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Introduction

Algorithms

Definition.
o An algorithm is a procedure that describes, in an unambiguous manner, a
finite sequence of steps to be performedin a specific order.
e The object is to implement a numerical procedure to solve a problem or
approximate a solution to the problem.

Definition.
e Pseudocode describes the steps of an algorithm.
e Uses basic programming control flow mized with english
e Note that the code needs to be finite, otherwise the program will never finish.
e We are not that good yet to complete a infinite task in a finite amount of time.
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Basic Program Control Flow

Definition. You can split decisions and steps using the following basic ideas:

e Deciston making
e Definite Looping
e Indefinite Looping

0.1 Decision Making

Part of the flow of an algorithm (or program) is making decisions and taking action.
The main construct for this is the “If-Then-Else” construct.

e If [a condition is true]; then [take an action]; endif
e If [a condition is true]; then [take an action]; else (take a different action when
false); endif

0.2 Definite Looping

Definite Looping is the process of repeating an action a specific number of times.
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e Construct is “For [var] = 1, 2, 3, ..., n”. This performs the action the specified
number of times (in this case n times).
0.3 Indefinite Looping

Indefinite Looping is the process of repeating an action an indefinite number of times
until a condition is met. This is usually combined with a condition to check that will
stop the loop if met (or continue a loop if the condition is met (either way).

e Construct is “While [a condition is true| do [these steps]”
e This will continue a loop as long as the beginning condition is met.

e Another construct is “Repeat [these steps| until [a condition is true]”. This is
similar to the above. Only difference is that a “Repeat” statement will always be
executed once (and the check is at the end instead of the beginning).
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e In Numerical Analysis, power series are used throughout the development of many
numerical procedures.

e Examples of power series include Taylor Series and Maclaurin Series.
e Maclaurin Series are defined as Taylor Series centered about 0.

e Loosely, we will call them all “Taylor Series”

1 Taylor Series

Definition. Sets of Functions.
o C(X) - set of all continuous functions on the set X.

o C(X
o C"(X
o C°(X) - set of all functions having continuous derivatives of all orders on X.

- set of all functions having a continuous derivative on the set X.

— —

- set of all functions having n continuous derivatives on the set X.
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Taylor’s Theorem (Thm 1.14)

Theorem. Suppose f € C™[a,b], f™V) exists on [a,b], and z¢ € [a,b]. For every
x € [a,b] there exists £(x) between xy and x with

f(x) = P.(z) + R, (z), where

(n+1) T
f (é( )) (SL‘ o [I?())n+1 (1)

(2 = a0)" Fn(@) = =020,

e Note that P,(x) is called the nth Taylor polynomial for f about x

e R,(x) is called the remainder term (or trunctation error) associated with
P,(z).

e The limit (as n — oo) of P,(z) is called the Taylor series for f about x.

o If xo = 0, then the Taylor polynomial is called a Maclaurin polynomial and the
Taylor Series is called a Maclaurin Series. (In practice, both are loosely called the
Taylor Series or Power Series)
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Not all functions have a power series representation (or Taylor Series representation).
For example, the function

f(a) = {exp (—#), %f x#0
0, iftz=0
e You can check and you will find out that this function is in C*°(R).
e However, every derivative of f(z) is zero at the origin!
e This means that f™(0) = 0 for all n > 0.

e Thus, if we tried to form the Taylor Series of it at 0, we would get f(x) = 0, which
it is not!

When a function at a point can be expressed as a power series, then we say the
function is analytic
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2 Big-O Notation

Big-O Notation

Definition.

a, = O(b,) (Read: ay is big O of by,) if the ratio 1 s bounded for large n. (2)

by
Little-o Notation
Definition.

a

a, = 0(b,) (Read: a,, is little o of by,) if the ratio converges to zero.  (3)

n

e The idea behind these definitions is to compare the approximate size or order of
magnitude of {a,} to that of {b,}.

e In most applications, {a,} is the sequence of interest and {b,} is a comparison
sequence.
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Definition. Big-O Notation for functions
if for any sequence {x,} such that x,, — L, we have
f(z) = O(g(2)) f(z,) = O(g(z,)) in the sense of the definition of
55 8 = L Big-O above.

