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1 Introduction

• An equivalent way of solving f(x) = 0 is to reformulate it as a fixed point problem.

• A function g(x) has a fixed point at p if g(p) = p.

• Convert the problem of f(x) = 0 into x = g(x) (solve for x—be creative!).

• To find “an” equivalent g(x) for any f(x), start with f(x) = 0 and solve for x in
algebraic or sneaky methods. For example,

– f(x) = cos x− x = 0 is equivalent to g(x) = cos x = x (or g(x) = cos−1(x))

– f(x) = x2 − 2x+ 3 = 0 is equivalent to g(x) = x2+3
2 = x (just one of many!).

• Picking the right g(x) function can lead to powerful root finding techniques.

• Here are some examples of fixed points. When will it be unique?

infinite fixed pts

g(x) = x

one fixed pt

g(x) = cos x

No fixed points

g(x)

one fixed pt

g(x)

multiple fixed pts

g(x)
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Theorem: Uniqueness Conditions: (Thm 2.2)

• If, for every x ∈ [a, b], g(x) ∈ [a, b] and is
continuous, then g has a fixed point in [a, b].

• Suppose further that g′(x) is defined on (a, b) and
that a positive constant k < 1 exists with

|g′(x)| ⩽ k < 1, for all x ∈ (a, b). (1)

• Then the fixed point in [a, b] is unique.

b

a

a b

g(x)

Think this: a good g(x) will enter on the “left wall” and exit on the “right wall”.

Proof. • First, we will show that a fixed point exists.

• If g(a) = a or g(b) = b, then the fixed point exists automatically.

• So, then suppose that g(a) ̸= a and g(b) ̸= b. It follows that g(a) > a and g(b) < b.

• Define h(x) = g(x)− x. It follows that h is continuous on [a, b] and

h(a) = g(a)− a > 0 and h(b) = g(b)− b < 0
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• By the Intermediate Value Thm, there exists a p ∈ (a, b) such that h(p) = 0.

• Thus, h(p) = 0 = g(p)− p =⇒ g(p) = p.

• Thus the fixed point exists! Assume that that |g′(x)| ⩽ k < 1.

• Is the fixed point unique? We will suppose it isn’t unique and show a contradiction
occurs.

• Let’s call the fixed points p and q, where p ̸= q.

• By the Mean Value Theorem, there exists ξ between p and q with

g(p)− g(q)

p− q
= g′(ξ)

• Since g(p) = p and g(q) = q, then it follows:

|p− q| = |g(p)− g(q)| = |g′(ξ)||p− q|︸ ︷︷ ︸
|Mean Value Theorem|

⩽ k|p− q| < |p− q|

• So it follows that |p− q| < |p− q| =⇒ That’s impossible!

• Therefore, the fixed point must be unique!
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1.1 Example

1. Let g(x) = ln(7/x) on [1, 2]. It follows that g′(x) = − 1
x .

• Note that g′(x) ̸= 0 and g′(x) < 0. This means g is 1-1 and decreasing.

• By the EVT, the maximum of g will be at the endpoints of [1, 2].

• Since g(1) = ln(7) ≈ 1.95 and g(2) = ln(7/2) ≈ 1.25, it follows that

g(x) ∈ [1.25, 1.95] ⊂ [1, 2], =⇒ g(x) ∈ [1, 2]

• Thus, a fixed point exists in [1, 2].

• Next, we want to find a k such that |g′(x)| ⩽ k < 1 over [1, 2].

• |g′(1)| = 1 and |g′(2) = 1
2 , So max

x∈[1,2]
|g′(x)| ⩽ 1.

• So does k exist? (k should be less than 1). Currently it doesn’t exist.

• However, it will exist if we shrink the interval some.

• Suppose the interval is [1.5, 2] instead.

• Then max
x∈[1,2]

|g′(x)| ⩽ |g′(1.5)| = 2
3 = k < 1.

• So the fixed point exists in the interval [1.5, 2] and is unique!
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2 How does it work?

• To approximate a fixed pt, we choose an inital approx p0

• Then generate a sequence {pn}∞n=0 by letting

pn = g(pn−1), for each n ⩾ 1

• If the sequence converges and g is continuous, then

p = lim
n→∞

pn = lim
n→∞

g(pn−1) = g
(
lim
n→∞

pn−1

)
= g(p)

• How it looks visually is one of three cases:

b

a

a b

g(x)

circling the fixed pt

b

a

a b

g(x)

descending to the fixed pt

b

a

a b

g(x)

ascending to the fixed pt
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3 How do you choose g(p) for a particular f(x) = 0?

• Suppose we want to solve x3 + 4x2 − 10 = 0.

