer system had a different definition.

• It got really problematic when moving programs between systems.

• A working group of Intel, Hewlett Packard, and DEC, the main microchip
producers came together and produced the IEEE 754 Standard for everyone! It is
an example of cooperation for the good of everyone!! Yay for Humans!

Math 311–Sec1.2: Computer Arithmetic (Floating Point Arithmetic, Relative and Absolute
Errors,Truncation and Rounding Errors.)

GoBack 4

• For the floating point definitions mentioned above, their definitions vary.

– Single precision IBM 3000 & 4300 Series computers used 32 bits. use

D
EF 1 bit sign, a 7 bit exponent (base of 16), and a 24 bit mantissa.

– IEEE Standard 754-1985 (now at 754-2019) (single precision (32 bit numbers))

D
EF 1 bit sign, an 8 bit exponent (base of 2), and a 24 bit mantissa (23 explicit).

– IEEE Standard 754 double precision numbers (64 bits)

D
EF 1 bit sign, an 11 bit exponent (base of 2), and a 53 bit mantissa (52 explicit)

• How it encodes numbers depends on the standard used.

• Now to describe the Base-2 analogue of the example on previous slide:

Base-2 Analogue:

Definition. Any non-zero real number, x, can be written as

x = ±q × 2m, where
1

2
< q < 1.

Then q has a possible infinite binary representation as:

q = .1d1d2d3..., where “.” is called the “binary point”

Math 311–Sec1.2: Computer Arithmetic (Floating Point Arithmetic, Relative and Absolute
Errors,Truncation and Rounding Errors.)

GoBack 5

Examples:

• Suppose x = 1
16 . Then we can write it as 0.00012 = .1× 2−3

– Note that this number is a good finite length case and is exact in binary!!

• Not all numbers can be represented as a finite length binary number.

• For example, 1
10 can be written in base 10 with finite number of digits, but it is

infinite in binary.

• It is actually repeating binary 0.0001100110011001100110011001100110011

• We can only use a finite number of bits (52 in double precision).

• That means that instead of storing “0.1”, the calculator stores the closest binary
equivalent: 0.0001100110011001100110011001100110011001100110011001100

• If you use R, it converts the base 10 number 0.1 into: 0.1000000000000000055511

• Because we can’t store infinite digits, we are forced to truncate the number, which
can cause a loss of precision when adding and subtracting a lot of them.

• Let move on and introduce the IEEE 754-1985 standard.

Math 311–Sec1.2: Computer Arithmetic (Floating Point Arithmetic, Relative and Absolute
Errors,Truncation and Rounding Errors.)

GoBack 6

IEEE 754-1985 single precision (32 bits) numbers

Definition. They are saved as a sequence of 32 bits, like below

s (base 2 expon.) f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

The floating point number it represents is

x = (−1)s × 1.f1f2 · · · f23 × 2e−b,

where b = 127 and is called the bias. The exponent e uses 8 bits and is
0 ⩽ e ⩽ 127. The bias splits the exponents in half, so the range of values of
exponents is between 2−127 ⩽ 2e−b ⩽ 2128. The mantissa is assumed to start with 1
(but is not stored).

• A mantissa of 1 (stored as 0) and exponent of 0 gives the range of
2−127 ⩽ 2e−127 ⩽ 2128 for the exponent. So the smallest number is

1.× 2−127 ≈ 5.9× 10−39.

• Similarly, the largest number is

1.11111111111111111111111× 2128 ≈ 2× 2128 = 2129 ≈ 6.8× 1038

Math 311–Sec1.2: Computer Arithmetic (Floating Point Arithmetic, Relative and Absolute
Errors,Truncation and Rounding Errors.)

GoBack 7

IBM 3000 & 4300 series

Definition. The book uses the floating point standard of the IBM 3000 and 4300
series computer. For this, it uses:

s (base 16 expon.) f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

The floating point number it represents is

x = (−1)s × 0.f1f2 · · · f24 × 16e−b,

where the bias is b = 64. The exponent e uses 7 bits and is 0 ⩽ e ⩽ 127. The bias
gives the range of 16−64 ⩽ 16e−b ⩽ 1663. The mantissa must have at least one of
f1, f2, f3, and f4) be a one.

• A mantissa of 0001 followed by 19 zeros, an exponent of 0 gives the range of
16−65 < 16e−b < 1663 for the exponents. So an estimate of the smallest number is

1.× 16−65 ≈ 5.4× 10−79.

• Similarly, the largest is

0.11111111111111111111111× 1663 ≈ ×1663 ≈ 7.237× 1075

Math 311–Sec1.2: Computer Arithmetic (Floating Point Arithmetic, Relative and Absolute
Errors,Truncation and Rounding Errors.)

GoBack 8

• Not all rational numbers are possible! Suppose that f−, f , f+ represents three
consecutive machine representable (floating point) numbers.

f− f f+

r1 r2

Then the number f represents ALL real numbers between r1 and r2 (the
midpoints). The other numbers besides f−, f , f+ are not machine representable!

• For example, suppose we are analyzing the IBM 3000 floating point (where I
modified the bit number to be the placevalue instead.

0 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

– The sign bit is zero, so it’s positive.

– The exponent is 26 + 21 = 64 + 2 = 66. With the bias we have 1666−64 = 162.