Definition. Little-o Notation for functions

f(x) = O(g(2))

as r — L

if for any sequence {x,} such that x,, — L, we have
f(z,) = o(g(xy,)) in the sense of the definition of
Little-O abowve.

e Think of Big-O notation as meaning that f(x) and g(x) are the “same size”.

e In practice, we can use the following proposition (which is equivilent for
applications we are interested in).
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Corollary. If
/(=)

9(@)
e Note that when k =0, then f(x) = o(g(x)). (little-0)

lim =k < 400, then f(x) = O(g(x)) (read as “f is big-O of g”7).  (4)

z—L

e However, we are most interested when k # 0, because that conveys more
information about the relation between f(x) and g(x).

e When it is clear, the condition “as x — L” is not always explicity stated.

e The value of L can be any number (or also +00).

2.1 Combinations of Big-O terms
e Sometimes we want to combine terms that are either Big-O or little-o together.

e Here are some rules that can easily be proven by using the definitions above.
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Combinations of Big-O (or little-o) terms.

Definition.
e O(ca,) =0(a,),ce R,c#0 e O(o(ay)) = o(ay)
* an = O(an) e 0(0(a,)) = o(ay)
Vea=ol) = Bt =0  0(O(an) = o(a,)
) Z:oz(l) (zl)o(a:n) = * Olan) + O(bn) = O(max(an|, b))
o 4,0(1) = O(ay) e 0(ay) + 0(b,) = o(max(|asl, bs]))
o O(a,) O(by) = O(anby) o O(an) +0(by) =
o O(ay) 0(by) = 0(anby) {O(an) if by = 0(ax) or by = O(an)
o 0(ay) 0(by) = 0(anby) O(by) , if an = O(by)
e 0(a,)o(b,) = o(a,by,) o(bn) , if a, = o(by)
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2.2 Big-O Examples
What above the statement 5 = O(1)7 Is it true that 5 is big-O of 17 By the corollary
above, yes it is since lim

x—L
works for any value of L.

5
—‘ = 5 < 00. Note that in this case, L doesn’t matter as it

2
o 312 = (’)(332)? = lim |—-| = 3 < o0, so, yes, 3z? is big-O of 22 (as z — 0).
r—L | X
3sin(x)

e sinz = O(1)? = lim = |sin L| < oc.

z—L

— Note that for all L, |sin(L)| = K < oo, so sinz = O(1).
— Note also that if L = 0, then it follows that sinz = o(1).

: . [sInx| LR, |COSX N
e sinz = O(z)? = lim =" lim ‘ =1 < 00, so, yes, sinx is big-O of x
x—0 Z z—0 1
(as z — 0).
_ . |sinz| 1R .. |cosz ) ) )
e sinz # O(xQ)? — lim =" lim ‘ = 00, 50, NO, sin z is not big-O of z?
0| 22 z—=0| 2x

(as z — 0).
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sinx — x
2

e siny —x = (’)(IZ)? — lim
x—0 xXT 2x

so, yes, sinz is little-o of z%. Note that it is ALSO O(z?) at the same time.
o Simplify 322 + (9(332) + O(:U3)
— We already know that 32% + O(2?) = O(:L‘Q).

— Next, O(2?) + O(2*) = O(a? + [2*]) = O | 2* (1 + |2]) | = O(ca?) = O(a?).

c
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2.3 Examples
e Big-O is used in scenarios where n — oo or z — 0.
e The rules in the definition above help with Big-O manipulation.
e Think of Big-O as combining all terms of a certain size or smaller.

e Note, that, as £ — 0, 27 is LARGER than z°, 2!, etc., whereas, when n — oo,
then n” is bigger than n?.

e Computer scientists are interested in analyzing the complexity of algorithms.

e For example, Bubble Sort is (’)(n2) and Merge Sort is O(nlogn). In this case, we
can see that Merge Sort is a quicker algorithm.