• By IVT, it has a root in [1, 2]

• Start with f(x) = 0 and then solve for x.

x3 + 4x2 − 10 = 0 =⇒ 4x2 = 10− x3 (solve for 4x2)

x2 =
10− x3

4
(divide by 4)

x =

√
10− x3

2
(choose positive square root)

• Let’s call this one g3(x) =

√
10− x3

2
. Now, let’s find a new one.

• Since f(x) = 0, take x− f(x) for another possible g:

• So g1(x) = x− f(x) = x− x3 − 4x2 + 10. (Just another option to use!)

• We can choose others as well. Just solve for a different “x”.
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• Let’s solve for the x3.

x3 + 4x2 − 10 = 0 =⇒ x3 = 10− 4x2 (Solve for x3)

x2 =
10− x3

x
(divide by x)

x =

√
10− x3

x
= g2(x) (square root both sides)

• What else can we do? Be creative!

x3 + 4x2 − 10 = 0 =⇒ x3 + 4x2 = 10 (factor x2 on left)

x2(x+ 4) = 10 (divide by x+ 4)

x2 =
10

x+ 4
(square root)

x =

√
10

x+ 4
=⇒ g4(x) =

√
10

x+ 4
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• There are lots more ways! Some are very creative! Here’s a crazy way to find one:

0 = x3 + 4x2 − 10 = (3− 2)x3 + (8− 4)x2 − 10

= 3x3 − 2x3 + 8x2 − 4x2 − 10

2x3 + 4x2 + 10 = 3x3 + 8x2

= x(3x2 + 8x)

2x3 + 4x2 + 10

3x2 + 8x
= x

• So we got g5(x) =
2x3 + 4x2 + 10

3x2 + 8x
.

• Let’s try out all these methods and see how they perform.
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4 How good are they? Let’s test them!

• Let’s start with p0 = 1.

g1(x) = x− x3 − 4x2 + 10 (fails to converge)

g2(x) =

√
10− x3

x
(fails to converge)

g3(x) =

√
10− x3

2
(converges in 30 iterations)

g4(x) =

√
10

x+ 4
(converges in 15 iterations)

g5(x) =
2x3 + 4x2 + 10

3x2 + 8x
(converges in 4 iterations!)

• Note that it is difficult to tell which converges by sight.

• How can we determine which will converge and how rapidly?

• We have Thm 2.3 in the book to help with this!
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Theorem: Fixed point Theorem (Thm 2.3)

Let g ∈ C[a, b], g(x) ∈ [a, b] for all x ∈ [a, b]. Suppose g′(x) exists on (a, b) and

|g′(x)| ⩽ k < 1 for all x ∈ [a, b]

If p0 is any number in [a, b], then the sequence defined by

pn = g(pn−1), n ⩾ 1

converges to the unique fixed point p in [a, b].

Proof. • By Thm 2.2, a unique fixed point exists. Thus, the sequence pn ∈ [a, b].

• By the MVT, we know that there exists a ξ ∈ (p, pn−1) (or ξ ∈ (pn−1, p)) such that

g(pn−1)− g(p)

pn−1 − p
= g′(ξ).
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• Also, remember that pn = g(pn−1) and g(p) = p. So it follows that

|pn − p| = |g(pn−1)− g(p)| = |g′(ξ)||pn−1 − p|

• Since |g′(x)| ⩽ k < 1, then it follows that

|pn − p| ⩽ k|pn−1 − p| (2)

• Note that (2) also means:
|pn−1 − p| ⩽ k|pn−2 − p|
|pn−2 − p| ⩽ k|pn−3 − p|

...
...

|p1 − p| ⩽ k|p0 − p|

(3)

• Combining (2) and (3) yields:

|pn − p| ⩽ k|pn−1 − p| ⩽ k2|pn−2 − p| ⩽ k3|pn−3 − p| ⩽ · · · ⩽ kn|p0 − p| (4)

• Since k < 1, then kn → 0 as n → ∞, so lim
n→∞

|pn − p| ⩽ lim
n→∞

kn|p0 − p| = 0

• Therefore pn converges to p.

Math 311–Sec2.2: Fixed Point Iteration [f(x) = 0 ⇐⇒ g(p) = p] (Solutions of Equations in One Variable)GoBack 12



Error Bound for Fixed Point

Corollary. When g satisfies the conditions of Theorem 2.3, then we have the
following bounds on the error:

|pn − p| ⩽ knmax{p0 − a, b− p0}

|pn − p| ⩽ kn|p0 − p1|
1− k

, for all n ⩾ 1

Proof. • Since p0 ∈ (a, b) and we don’t know p, then it follows from (4) that

|pn − p| ⩽ kn|p0 − p| < knmax{p0 − a, b− po}

• We can get a better bound on this as follows. Suppose that m > n ⩾ 1. Then

|pm − pn| = |pm−pm−1 + pm−1 − pm−2 + pm−2 − pm−3 + · · · − pn+1 + pn+1︸ ︷︷ ︸
equal to zero!

