
Math 311
Numerical Methods

1.3: Algorithms and Convergence
Taylor Series, Big-O-Notation

S. K. Hyde
Burden and Faires, any ed.

Winter 2025

Introduction

Algorithms

Definition.
• An algorithm is a procedure that describes, in an unambiguous manner, a
finite sequence of steps to be performedin a specific order.

• The object is to implement a numerical procedure to solve a problem or
approximate a solution to the problem.

Pseudocode

Definition.
• Pseudocode describes the steps of an algorithm.
• Uses basic programming control flow mixed with english
• Note that the code needs to be finite, otherwise the program will never finish.
• We are not that good yet to complete a infinite task in a finite amount of time.

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 2

Basic Program Control Flow

Definition. You can split decisions and steps using the following basic ideas:

• Decision making
• Definite Looping
• Indefinite Looping

0.1 Decision Making

Part of the flow of an algorithm (or program) is making decisions and taking action.
The main construct for this is the “If-Then-Else” construct.

• If [a condition is true]; then [take an action]; endif

• If [a condition is true]; then [take an action]; else (take a different action when
false); endif

0.2 Definite Looping

Definite Looping is the process of repeating an action a specific number of times.

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 3

• Construct is “For [var] = 1, 2, 3, ..., n”. This performs the action the specified
number of times (in this case n times).

0.3 Indefinite Looping

Indefinite Looping is the process of repeating an action an indefinite number of times
until a condition is met. This is usually combined with a condition to check that will
stop the loop if met (or continue a loop if the condition is met (either way).

• Construct is “While [a condition is true] do [these steps]”

• This will continue a loop as long as the beginning condition is met.

• Another construct is “Repeat [these steps] until [a condition is true]”. This is
similar to the above. Only difference is that a “Repeat” statement will always be
executed once (and the check is at the end instead of the beginning).

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 4

• In Numerical Analysis, power series are used throughout the development of many
numerical procedures.

• Examples of power series include Taylor Series and Maclaurin Series.

• Maclaurin Series are defined as Taylor Series centered about 0.

• Loosely, we will call them all “Taylor Series”

1 Taylor Series

Definition. Sets of Functions.
• C(X) - set of all continuous functions on the set X.

• C1(X) - set of all functions having a continuous derivative on the set X.

• Cn(X) - set of all functions having n continuous derivatives on the set X.

• C∞(X) - set of all functions having continuous derivatives of all orders on X.

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 5

Taylor’s Theorem (Thm 1.14)

Theorem. Suppose f ∈ Cn[a, b], f (n+1) exists on [a, b], and x0 ∈ [a, b]. For every
x ∈ [a, b] there exists ξ(x) between x0 and x with

f(x) = Pn(x) +Rn(x), where

Pn(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k Rn(x) =
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)

n+1 (1)

• Note that Pn(x) is called the nth Taylor polynomial for f about x0
• Rn(x) is called the remainder term (or trunctation error) associated with
Pn(x).

• The limit (as n → ∞) of Pn(x) is called the Taylor series for f about x0.

• If x0 = 0, then the Taylor polynomial is called a Maclaurin polynomial and the
Taylor Series is called a Maclaurin Series. (In practice, both are loosely called the
Taylor Series or Power Series)

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 6

Not all functions have a power series representation (or Taylor Series representation).
For example, the function

f(x) =

{
exp

(
− 1

x2

)
, if x ̸= 0

0, if x = 0

• You can check and you will find out that this function is in C∞(R).

• However, every derivative of f(x) is zero at the origin!

• This means that f (n)(0) = 0 for all n ≥ 0.

• Thus, if we tried to form the Taylor Series of it at 0, we would get f(x) = 0, which
it is not!