– The mantissa part is
179
256=

179
162︷ ︸︸ ︷(1

2

)1
+
(1
2

)3
+
(1
2

)4
+
(1
2

)7
+
(1
2

)8
+
(1
2

)14
=

179

256
+
(1
2

)14
– So the real value of this floating point number is

= 162 ×
[
179

162
+
(1
2

)14]
= 179 +

1024

216
= 179.015625

Math 311–Sec1.2: Computer Arithmetic (Floating Point Arithmetic, Relative and Absolute
Errors,Truncation and Rounding Errors.)

GoBack 9

• The next smallest machine representable number is

0 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

with the value of 162
[
179
256 +

24∑
i=15

(
1
2

)i]
. The sum part is a finite geometric sum.

= 179 + 162
[(1

2

)14
−
(1
2

)24]
= 179 +

1

64
−

(1
2

)16
= 179 +

1023

216

• Similarly, the next largest machine representable number is

0 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

with the value of

= 179 + 162
[(1

2

)14
+
(1
2

)24]
= 179 +

1

64
+
(1
2

)16
= 179 +

1025

216

• Compare to the real floating point number:

= 179 + 162
[(1

2

)14
+
(1
2

)24]
= 179 +

1

64
= 179 +

1024

216

Math 311–Sec1.2: Computer Arithmetic (Floating Point Arithmetic, Relative and Absolute
Errors,Truncation and Rounding Errors.)

GoBack 10

• Place these (and their midpoints) on a number line:

179 +
2046

217 179 +
2048

217
179 +

2050

217

179 +
2047

216
179 +

2049

216

• The decimal value of these (and with the midpoints on the right):

179.0156097412109375 179.015625 179.0156402587890625

179.01561737060546875 179.01563262939453125

• Implicit in this is that the the midpoints ARE NOT machine representable)! This

means that the number 179.015625 represents ALL real numbers in between:

[179.01561737060546875 , 179.01563262939453125]

• Remember that rationals are infinite but countable! The reals are uncountable,
which means we are leaving out A LOT of real numbers (an infinite amount). This
feels like we are bound to make mistakes!

Math 311–Sec1.2: Computer Arithmetic (Floating Point Arithmetic, Relative and Absolute
Errors,Truncation and Rounding Errors.)

GoBack 11

Example:

• Today, the standard is IEEE 754-1985 single floating point numbers. Let’s take the
exact sequence of 32 bits and interpret it.

0 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

• In this case, the exponent has 8 bits, and each mantissa starts with 1. The sign is
positive, and e = 1+ 22 + 27 = 133 with a bias of 127. So the value of the exponent
is 2133−127 = 26 = 64.

• The mantissa is
1 +

(1
2

)2
+
(1
2

)3
+
(1
2

)6
+
(1
2

)7
+
(1
2

)13
=

11457

213

• Thus, the actual number is

1× 26 × 11457

213
=

11457

27
= 89.5078125

Math 311–Sec1.2: Computer Arithmetic (Floating Point Arithmetic, Relative and Absolute
Errors,Truncation and Rounding Errors.)

GoBack 12

Absolute Error and Relative Error

Definition.

• If p∗ is an approximation to p, then the absolute error is defined as

|p− p∗|.

• If p∗ is an approximation to p, then the relative error is defined as

|p− p∗|
p

, provided p ̸= 0

Truncation and Rounding Errors

Definition. Because we have only finite digits to work with, then we either should
“chop” (or truncate) the part past the last bit, or we can “round” the number.

Math 311–Sec1.2: Computer Arithmetic (Floating Point Arithmetic, Relative and Absolute
Errors,Truncation and Rounding Errors.)

GoBack 13

Floating Point Errors

Theorem. For floating point numbers, the relative error can be controlled. In
particular,

|fl(x)− x|
|x|

⩽ εM .

• If x ̸= 0, fl(x) = x(1 + r), where |r| ⩽ εM .

• We can get the relative accuracy of the operations (+,−,×, /) to be just as
accurate as above if we use “extended precision” for operations, but not for
storage. The error only results from storage. If x⊙ y represents a perfect
operation from (+,−,×, /), then

|fl(x⊙ y)− (x⊙ y)|
|x⊙ y|

⩽ εM

Math 311–Sec1.2: Computer Arithmetic (Floating Point Arithmetic, Relative and Absolute
Errors,Truncation and Rounding Errors.)

GoBack 14

Practical Implications

• Minimize the number of subtractions of nearly equal numbers in your calculations
as you can lose a lot of digits of accuracy.

• Polynomials should always be expressed in nested form before performing an
evaluation. This form minimizes the number of required arithmetic calculations.

• For the polynomial
f(x) = ax3 + bx2 + cx+ d

- Use f(x) = ((a*x + b)*x + c)*x + d (3 multiplies and 3 adds)
instead of f(x) = a*x^3 + b*x^2 + c*x + d (6 multiplies and 3 adds)

- or you may prefer it backwards:
Use f(x) = d + x*(c + x*(b + a*x))

instead of f(x) = d + c*x + b*x^2 + a*x^3

• The method of function evaluation is also known as “Horner’s Method” (or
“synthetic division”).

For example, when f(x) = x4 + 2x2 − x+ 1, then f(2) is

2 1 0 2 −1 1
2 4 12 22

1 2 6 11 23

=⇒ f(2) = 23

Math 311–Sec1.2: Computer Arithmetic (Floating Point Arithmetic, Relative and Absolute
Errors,Truncation and Rounding Errors.)

GoBack 15

Math 311–Sec1.2: Computer Arithmetic (Floating Point Arithmetic, Relative and Absolute
Errors,Truncation and Rounding Errors.)

GoBack 16

