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Introduction

e An equivalent way of solving f(x) = 0 is to reformulate it as a fixed point problem.
e A function g(z) has a fixed point at p if g(p) = p.
e Convert the problem of f(z) =0 into z = g(x) (solve for z—Dbe creative!).

e To find “an” equivalent g(x) for any f(x), start with f(x) = 0 and solve for z in
algebraic or sneaky methods. For example,

— f(x) = cosz — x = 0 is equivalent to g(z) = cosz = x (or g(x) = cos™(z))

— f(z) = 2* — 22 + 3 = 0 is equivalent to g(z) = x22+3 = z (just one of many!).

e Picking the right g(z) function can lead to powerful root finding techniques.
e Here are some examples of fixed points. When will it be unique?

g(r) =2 g(x) = cosx g() g9() / g9() /

infinite fixed pts one fixed pt No fixed points one fixed pt multiple fixed pts
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Theorem: Uniqueness Conditions: (Thm 2.2)

o If, for every x € [a,b], g(z) € [a,b] and is b -
continuous, then g has a fixed point in [a, b).

e Suppose further that ¢'(x) is defined on (a,b) and
that a positive constant k < 1 ewxists with

(1/_

[ g (z)| < k <1, for all x € (a,b). ] (1)

e Then the fixed point in [a,b] is unique.

Think this: a good g(x) will enter on the “left wall” and exit on the “right wall”.

Proof. e First, we will show that a fixed point exists.
e If g(a) = a or g(b) = b, then the fixed point exists automatically.
e So, then suppose that g(a) # a and g(b) # b. It follows that g(a) > a and g(b) < b.

e Define h(z) = g(x) — . It follows that h is continuous on [a, b] and

h(a) =g(a) —a >0 and h(b)=g(b)—b<0
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https://www.desmos.com/calculator/mcviwzlnge

e By the Intermediate Value Thm, there exists a p € (a, b) such that h(p) = 0.
e Thus, i(p) =0 =g(p) —p = 9(p) = p.
e Thus the fixed point exists! Assume that that |¢'(z)| < k < 1.

e Is the fixed point unique? We will suppose it isn’t unique and show a contradiction
OCCUrs.

e Let’s call the fixed points p and g, where p # q.
e By the Mean Value Theorem, there exists & between p and ¢ with
g\p) — g\q
W) =9l0) _
pP—q
e Since g(p) = p and ¢(q) = q, then it follows:

p—al = lg(p) —9(@)l = 1g'()llp — q| < klp—ql <[p—ql

|[Mean Value Theorem)|

e So it follows that |p — ¢| < |p — gq| = That’s impossible!

e Therefore, the fixed point must be unique!
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1.1 Example
1. Let g(z) = In(7/z) on [1,2]. It follows that ¢'(z) = —1.
e Note that ¢'(z) # 0 and ¢'(z) < 0. This means g is 1-1 and decreasing.

e By the EVT, the maximum of g will be at the endpoints of [1,2].
e Since g(1) =1n(7) ~ 1.95 and ¢(2) = In(7/2) ~ 1.25, it follows that

g(x) € [1.25,1.95] C [1,2], = g(x) € [1,2]

e Thus, a fixed point exists in [1, 2].
e Next, we want to find a k such that |¢'(z)| < k < 1 over [1,2].
1

o 1g/(1)] =1 and |g'(2) =}, So max |¢/(a)] <

e So does k exist? (k should be less than 1). Currently it doesn’t exist.
e However, it will exist if we shrink the interval some.

e Suppose the interval is [1.5, 2] instead.

e Then max |¢'(z)| < |¢(1.5)| =2 =k < 1.

ze|l,

e So the fixed point exists in the interval [1.5, 2] and is unique!
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2 How does it work?

e To approximate a fixed pt, we choose an inital approx py

e Then generate a sequence {p,}>°, by letting

Pn = g(pn_1), for each n > 1 ]

e If the sequence converges and ¢ is continuous, then
p= lim p, = lim g(p,—1) = 9< lim pm) = g(p)
n—oo n—oo n—od
e How it looks visually is one of three cases:

b peemmemmeees b -

circling the fixed pt descending to the fixed pt ascending to the fixed pt
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3 How do you choose g(p) for a particular f(x) = 07?

e Suppose we want to solve 3+ 422 — 10 = 0.

e By IVT, it has a root in [1, 2]
e Start with f(z) = 0 and then solve for z.