Here are some examples using some of the properties above.

r+ O(x) = O(x) xO(z) = (9(:132)
O(2?) + O(a") = O(2?) O(2*) O(2°) = O(2)
0(172%) = 0(a%) o) +0(n*2) = 0(n™)
%(9(1) =0(n™") 1,000,000 - O(nInn) = O(nlnn)
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One very important mistake not to make when combining Big-O terms:
C’)(x3) — (’)(a:?’) # 0 (Not necessarily - it might be zero)

e The reason for that is that we don’t know the constant factor for the two terms —
they may or may not cancel each other out.

e This is a common mistake when first using the notation.

e A good way to not make the mistake is to assume that every Big-O term is positive
and never negative.

e So, for example,

—50(?) = 0(s?) # ~O(?).
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Taylor’s Theorem (Using Big-O) (Thm 1.14)

Theorem.
Suppose f € C"a,b] and xy € [a,b]. The Taylor expansion can be written as

") (g
f(z) = Py(z) + O((x — 29)"™") , where P,(z) = Z / k(' )(x — z0)"
k=0 '

Big-O notation becomes useful when we work with series For example,

sinx—iﬂ—x—x—3+x_5_x_7+x_9+...
_k:0(2k+1)!_ 315 79l
2 x4 0
smx:x—g—l—g—ﬁ—l—()(:ﬁ)or
3 2P .
=$—§+§+O(x)or
3 .
—x—a—i—(’)(x)or
:93—|—(’)(9:3)0r
= O(x) or O(1)
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e What Big-O allows you to do is keep the parts that are important (large) and toss
out tiny things not needed for a calculation.

2.4 Example 2

e For example, suppose you are interested in the power series for sin z cos x.

e One way to figure that out is to multiply the two series together:

o0 IQk
| 15 e

23 +x5 x7+:1:9 L1 N ) 72 +334 26 +x8 210 .\
S AT A AT A ST I S H
3t 5 79l 11l 20 41 6l 8 10!

e This is an infinite multiplication! Very complicated!

[ 2%k+1

: T
sinx cosx = E
o 2k’-|—

e However, suppose we are interested only in the accuracy to (’)(xg).

e Then we can reduce the number of multiplications needed by keeping only the
terms that we need.

e You do every possible multiplication of terms, but you drop any that have z? or

higher powers.
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e So the problem changes to a simpler one. Think of all the ways to combine a term
on the left with a term on the right.

i e T L 9 x2 gt S 3
sinxcosx = [x_§+§_ﬁ+0(x )} [1—54—1—5—%0(1’ )}
1 1 1
= —5563 +Ex5 —ax7 +(9(569)
1 3 1 5 i 7 9
L 5 I 9
1
—ﬁf -I—(’)(xg)
2 2 4
=X —gﬂfg ‘|—1—55U5 —%Q; —|—O(ZU9)
2 2 4
sinzcosr =1z — 2>+ —2°— —a2"+ O(xg)

3 15 315
e Now the problem is not as difficult!!
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2.5 Example 3

Without using L’Hopital’s Rule, show

. 2zarctanx — log(1 + 2?) — 22 1
lim = _Z
20 x2(1 — cos x) 3

We will take only two terms of the series for arctan z, log(1 + 2?), and cosx. So it
follows that they are

arctanr = x — %:1:3 + (’)(:c5)

1
log(1 + 2?) = 2 — 5564 + 0(566) (5)
L, 14 6

1—cos:1::§x — 5% —l—(’)(x)
Using , the problem proceeds as follows:
| 2warctanz — log(l + r?) — 2 o2 [z — 32+ O(2%) ] — [2? — j2* + O(2%) | — &2
im = lim
z—0 .%2(1 — COS .%') z—0 r2 [%xQ — ix‘l + O(x6)]

Note that in the normal multiplication of the terms above, we have O(CEG) — (9(336).
Remember, this does not cancel. Think of it like az® — bx% = (a — b)z%. Only when
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a = b do we have cancellation. So, continuing