When a function at a point can be expressed as a power series, then we say the
function is analytic

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 7

2 Big-O Notation

Big-O Notation

Definition.

an = O(bn) (Read: an is big O of bn) if the ratio

∣∣∣∣anbn
∣∣∣∣ is bounded for large n. (2)

Little-o Notation

Definition.

an = O(bn) (Read: an is little o of bn) if the ratio

∣∣∣∣anbn
∣∣∣∣ converges to zero. (3)

• The idea behind these definitions is to compare the approximate size or order of
magnitude of {an} to that of {bn}.

• In most applications, {an} is the sequence of interest and {bn} is a comparison
sequence.

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 8

Definition. Big-O Notation for functions

f(x) = O(g(x))
as x → L

if for any sequence {xn} such that xn → L, we have
f(xn) = O(g(xn)) in the sense of the definition of
Big-O above.

Definition. Little-o Notation for functions

f(x) = O(g(x))
as x → L

if for any sequence {xn} such that xn → L, we have
f(xn) = O(g(xn)) in the sense of the definition of
Little-O above.

• Think of Big-O notation as meaning that f(x) and g(x) are the “same size”.

• In practice, we can use the following proposition (which is equivilent for
applications we are interested in).

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 9

Corollary. If

lim
x→L

∣∣∣∣f(x)g(x)

∣∣∣∣ = k < +∞, then f(x) = O(g(x)) (read as “f is big-O of g”). (4)

• Note that when k = 0, then f(x) = O(g(x)). (little-o)

• However, we are most interested when k ̸= 0, because that conveys more
information about the relation between f(x) and g(x).

• When it is clear, the condition “as x → L” is not always explicity stated.

• The value of L can be any number (or also ±∞).

2.1 Combinations of Big-O terms

• Sometimes we want to combine terms that are either Big-O or little-o together.

• Here are some rules that can easily be proven by using the definitions above.

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 10

Combinations of Big-O (or little-o) terms.

Definition.

• O(can) = O(an) , c ∈ IR, c ̸= 0

• an = O(an)

• an = O(1) =⇒ lim
n→∞

an = 0

• an = O(1) =⇒ |an| < K.

• anO(1) = O(an)

• anO(1) = O(an)

• O(an)O(bn) = O(anbn)

• O(an) O(bn) = O(anbn)

• O(an) O(bn) = O(anbn)

• O(an) O(bn) = O(anbn)

• O(O(an)) = O(an)

• O(O(an)) = O(an)

• O(O(an)) = O(an)

• O(an) +O(bn) = O(max(|an|, |bn|))
• O(an) + O(bn) = O(max(|an|, |bn|))
• O(an) + O(bn) =

O(an) , if bn = O(an) or bn = O(an)

O(bn) , if an = O(bn)

O(bn) , if an = O(bn)

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 11

2.2 Big-O Examples

What above the statement 5 = O(1)? Is it true that 5 is big-O of 1? By the corollary

above, yes it is since lim
x→L

∣∣∣∣51
∣∣∣∣ = 5 < ∞. Note that in this case, L doesn’t matter as it

works for any value of L.

• 3x2 = O
(
x2
)
? =⇒ lim

x→L

∣∣∣∣3x2x2

∣∣∣∣ = 3 < ∞, so, yes, 3x2 is big-O of x2 (as x → 0).

• sinx = O(1)? =⇒ lim
x→L

∣∣∣∣3 sin(x)1

∣∣∣∣ = | sinL| < ∞.

– Note that for all L, | sin(L)| = K < ∞, so sinx = O(1).

– Note also that if L = 0, then it follows that sinx = O(1).

• sinx = O(x)? =⇒ lim
x→0

∣∣∣∣sinxx
∣∣∣∣ L.R.
= lim

x→0

∣∣∣cosx
1

∣∣∣ = 1 < ∞, so, yes, sinx is big-O of x

(as x → 0).

• sinx ̸= O
(
x2
)
? =⇒ lim

x→0

∣∣∣∣sinxx2

∣∣∣∣ L.R.
= lim

x→0

∣∣∣cosx
2x

∣∣∣ = ∞, so, NO, sinx is not big-O of x2

(as x → 0).

