Math 311 Numerical Methods

2.2: Fixed Point Iteration $[f(x) = 0 \iff g(p) = p]$ Solutions of Equations in One Variable

> S. K. Hyde Burden and Faires, any ed.

> > Winter 2025

1 Introduction

- An equivalent way of solving $f(x) = 0$ is to reformulate it as a fixed point problem.
- A function $g(x)$ has a fixed point at p if $g(p) = p$.
- Convert the problem of $f(x) = 0$ into $x = g(x)$ (solve for x-be creative!).
- To find "an" equivalent $g(x)$ for any $f(x)$, start with $f(x) = 0$ and solve for x in algebraic or sneaky methods. For example,

$$
- f(x) = \cos x - x = 0
$$
 is equivalent to $g(x) = \cos x = x$ (or $g(x) = \cos^{-1}(x)$)
 $- f(x) = x^2 - 2x + 3 = 0$ is equivalent to $g(x) = \frac{x^2 + 3}{2} = x$ (just one of many!).

- Picking the right $q(x)$ function can lead to powerful root finding techniques.
- Here are some examples of fixed points. When will it be unique?

Math 311–Sec2.2: Fixed Point Iteration $[f(x) = 0 \iff g(p) = p]$ (Solutions of Equations in One Variable α k) 2

Theorem: Uniqueness Conditions: (Thm 2.2)

• Suppose further that $g'(x)$ is defined on (a, b) and that a positive constant $k < 1$ exists with

$$
|g'(x)| \le k < 1, \text{ for all } x \in (a, b). \tag{1}
$$

Think this: a good $q(x)$ will enter on the "left wall" and exit on the "right wall".

Proof. • First, we will show that a fixed point exists.

• Then the fixed point in $[a, b]$ is unique.

- If $g(a) = a$ or $g(b) = b$, then the fixed point exists automatically.
- So, then suppose that $g(a) \neq a$ and $g(b) \neq b$. It follows that $g(a) > a$ and $g(b) < b$.
- Define $h(x) = g(x) x$. It follows that h is continuous on [a, b] and

$$
h(a) = g(a) - a > 0
$$
 and $h(b) = g(b) - b < 0$

- By the Intermediate Value Thm, there exists a $p \in (a, b)$ such that $h(p) = 0$.
- Thus, $h(p) = 0 = g(p) p \Longrightarrow g(p) = p$.
- Thus the fixed point exists! Assume that that $|g'(x)| \leq k < 1$.
- Is the fixed point unique? We will suppose it isn't unique and show a contradiction occurs.
- Let's call the fixed points p and q, where $p \neq q$.
- By the Mean Value Theorem, there exists ξ between p and q with

$$
\frac{g(p) - g(q)}{p - q} = g'(\xi)
$$

• Since
$$
g(p) = p
$$
 and $g(q) = q$, then it follows:

$$
|p - q| = \underbrace{|g(p) - g(q)|}_{|\text{Mean Value Theorem}|} = |g'(\xi)||p - q| \le k|p - q| < |p - q|
$$

- So it follows that $|p q| < |p q| \Longrightarrow$ That's impossible!
- Therefore, the fixed point must be unique!

1.1 Example

- 1. Let $g(x) = \ln(7/x)$ on [1, 2]. It follows that $g'(x) = -\frac{1}{x}$ $\frac{1}{x}$.
	- Note that $g'(x) \neq 0$ and $g'(x) < 0$. This means g is 1-1 and decreasing.
	- By the EVT, the maximum of g will be at the endpoints of $(1, 2]$.
	- Since $g(1) = \ln(7) \approx 1.95$ and $g(2) = \ln(7/2) \approx 1.25$, it follows that

$$
g(x) \in [1.25, 1.95] \subset [1,2], \implies g(x) \in [1,2]
$$

- Thus, a fixed point exists in $[1, 2]$.
- Next, we want to find a k such that $|g'(x)| \leq k < 1$ over [1, 2].
- $|g'(1)| = 1$ and $|g'(2)| = \frac{1}{2}$, So max $x \in [1,2]$ $|g'(x)| \leqslant 1.$
- So does k exist? (k should be less than 1). Currently it doesn't exist.
- However, it will exist if we shrink the interval some.
- Suppose the interval is [1.5, 2] instead.
- Then max $x \in [1,2]$ $|g'(x)| \leq |g'(1.5)| = \frac{2}{3} = k < 1.$
- So the fixed point exists in the interval [1.5, 2] and is unique!