−pn|

⩽ |pm − pm−1|+ |pm−1 − pm−2|+ |pm−2 − pm−3|+ · · ·+ |pn+1 − pn|
⩽ km−1|p1 − p0|+ km−2|p1 − p0|+ km−3|p1 − p0|+ · · ·+ kn|p1 − p0|
⩽ kn|p1 − p0|(1 + k + k2 + · · ·+ km−n−1) (5)
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• The right side of (5) is a geometric sum. Recall that the sum of a geometric series is

b∑
i=0

ki =
1− kb+1

1− k
,

so it follows that

1 + k + k2 + · · ·+ km−n+1 =
1− km−n

1− k
(6)

• Combining (5) and (6) yields

|pm − pn| ⩽ kn|p1 − p0|(1 + k + k2 + · · ·+ km−n−1)

⩽ kn|p1 − p0|
1− km−n

1− k
(7)

Since km−n → 0 and pm → p as m → ∞, then

lim
m→∞

|pn − pm| ⩽ lim
m→∞

kn|p1 − p0|
1− km−n

1− k

|pn − p| ⩽ kn|p1 − p0|
1− k

(8)

• Note that the formula shows that the smaller the k, the faster the convergence.

Math 311–Sec2.2: Fixed Point Iteration [f(x) = 0 ⇐⇒ g(p) = p] (Solutions of Equations in One Variable)GoBack 14



Theorem: How many iterations for a specific value of k?

We can solve the equation in (8) for n. So, for a given value of k, the number of
iterations to solve the equation to a specified tolerance (ε) is

n ⩾
log

(
(1−k)ε
|p1−p0|

)
log k

(9)

Proof. • Let ε be the tolerance (e.g. value of ε such that |pn − p| ⩽ ε).

• It follows that

|pn − p| ⩽ kn|p1 − p0|
1− k

⩽ ε =⇒ kn ⩽
(1− k)ε

|p1 − p0|
(Isolate kn)

n log k ⩽ log
((1− k)ε

|p1 − p0|

)
(log of both sides)

n ⩾
log

(
(1−k)ε
|p1−p0|

)
log k

(divide by log k)
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5 What is k for g1, g2, g3, g4, g5 (to solve f(x) = x3 + 4x2 − 10)

• Analyzing with Desmos.com is a good strategy.

• However, it still comes down to using the Extreme Value Theorem.

g1(x) = x− x3 − 4x2 + 10 (g′(x) is NEVER < 1 over [1, 2])

g2(x) =

√
10− x3

x
(Bad – Doesn’t map [1,2] onto [1,2] (g′2(p) = 3.4 > 1))

g3(x) =

√
10− x3

2
([1,2] fails, but [1,1.5] works. (g′3(x) ⩽

2
3))

g4(x) =

√
10

x+ 4
(g′(x) ⩽

√
2

10 ≈ .14 < 1)

g5(x) =
2x3 + 4x2 + 10

3x2 + 8x
(g′(p) = 0 < 1)

• These all correspond to the results from before!
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• Analyzing g5 a bit more will be the key to fast convergence (next section!).

• What does g′5(x) look like over [1,2]?

• g′5(x) =
(6x+ 8)(x3 + 4x2 − 10)

x2(3x+ 8)2

• The EVT says the max of |g′5(x)| will be at the endpoints or where g′′(x) = 0.

• Since g′′(x) ̸= 0 for all x ∈ [1, 2], then just check both endpoints.

• |g′(1)| = 70
121 = 0.579 and g′(2) = 5

14 ≈ .357. It follows that k = 0.579.

• Let p0 = 1, and ε = 10−8. It follows that p1 =
16
11 and using (9) will show

n ⩾

log


(
1− 70

121

)
(10−8)∣∣∣16

11
− 1

∣∣∣


log
( 70

121

) = 33.7

• This problem converges way faster than this.

• In fact, only 4 are needed! Why?
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• What happens near the fixed point? As you can see from above g′5(p) = 0

• As we shrink the interval, the value of k changes.

• As the interval collapses around p, k gets closer and closer zero!

• Remember a small k value leads to fast convergence!

• Choose a different starting point and the calculations change!

• Suppose you start at p0 =
4

3
. Then p1 =

295

216
. At p0, |g′(p0)| =

7

216
.

• So we get this time:

n ⩾

log


(
1− 7

216

)
(10−8)∣∣∣295

216
− 4

3

∣∣∣


log
( 7

216

) = 4.36

• We will now discuss the method we just illustrated – The Newton-Raphson Method.

• There is a Desmos assignment on Canvas that you need to complete! Go find it!
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