2%+ 427 —10 = 0 = 42* = 10 — 2° (solve for 4z?)
10 — 2
r? = 1 ’ (divide by 4)
V10 — 23 .
T= g (choose positive square root)
V10 — 23
e Let’s call this one g3(x) = Tx Now, let’s find a new one.

e Since f(z) =0, take x — f(x) for another possible g:
e So gi(z) =x — f(x) = x — 23 — 42® + 10. (Just another option to use!)

e We can choose others as well. Just solve for a different “z”.
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e Let’s solve for the x3.

2?4 42® —10 = 0 = 2° = 10 — 42 (Solve for 2?)

10 — 2?
2 = - v (divide by )

[10 =23
xr = i g2() (square root both sides)
T

e What else can we do? Be creative!

X

2?4+ 422 — 10 =0 = 2° + 42> = 10 (factor x* on left)
% (x +4) = 10 (divide by = + 4)
10
r? = p— (square root)
10 — (@) 10
xr = €T) =
x+4 i x+4
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e There are lots more ways! Some are very creative! Here’s a crazy way to find one:

0=21°+42" —10 = (3 —2)2° + (8 — 4)2* — 10
=323 — 223 + 82 — 422 — 10
223 + 422 4+ 10 = 323 4 822
= 2(32% + 8x)
223 + 422 + 10
322+ 8¢ v

223 4 422 + 10
e So we got g5(z) = TR

e Let’s try out all these methods and see how they perform.
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4 How good are they? Let’s test them!

e Let’s start with py = 1.

gi(z) =2 —2® — 42% + 10

oo(x) = /10;x3
ST
2

10 — 23
93(x) = ——F—
10
94(x) = r+4
(2) 223 + 422 + 10
T) =
95 322 + 8z

e Note that it is difficult to tell which converges by sight.

(fails to converge)

(fails to converge)
(converges in 30 iterations)
(converges in 15 iterations)

(converges in 4 iterations!)

e How can we determine which will converge and how rapidly?

e We have Thm 2.3 in the book to help with this!
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Theorem: Fixed point Theorem (Thm 2.3)

Let g € Cla,b], g(z) € [a,b] for all x € |a,b]. Suppose ¢'(x) exists on (a,b) and

g (z)| < k <1 for all z € [a, D] ]

If py is any number in |a,b], then the sequence defined by

Pn=9g(Pn—1),n =1 ]

converges to the unique fized point p in [a, b].

Proof. e By Thm 2.2, a unique fixed point exists. Thus, the sequence p, € [a,b].
e By the MVT, we know that there exists a £ € (p,p,_1) (or £ € (p,_1,p)) such that

g(pn—l) B g(p) _ g/(g).
Pn-1—D
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e Also, remember that p, = g(p,—1) and g(p) = p. So it follows that

[ Pe — 2| = 9(0n_1) — 9®)] = 19'©)lIpn_s — B ]
e Since |¢'(z)| < k < 1, then it follows that

| b= pl <Hlpo - | )

e Note that (2) also means:
@ [Pr-1 — p| < klpa—2 — p|

|Pn—2 — pl < k|pn- 3—p\

|p1 p| < klpo — p|

e Combining (2)) and (3)) yields:
Pn = pl < klpu—1 = pl K |pn2 —pl < Klpu—s —p| < <K"|po—pl | (4)

e Since k < 1, then k" — 0 as n — o0, so lim |p, — p| < lim £"|py — p| =0
n—oo n—oo

e Therefore p,, converges to p.
[]
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Error Bound for Fixed Point

Corollary. When g satisfies the conditions of Theorem 2.3, then we have the
following bounds on the error:

o — p| < K" max{py — a,b — po}
kn|p0— 1|

- , forallm >1

|pn _p‘ <

Proof. e Since py € (a,b) and we don’t know p, then it follows from that
|pn — p| < E"|po — p| < K" max{py — a,b— p,}
e We can get a better bound on this as follows. Suppose that m > n > 1. Then

‘pm - pn‘ = |pm \_pm—l ""pm—l — Pm—2 +pm—2 — Pm-3 + = Pn+1 + pn—|—1/ _pn‘

TV
equal to zero!