2 How does it work?

- To approximate a fixed pt, we choose an initial approx p_0
- Then generate a sequence ${p_n}_{n=0}^{\infty}$ by letting

$$
p_n = g(p_{n-1}),
$$
 for each $n \ge 1$

• If the sequence converges and q is continuous, then

$$
p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g\left(\lim_{n \to \infty} p_{n-1}\right) = g(p)
$$

• How it looks visually is one of three cases:

Math 311–Sec2.2: Fixed Point Iteration $[f(x) = 0 \iff g(p) = p]$ (Solutions of Equations in One Variable Gobback) 6

3 How do you choose $g(p)$ for a particular $f(x) = 0$?

• Suppose we want to solve
$$
x^3 + 4x^2 - 10 = 0.
$$

- By IVT, it has a root in $[1, 2]$
- Start with $f(x) = 0$ and then solve for x.

$$
x^{3} + 4x^{2} - 10 = 0 \Longrightarrow 4x^{2} = 10 - x^{3}
$$
 (solve for $4x^{2}$)

$$
x^{2} = \frac{10 - x^{3}}{4}
$$
 (divide by 4)

$$
x = \frac{\sqrt{10 - x^{3}}}{2}
$$
 (choose positive square root)

- Let's call this one $g_3(x) =$ √ $10 - x^3$ 2 . Now, let's find a new one.
- Since $f(x) = 0$, take $x f(x)$ for another possible g:
- So $g_1(x) = x f(x) = x x^3 4x^2 + 10$. (Just another option to use!)
- We can choose others as well. Just solve for a different " x ".

Math 311–Sec2.2: Fixed Point Iteration $[f(x) = 0 \iff g(p) = p]$ (Solutions of Equations in One Variable Gobbar) 7

• Let's solve for the x^3 .

$$
x^{3} + 4x^{2} - 10 = 0 \Longrightarrow x^{3} = 10 - 4x^{2}
$$
 (Solve for x^{3})

$$
x^{2} = \frac{10 - x^{3}}{x}
$$
 (divide by x)

$$
x = \sqrt{\frac{10 - x^{3}}{x}} = g_{2}(x)
$$
 (square root both sides)

• What else can we do? Be creative!

$$
x^{3} + 4x^{2} - 10 = 0 \Longrightarrow x^{3} + 4x^{2} = 10
$$
 (factor x^{2} on left)
\n
$$
x^{2}(x+4) = 10
$$
 (divide by $x + 4$)
\n
$$
x^{2} = \frac{10}{x+4}
$$
 (square root)
\n
$$
x = \sqrt{\frac{10}{x+4}} \Longrightarrow g_{4}(x) = \sqrt{\frac{10}{x+4}}
$$

• There are lots more ways! Some are very creative! Here's a crazy way to find one:

$$
0 = x3 + 4x2 - 10 = (3 - 2)x3 + (8 - 4)x2 - 10
$$

= 3x³ - 2x³ + 8x² - 4x² - 10
2x³ + 4x² + 10 = 3x³ + 8x²
= x(3x² + 8x)

$$
\frac{2x3 + 4x2 + 10}{3x2 + 8x} = x
$$

• So we got
$$
g_5(x) = \frac{2x^3 + 4x^2 + 10}{3x^2 + 8x}
$$

• Let's try out all these methods and see how they perform.

.

Math 311–Sec2.2: Fixed Point Iteration $[f(x) = 0 \iff g(p) = p]$ (Solutions of Equations in One Variable Gobback) 9

4 How good are they? Let's test them!

• Let's start with $p_0 = 1$.

$$
g_1(x) = x - x^3 - 4x^2 + 10
$$
 (fails to converge)
\n
$$
g_2(x) = \sqrt{\frac{10 - x^3}{x}}
$$
 (fails to converge)
\n
$$
g_3(x) = \frac{\sqrt{10 - x^3}}{2}
$$
 (converges in 30 iterations)
\n
$$
g_4(x) = \sqrt{\frac{10}{x + 4}}
$$
 (converges in 15 iterations)
\n
$$
g_5(x) = \frac{2x^3 + 4x^2 + 10}{3x^2 + 8x}
$$
 (converges in 4 iterations!)

- Note that it is difficult to tell which converges by sight.
- How can we determine which will converge and how rapidly?
- We have Thm 2.3 in the book to help with this!

Theorem: Fixed point Theorem (Thm 2.3)

Let $g \in C[a, b], g(x) \in [a, b]$ for all $x \in [a, b]$. Suppose $g'(x)$ exists on (a, b) and

 $|g'(x)| \leq k < 1$ for all $x \in [a, b]$

If p_0 is any number in [a, b], then the sequence defined by

$$
p_n=g(p_{n-1}), n\geqslant 1
$$

converges to the unique fixed point p in $[a, b]$.