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 12

• sinx− x = O
(
x2
)
? =⇒ lim

x→0

∣∣∣∣sinx− x

x2

∣∣∣∣ L.R.
= lim

x→0

∣∣∣∣cosx− 1

2x

∣∣∣∣ L.R.
= lim

x→0

∣∣∣∣sinx2
∣∣∣∣ = 0 < ∞,

so, yes, sinx is little-o of x2. Note that it is ALSO O
(
x2
)
at the same time.

• Simplify 3x2 +O
(
x2
)
+O

(
x3
)
.

– We already know that 3x2 +O
(
x2
)
= O

(
x2
)
.

– Next, O
(
x2
)
+O

(
x3
)
= O

(
x2 + |x3|

)
= O

x2 (1 + |x|)︸ ︷︷ ︸
c

 = O
(
cx2

)
= O

(
x2
)
.

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 13

2.3 Examples

• Big-O is used in scenarios where n → ∞ or x → 0.

• The rules in the definition above help with Big-O manipulation.

• Think of Big-O as combining all terms of a certain size or smaller.

• Note, that, as x → 0, x7 is LARGER than x9, x11, etc., whereas, when n → ∞,
then n7 is bigger than n2.

• Computer scientists are interested in analyzing the complexity of algorithms.

• For example, Bubble Sort is O
(
n2
)
and Merge Sort is O(n log n). In this case, we

can see that Merge Sort is a quicker algorithm.

Here are some examples using some of the properties above.

x+O(x) = O(x) xO(x) = O
(
x2
)

O
(
x2
)
+O

(
x4
)
= O

(
x2
)

O
(
x2
)
O
(
x3
)
= O

(
x5
)

O
(
17x3

)
= O

(
x3
)

O
(
n−1

)
+O

(
n−3/2

)
= O

(
n−1

)
1

n
O(1) = O

(
n−1

)
1,000,000 · O(n lnn) = O(n lnn)

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 14

One very important mistake not to make when combining Big-O terms:

O
(
x3
)
−O

(
x3
)
̸= 0 (Not necessarily - it might be zero)

• The reason for that is that we don’t know the constant factor for the two terms –
they may or may not cancel each other out.

• This is a common mistake when first using the notation.

• A good way to not make the mistake is to assume that every Big-O term is positive
and never negative.

• So, for example,

−1

2
O
(
x2
)
= O

(
x2
)
̸= −O

(
x2
)
.

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 15

Taylor’s Theorem (Using Big-O) (Thm 1.14)

Theorem.
Suppose f ∈ Cn+1[a, b] and x0 ∈ [a, b]. The Taylor expansion can be written as

f(x) = Pn(x) +O
(
(x− x0)

n+1
)
, where Pn(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)

k

Big-O notation becomes useful when we work with series For example,

sinx =
∞∑
k=0

x2k+1

(2k + 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
+ · · ·

sinx = x− x3

3!
+

x5

5!
− x7

7!
+O

(
x9
)
or

= x− x3

3!
+

x5

5!
+O

(
x7
)
or

= x− x3

3!
+O

(
x5
)
or

= x+O
(
x3
)
or

= O(x) or O(1)

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 16

• What Big-O allows you to do is keep the parts that are important (large) and toss
out tiny things not needed for a calculation.

2.4 Example 2

• For example, suppose you are interested in the power series for sin x cosx.

• One way to figure that out is to multiply the two series together:

sinx cosx =

[∞∑
k=0

x2k+1

(2k + 1)!

][∞∑
k=0

x2k

(2k)!

]

=

[
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− x11

11!
+ · · ·

] [
1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− x10

10!
+ · · ·

]
• This is an infinite multiplication! Very complicated!

• However, suppose we are interested only in the accuracy to O
(
x9
)
.

• Then we can reduce the number of multiplications needed by keeping only the
terms that we need.

• You do every possible multiplication of terms, but you drop any that have x9 or
higher powers.