< |pm Pm— 1‘ + |pm—1 _pm—Z‘ + ’pm—Q _pm—3| + - ‘pn—i-l — pnl
< k™ 1|]91 pol + km#\pl — po| + km*g’\pl —po| + -+ E"|p1 — pol
<K'pr—pol(L+k+E 4+ k™ (5)
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e The right side of is a geometric sum. Recall that the sum of a geometric series is
kb+1
Sw -
so it follows that
1—km "
l+k+E + k" = ———
1—k
e Combining and (] yields

|pm_pn‘ <kn‘pl—po‘(1+k_|_]€2+,__+km—n—1)

< k'p1 — po‘# .
Since K" — 0 and p,, — p as m — oo, then
i pn = p| < K7y = po\l__Wkn
po — p| < X1 — ol N

1—k

e Note that the formula shows that the smaller the k, the faster the convergence.
]

Math 311- (Solutions of Equations in One V 14



Theorem: How many iterations for a specific value of k7

We can solve the equation in for n. So, for a given value of k, the number of
iterations to solve the equation to a specified tolerance (€) is

|p1—po|
=
"z log k ()

Proof. e Let ¢ be the tolerance (e.g. value of ¢ such that |p, — p| < ¢).
o It follows that

k™ |pp — 1—k
po—pl < =Pl g (L R)E (Isolate k")
1 -k [p1 — ol
1—k
nlogk < log <( )8) (log of both sides)
[p1 — ol
(1—k)e
n > 8 <|p1_p0> (divide by log k)
log k

[
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5 What is k for gi,92,93,94,95 (to solve f(x) = x> + 4x? — 10)

e Analyzing with Desmos.com is a good strategy.

e However, it still comes down to using the Extreme Value Theorem.

gi(z) =z —2° — 42”4+ 10 (¢'(z) is NEVER < 1 over [1,2])
10 — a3
go(x) = (Bad — Doesn’t map [1,2] onto [1,2] (g5(p) = 3.4 > 1))
T
V10 — 23
g3(z) = Tx ([1,2] fails, but [1,1.5] works. (g(z) < 2))
y—— () < ¥~ 14<1
niw) =\ () <R~ 1a<)
22°% + 42 + 10
g5(x) = (¢'(p) =0<1)

322 + 8z

e These all correspond to the results from before!
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e Analyzing g5 a bit more will be the key to fast convergence (next section!).
e What does g;(z) look like over [1,2]7

(62 + 8)(2® + 42 — 10)
B z2(3x + 8)2
e The EVT says the max of |gi(z)| will be at the endpoints or where ¢”(x) = 0.

e Since g”(x) # 0 for all z € [1,2], then just check both endpoints.
e |g'(1)] =L =0.579 and ¢'(2) = 2 ~ .357. It follows that k = 0.579.
o Let pg = 1, and € = 1078, It follows that p; = and using @ will show

(1 _ %) (107%)

_1)

o (70)
&\ 121

e This problem converges way faster than this.

log

= 33.7

e In fact, only 4 are needed! Why?
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e What happens near the fixed point? As you can see from above gi(p) = 0
e As we shrink the interval, the value of k changes.

e As the interval collapses around p, k gets closer and closer zero!

e Remember a small k value leads to fast convergence!

e Choose a different starting point and the calculations change!

4 295 7
e Suppose you start at pg = 3 Then p; = 316" At po, |9 (po)| = 376"

e So we get this time:

(1 _ %) (107%)
205 4

n > 2167 3 — 4.36

08 (515)

e We will now discuss the method we just illustrated — The Newton-Raphson Method.

log

e There is a Desmos assignment on Canvas that you need to complete! Go find it!

Math 311- (Solutions of Equations in One V 18