Proof. • By Thm 2.2, a unique fixed point exists. Thus, the sequence $p_n \in [a, b]$.

• By the MVT, we know that there exists a $\xi \in (p, p_{n-1})$ (or $\xi \in (p_{n-1}, p)$) such that

$$
\frac{g(p_{n-1}) - g(p)}{p_{n-1} - p} = g'(\xi).
$$

• Also, remember that $p_n = g(p_{n-1})$ and $g(p) = p$. So it follows that

$$
|p_n - p| = |g(p_{n-1}) - g(p)| = |g'(\xi)||p_{n-1} - p|
$$

• Since $|g'(x)| \leq k < 1$, then it follows that

$$
|p_n - p| \le k |p_{n-1} - p| \tag{2}
$$

• Note that (2) also means:

$$
|p_{n-1} - p| \le k |p_{n-2} - p|
$$

\n
$$
|p_{n-2} - p| \le k |p_{n-3} - p|
$$

\n
$$
\vdots \qquad \vdots
$$

\n
$$
|p_1 - p| \le k |p_0 - p|
$$
\n(3)

• Combining [\(2\)](#page-11-0) and [\(3\)](#page-11-1) yields:

$$
|p_n - p| \le k |p_{n-1} - p| \le k^2 |p_{n-2} - p| \le k^3 |p_{n-3} - p| \le \dots \le k^n |p_0 - p| \tag{4}
$$

- Since $k < 1$, then $k^n \to 0$ as $n \to \infty$, so $\lim_{n \to \infty} |p_n p| \leq \lim_{n \to \infty} k^n |p_0 p| = 0$
- Therefore p_n converges to p.

Error Bound for Fixed Point

Corollary. When g satisfies the conditions of Theorem 2.3, then we have the following bounds on the error:

$$
|p_n - p| \leq k^n \max\{p_0 - a, b - p_0\}
$$

$$
|p_n - p| \leq \frac{k^n |p_0 - p_1|}{1 - k}, \text{ for all } n \geq 1
$$

Proof. • Since $p_0 \in (a, b)$ and we don't know p, then it follows from [\(4\)](#page-11-2) that $|p_n - p| \leq k^n |p_0 - p| < k^n \max\{p_0 - a, b - p_o\}$

• We can get a better bound on this as follows. Suppose that $m > n \geq 1$. Then

$$
|p_m - p_n| = |p_m - p_{m-1} + p_{m-1} - p_{m-2} + p_{m-2} - p_{m-3} + \cdots - p_{n+1} + p_{n+1} - p_n|
$$

\nequal to zero!
\n
$$
\leq |p_m - p_{m-1}| + |p_{m-1} - p_{m-2}| + |p_{m-2} - p_{m-3}| + \cdots + |p_{n+1} - p_n|
$$

\n
$$
\leq k^{m-1} |p_1 - p_0| + k^{m-2} |p_1 - p_0| + k^{m-3} |p_1 - p_0| + \cdots + k^n |p_1 - p_0|
$$

\n
$$
\leq k^n |p_1 - p_0| (1 + k + k^2 + \cdots + k^{m-n-1})
$$
\n(5)

• The right side of [\(5\)](#page-12-0) is a geometric sum. Recall that the sum of a geometric series is

$$
\sum_{i=0}^{b} k^{i} = \frac{1 - k^{b+1}}{1 - k},
$$

so it follows that

$$
1 + k + k^{2} + \dots + k^{m-n+1} = \frac{1 - k^{m-n}}{1 - k}
$$
(6)

• Combining [\(5\)](#page-12-0) and [\(6\)](#page-13-0) yields

$$
|p_m - p_n| \le k^n |p_1 - p_0| (1 + k + k^2 + \dots + k^{m-n-1})
$$

$$
\le k^n |p_1 - p_0| \frac{1 - k^{m-n}}{1 - k}
$$
 (7)

Since $k^{m-n} \to 0$ and $p_m \to p$ as $m \to \infty$, then

$$
\lim_{m \to \infty} |p_n - p_m| \le \lim_{m \to \infty} k^n |p_1 - p_0| \frac{1 - k^{m-n}}{1 - k}
$$

$$
|p_n - p| \le \frac{k^n |p_1 - p_0|}{1 - k}
$$
 (8)

 \mathbb{R}

• Note that the formula shows that the smaller the k , the faster the convergence.