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 17

• So the problem changes to a simpler one. Think of all the ways to combine a term
on the left with a term on the right.

sinx cosx =
[
x− x3

3!
+

x5

5!
− x7

7!
+O

(
x9
)][

1− x2

2!
+

x4

4!
− x6

6!
+O

(
x8
)]

= x − 1

2!
x3 +

1

4!
x5 − 1

6!
x7 +O

(
x9
)

− 1

3!
x3 +

1

3!2!
x5 − 1

3!4!
x7 +O

(
x9
)

+
1

5!
x5 − 1

5!2!
x7 +O

(
x9
)

− 1

7!
x7 +O

(
x9
)

= x −2

3
x3 +

2

15
x5 − 4

315
x7 +O

(
x9
)

sinx cosx = x− 2

3
x3 +

2

15
x5 − 4

315
x7 +O

(
x9
)

• Now the problem is not as difficult!!

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 18

2.5 Example 3

Without using L’Hôpital’s Rule, show

lim
x→0

2x arctanx− log(1 + x2)− x2

x2(1− cosx)
= −1

3

We will take only two terms of the series for arctanx, log(1 + x2), and cosx. So it
follows that they are

arctanx = x− 1

3
x3 +O

(
x5
)

log(1 + x2) = x2 − 1

2
x4 +O

(
x6
)

1− cosx =
1

2
x2 − 1

24
x4 +O

(
x6
) (5)

Using (5), the problem proceeds as follows:

lim
x→0

2x arctanx− log(1 + x2)− x2

x2(1− cosx)
= lim

x→0

2x
[
x− 1

3x
3 +O

(
x5
)]

−
[
x2 − 1

2x
4 +O

(
x6
)]

− x2

x2
[
1
2x

2 − 1
24x

4 +O(x6)
]

Note that in the normal multiplication of the terms above, we have O
(
x6
)
−O

(
x6
)
.

Remember, this does not cancel. Think of it like ax6 − bx6 = (a− b)x6. Only when

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 19

a = b do we have cancellation. So, continuing

= lim
x→0

2x
[
x− 1

3x
3 +O

(
x5
)]

−
[
x2 − 1

2x
4 +O

(
x6
)]

− x2

x2
[
1
2x

2 − 1
24x

4 +O(x6)
]

= lim
x→0

���2x2 − 1
3x

4 +O
(
x6
)
−�

�x2 + 1
2x

4 +O
(
x6
)
−�

�x2

x2
[
1
2x

2 − 1
24x

4 +O(x6)
] (cancel terms)

= lim
x→0

−1
3x

4 +O
(
x6
)
+ 1

2x
4 +O

(
x6
)

1
2x

4 − 1
24x

6 +O(x8)
(combine terms)

= lim
x→0

−1
6x

4 +O
(
x6
)

1
2x

4 +O(x6)
(Now multiply top and bottom by 2

x4)

= lim
x→0

−2
6 +O

(
x2
)

1 +O(x2)
(now evaluate the limit)

= −1

3

If you try to do this using L’Hôpital’s Rule, you’ll see that this is much more difficult.

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 20

3 Exercises

1. Prove (or disprove) the following statements

(a) 7 = O(1) as x → 0.

(b) x = O(x) as x → 0.

(c) x = O(x) as x → 0.

(d) x = O(1) as x → 0.

(e) x = O(ex) as x → 0.

(f) cosx = O(x) as x → 0.

(g) tanx = O(x) as x → 0.

(h) n−1/2 = O(n) as n → ∞.

(i) 987x2 + 7x5 + x11 = O
(
x3
)
as x → 0

(j) x log x = O
(
x2
)
as n → ∞.

(k) ex = O(1) as x → 0.