29:[3:— %a:3+(’)(x5)} — [:L’2 — %x4—|—(’)(x6)} — 72

= lim

= [ e+ O
277 — 2t + O(2%) — 27 + 32" + O(aF) —
= lim 3t : 1(562 ) 1'{ 2" - (=) al (cancel terms)
1.4 O 6 1.4 O 6
— lim —3% 1+ (xl) + 30+ 0@ (combine terms)
z—0 53;4 — ﬂ$6 + O(xS)
—12t + O(a%)
= lim —° N Itiply t d bottom by %
lim 17+ Oa) (Now multiply top and bottom by =)
2 2
—2+0
lim —¢ +0(@) (now evaluate the limit)
=0 1+ (’)(5(:2)
1
E

If you try to do this using L’Hopital’s Rule, you’ll see that this is much more difficult.
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3 Exercises

1. Prove (or disprove) the following statements

(a) 7=0(1) as x — 0. (g) tanz = O(x) as x — 0.
(b) z = O(x) as x — 0. () n—1/2 — O(n) as n — 0.
(¢c) x=0(x) asx — 0 1
(@) = o(1) as z — 0 (i) 9872% + 72° + 2t = O(2*) as z — 0
(e) © = O(e*) as « — 0. (j) zlogz = O(2?) as n — oo.
(f) cosx = O(x) as = — 0. (k) e* =O(1) as z — 0.
2. Simplify the following expressions (Assume that x — 0.)
(a) O(2?%) + O(2?) + = + 2° (g) O((1+n1)?)
(b) 20 (2?) (h) O(1) + o(x)
(c) 987" 4+ O(x9) (i) O(z0O (%))
(d) O(2?) o(=?) (j) cosz — 1 + 122 (expand as
(e) O(2*) o(?) appropriate)
(f) O((z +1)?) (k) (x + 32® + O(2°))® (Note this is easy
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if you figure the smallest Big-O power or larger (z, where a > b) will
power first (suppose it is O(z")). be absorbed into it.)
Then any terms that have that

3. Calculate the following limits using Big-O notation.

sinx — x + 22°

(2) }clgtl) x?

(b) lim log(1 + zarctan ) — e*" + 1
20 V1i4azt—1

() lim 24 - 24 cos(sin(r)) — 1222 + 52*
=0 sin(1 — cos(x)) — 1 + cosx

4. Find the first 4 terms for the power series for e” sinx (centered at 0).

5. Find the first 4 terms for the power series for (centered at 0).

—x
6. Find the first two terms for the power series expansion of the sequence

2\/1 — Tk

Thy1 =1 — 2 — 1,
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4 Common Taylor Series

<k
ex:Z%
k=0
(1) tgh
—y -
k=1
o0 k
:_Z%
k=1
o0 :L,Qk—l
:2;2/@—1

(for all x)

(for -1 <z < 1)

(for =1 <z < 1)

(for -1 <z <1)

(for |z| < 1)

(for |z| < 1)
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(1+2)" = i (2‘)1;’“ (for |z| < 1)

k=0
> /1 o k—1 2 3 4
5 —1) 2k r oz x bx
1 _ 2\ ..k ( =14+ - 4= = 4.
o ,;(kf)x ,;4%2/{:1)(1{;) TR T 1S
(for |z| < 1)
0 g2kt 1 1 1
N — . U - BT - S S A
Smx_z(zkﬂ) BT TR
(for all z)
— 2% 1, 1., 1
k=0
(for all x)
_ - (_1)k_122k(22k - 1)BQk 2k —1 . 1 2 17
tanx—z 25)! x x+3:1: +1—5x +%x =+ -
(lz] < 3)
[ —a— 22 — 1By 5y 11 7 31
er=gT ; (2k)! ! 26" 300" Tt T
(x| < %)
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— (1) Eay o Loy, 5 4 6l 4
sec ; 2h)] T b LRy —|—720x + - (Jz] < 5)
S (‘DkQ%B% 2k—1 L1 L 3 2 5 T
— — e - “en < T
cot x ; 20 T T Y TEt t (Jz| < %)
. - 1 2k
arcsimxr = Zm( e >$’2k+1 (|$‘ < 1)
k=0
TN 1 2K\ oki1
- <1
AICCOS T = o ;4k(2k+1)(k>x (lz| < 1)
D
arctanx—ZQk 7% (x| < 1)

e
I

1

e B is the k" Bernoulli number

e F is the k™ Euler number.
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