Math 311–Sec2.2: Fixed Point Iteration $[f(x) = 0 \iff g(p) = p]$ (Solutions of Equations in One Variable) 14

Theorem: How many iterations for a specific value of k ?

We can solve the equation in (8) for n. So, for a given value of k, the number of iterations to solve the equation to a specified tolerance (ε) is

$$
n \geqslant \frac{\log\left(\frac{(1-k)\varepsilon}{|p_1 - p_0|}\right)}{\log k} \tag{9}
$$

Proof. • Let ε be the tolerance (e.g. value of ε such that $|p_n - p| \leqslant \varepsilon$).

• It follows that

$$
|p_n - p| \leqslant \frac{k^n |p_1 - p_0|}{1 - k} \leqslant \varepsilon \Longrightarrow k^n \leqslant \frac{(1 - k)\varepsilon}{|p_1 - p_0|}
$$
 (Isolate k^n)
\n
$$
n \log k \leqslant \log \left(\frac{(1 - k)\varepsilon}{|p_1 - p_0|}\right)
$$
 (log of both sides)
\n
$$
n \geqslant \frac{\log \left(\frac{(1 - k)\varepsilon}{|p_1 - p_0|}\right)}{\log k}
$$
 (divide by log k)

- $5 \quad \text{What is } k \text{ for } g_1, g_2, g_3, g_4, g_5 \text{ (to solve } f(x) = x^3 + 4x^2 10)$
	- Analyzing with Desmos.com is a good strategy.
	- However, it still comes down to using the Extreme Value Theorem.

$$
g_1(x) = x - x^3 - 4x^2 + 10
$$

\n
$$
g_2(x) = \sqrt{\frac{10 - x^3}{x}}
$$
 (Bad – Doesn't map [1,2] onto [1,2] $(g'_2(p) = 3.4 > 1)$)
\n
$$
g_3(x) = \frac{\sqrt{10 - x^3}}{2}
$$
 ([1,2] fails, but [1,1.5] works. $(g'_3(x) \le \frac{2}{3})$)
\n
$$
g_4(x) = \sqrt{\frac{10}{x + 4}}
$$
 (g'(x) $\le \frac{\sqrt{2}}{10} \approx .14 < 1$)
\n
$$
g_5(x) = \frac{2x^3 + 4x^2 + 10}{3x^2 + 8x}
$$
 (g'(p) = 0 < 1)

• These all correspond to the results from before!

Math 311–Sec2.2: Fixed Point Iteration $[f(x) = 0 \iff g(p) = p]$ (Solutions of Equations in One Variable) 16

- Analyzing g_5 a bit more will be the key to fast convergence (next section!).
- What does g'_{ξ} $y_5'(x)$ look like over $[1,2]$?

•
$$
g'_5(x) = \frac{(6x+8)(x^3+4x^2-10)}{x^2(3x+8)^2}
$$

- The EVT says the max of $|g|$ $g'(x)$ will be at the endpoints or where $g''(x) = 0$.
- Since $g''(x) \neq 0$ for all $x \in [1, 2]$, then just check both endpoints.
- $|g'(1)| = \frac{70}{121} = 0.579$ and $g'(2) = \frac{5}{14} \approx .357$. It follows that $k = 0.579$.
- Let $p_0 = 1$, and $\varepsilon = 10^{-8}$. It follows that $p_1 = \frac{16}{11}$ and using [\(9\)](#page-14-0) will show

$$
\log \left(\frac{\left(1 - \frac{70}{121}\right)(10^{-8})}{\left|\frac{16}{11} - 1\right|} \right) = 33.7
$$

$$
n \ge \frac{\log \left(\frac{70}{121}\right)} = 33.7
$$

- This problem converges way faster than this.
- In fact, only 4 are needed! Why?
- What happens near the fixed point? As you can see from above g_t^{\prime} $y'_{5}(p) = 0$
- As we shrink the interval, the value of k changes.
- As the interval collapses around p , k gets closer and closer zero!
- Remember a small k value leads to fast convergence!
- Choose a different starting point and the calculations change!
- Suppose you start at $p_0 =$ 4 3 . Then $p_1 =$ 295 216 . At $p_0, |g'(p_0)| =$ 7 216 .
- So we get this time:

$$
\log \left(\frac{\left(1 - \frac{7}{216}\right)(10^{-8})}{\left|\frac{295}{216} - \frac{4}{3}\right|} \right) = 4.36
$$

$$
\log \left(\frac{7}{216}\right) = 4.36
$$

- We will now discuss the method we just illustrated The Newton-Raphson Method.
- There is a Desmos assignment on Canvas that you need to complete! Go find it!