2. Simplify the following expressions (Assume that x → 0.)

(a) O
(
x2
)
+O

(
x4
)
+ x+ x6

(b) xO
(
x5
)

(c) 987x7 +O
(
x6
)

(d) O
(
x2
)
O
(
x2
)

(e) O
(
x3
)
O
(
x2
)

(f) O
(
(x+ 1)3

)

(g) O
(
(1 + n−1)2

)
(h) O(1) + O(x)

(i) O
(
xO

(
x5
))

(j) cosx− 1 + 1
2x

2 (expand as
appropriate)

(k) (x+ 3x3 +O
(
x5
)
)3 (Note this is easy

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 21

if you figure the smallest Big-O
power first (suppose it is O

(
xb
)
).

Then any terms that have that

power or larger (xa, where a ⩾ b) will
be absorbed into it.)

3. Calculate the following limits using Big-O notation.

(a) lim
x→0

sinx− x+ 2x3

x2

(b) lim
x→0

log(1 + x arctanx)− ex
2

+ 1√
1 + x4 − 1

(c) lim
x→0

24− 24 cos(sin(x))− 12x2 + 5x4

sin(1− cos(x))− 1 + cos x

4. Find the first 4 terms for the power series for ex sinx (centered at 0).

5. Find the first 4 terms for the power series for
x

1− x
(centered at 0).

6. Find the first two terms for the power series expansion of the sequence

xk+1 = 1− 2
√
1− xk

2− xk
.

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 22

4 Common Taylor Series

ex =
∞∑
k=0

xk

k!
(for all x)

log(1 + x) =
∞∑
k=1

(−1)k+1xk

k
(for −1 < x ⩽ 1)

log(1− x) = −
∞∑
k=1

xk

k
(for −1 ⩽ x < 1)

log

(
1 + x

1− x

)
= 2

∞∑
k=1

x2k−1

2k − 1
(for −1 < x < 1)

1

1 + x
=

∞∑
k=0

xk (for |x| < 1)

1

1− x
=

∞∑
k=0

(−1)kxk (for |x| < 1)

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 23

(1 + x)α =
∞∑
k=0

(
α

k

)
xk (for |x| < 1)

√
1 + x =

∞∑
k=0

(1
2

k

)
xk =

∞∑
k=0

(−1)k−1

4k(2k − 1)

(
2k

k

)
= 1 +

x

2
− x2

8
+

x3

16
− 5x4

128
+ · · ·

(for |x| < 1)

sinx =
∞∑
k=0

x2k+1

(2k + 1)!
= x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + · · ·

(for all x)

cosx =
∞∑
k=0

x2k

(2k)!
= 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + · · ·

(for all x)

tanx =
∞∑
k=1

(−1)k−122k(22k − 1)B2k

(2k)!
x2k−1 = x+

1

3
x3 +

2

15
x5 +

17

315
x7 + · · ·

(|x| < π
2)

cscx =
1

x
+

∞∑
k=1

(−1)k−12(22k−1 − 1)B2k

(2k)!
x2k−1 =

1

x
+

1

6
x+

7

360
x3 +

31

15120
x5 + · · ·

(|x| < π
2)

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 24

secx =
∞∑
k=1

(−1)kE2k

(2k)!
x2k = 1 +

1

2
x2 +

5

24
x4 +

61

720
x6 + · · · (|x| < π

2)

cotx =
∞∑
k=0

(−1)k22kB2k

(2k)!
x2k−1 =

1

x
− 1

3
x− 1

45
x3 − 2

945
x5 + · · · (|x| < π

2)

arcsinx =
∞∑
k=0

1

4k(2k + 1)

(
2k

k

)
x2k+1 (|x| ⩽ 1)

arccosx =
π

2
−

∞∑
k=0

1

4k(2k + 1)

(
2k

k

)
x2k+1 (|x| ⩽ 1)

arctanx =
∞∑
k=1

(−1)k

2k − 1
x2k−1 (|x| ⩽ 1)

• Bk is the kth Bernoulli number

• Ek is the kth Euler number.

Math 311–Sec1.3: Algorithms and Convergence (Taylor Series, Big-O-Notation) GoBack 25

