Math 311

2.4: Error Analysis for Iterative Methods Solutions of Equations of One Variable

> S. K. Hyde Burden and Faires, any ed.

> > Winter 2025

1 Introduction

- Suppose we have a sequence of real numbers $\{p_n\}_{n=0}^{\infty}$ that converge to a number \mathcal{P} .
- In other words, $p_n \rightarrow p$.
- We want to talk about how fast the values are converging to p as n increases.
- Allowing us to talk about this enables us to make improvements and progress!
- \bullet We can then develop <u>new methods</u> and compare them to the older methods.
- We will be discussing the limit in the box below. Note that the top and bottom are how close the iterations are to p. Note also the bottom has a power of a postive α .

$$\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}} = ?$$

(1)

- The answer to this limit will tell us the speed of a sequence.
- What values are possible? (Discuss!)
 - $\rightarrow \infty$ (bad news).
 - \rightarrow 0 (good news)
 - \rightarrow somewhere in between $0 < \lambda < \infty$ (finite and positive) (best news)

Convergence a sequence of order α .

Definition. Suppose $\{p_n\}_{n=0}^{\infty}$ is a sequence that converges to p. If constants $\lambda > 0$ and $\alpha > 0$ exist with

$$0 < \lim_{n \to \infty} \frac{|\boldsymbol{p}_{n+1} - \boldsymbol{p}|}{|\boldsymbol{p}_n - \boldsymbol{p}|^{\alpha}}, = \boldsymbol{\lambda} < \infty, \quad \text{then}$$

$$\tag{2}$$

 $\{p_n\}_{n=0}^{\infty}$ converges to p of order α , with asymptotic error constant λ .

Convergence examples

Definition. Further vocabulary on speeds of convergence include:

- If $\alpha = 1$ and $\lambda > 0$ then the sequence is said to converge *linearly* to **p**.
- If $\alpha = 2$ and $\lambda > 0$ then the sequence is said to converge **quadratically** to **p**.
- If $\alpha = 3$ and $\lambda > 0$ then the sequence is said to converge <u>cubically</u> to **p**.
- Similar language is used for larger values of α

Corollary. If $0 < \alpha < 1$ and $\lambda > 0$, the sequence converges <u>sub-linearly</u> to **p**.

Super-convergence of a sequence of order α .

Definition. Suppose $\{p_n\}_{n=0}^{\infty}$ is a sequence that converges to p. If a positive constant $\alpha > 0$ exists with

$$\lim_{n \to \infty} \frac{|\boldsymbol{p}_{n+1} - \boldsymbol{p}|}{|\boldsymbol{p}_n - \boldsymbol{p}|^{\alpha}} = \boldsymbol{0}, \quad \text{then}$$

(3)

- $\{p_n\}_{n=0}^{\infty}$ is said to converge to p of order super- α .
- (or, equivalently p_n converges super- α -ly to p).
- (Note, the asymptotic error constant here MUST be $\lambda = 0$).

Super-convergence examples

Definition. Further vocabulary on speeds of convergence include:

- If $\alpha = 1$ and $\lambda = 0$ then p_n is said to <u>superlinearly</u> converge to p.
- If $\alpha = 2$ and $\lambda = 0$ then p_n is said to <u>super-quadratically</u> converge to p.
- If $\alpha = 3$ and $\lambda = 0$ then p_n is said to <u>super-cubically</u> converge to p.
- If $\alpha = 4$ and $\lambda = 0$ then p_n is said to <u>super-quartically</u> converge to p, etc.

Super- α -convergence implies existence of convergence of order β

Theorem. Suppose $\{p_n\}_{n=0}^{\infty}$ converges super- α -ly to p. It follows that:

- There exists $\beta > \alpha$ such that the asymptotic error constant, λ_{β} , is finite and positive. $(0 < \lambda_{\beta} < \infty)$
- In other words, there exists a constant β larger than α such that p_n converges to p of order β

Example.

- The Secant method is known for its superlinear (super-1-ly) convergence.
- This implies that it converges at a rate greater than 1.
- In fact, that rate is $\beta = \frac{1+\sqrt{5}}{2} \approx 1.618$.
- This means that once it gets close enough, it will improve upon the last iteration by increasing the number of digits correct by 61.8%.

Convergence of order α implies divergence for all $\beta > \alpha$

Theorem. Suppose that p_n converges to p of order α with $\lambda > 0$. For every $\beta > \alpha$, p_n does not converge to p of order β . $\left(\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\beta}} = \infty\right)$

Proof. Let $\epsilon > 0$. Suppose $\beta = \alpha + \epsilon$. It follows that

$$\lim_{n \to \infty} \frac{|\mathbf{p}_{n+1} - \mathbf{p}|}{|\mathbf{p}_n - \mathbf{p}|^{\beta}} = \lim_{n \to \infty} \frac{|\mathbf{p}_{n+1} - \mathbf{p}|}{|\mathbf{p}_n - \mathbf{p}|^{\alpha + \epsilon}} = \lim_{n \to \infty} \frac{|\mathbf{p}_{n+1} - \mathbf{p}|}{|\mathbf{p}_n - \mathbf{p}|^{\alpha}} \left(\frac{1}{|\mathbf{p}_n - \mathbf{p}|^{\epsilon}}\right)$$
$$= \lim_{n \to \infty} \frac{|\mathbf{p}_{n+1} - \mathbf{p}|}{|\mathbf{p}_n - \mathbf{p}|^{\alpha}} \lim_{n \to \infty} \left(\frac{1}{|\mathbf{p}_n - \mathbf{p}|^{\epsilon}}\right)$$
$$= \lambda \cdot \lim_{n \to \infty} \left(\frac{1}{|\mathbf{p}_n - \mathbf{p}|^{\epsilon}}\right) = \infty$$

Therefore, it follows that $\{p_n\}_{n=0}^{\infty}$ does not converge to p of order $\beta > \alpha$.

Convergence of order α implies superconvergence for all $\beta < \alpha$

Theorem. Suppose $\{p_n\}_{n=0}^{\infty}$ converges to p of order α . It follows that:

For every $\beta < \alpha$, p_n converges to p of order super- β .

Proof. Let $\epsilon > 0$. Suppose $\beta = \alpha - \epsilon$. It follows that

$$\lim_{n \to \infty} \frac{|\mathbf{p}_{n+1} - \mathbf{p}|}{|\mathbf{p}_n - \mathbf{p}|^{\beta}} = \lim_{n \to \infty} \frac{|\mathbf{p}_{n+1} - \mathbf{p}|}{|\mathbf{p}_n - \mathbf{p}|^{\alpha - \epsilon}} = \lim_{n \to \infty} \frac{|\mathbf{p}_{n+1} - \mathbf{p}|}{|\mathbf{p}_n - \mathbf{p}|^{\alpha}} (|\mathbf{p}_n - \mathbf{p}|^{\epsilon})$$
$$= \lim_{n \to \infty} \frac{|\mathbf{p}_{n+1} - \mathbf{p}|}{|\mathbf{p}_n - \mathbf{p}|^{\alpha}} \lim_{n \to \infty} (|\mathbf{p}_n - \mathbf{p}|^{\epsilon})$$
$$= \lambda \cdot \lim_{n \to \infty} (|\mathbf{p}_n - \mathbf{p}|^{\epsilon}) = 0$$

Therefore, it follows that p_n converges to p of order super- β , where $\beta = \alpha - \epsilon$.

- So, in summary, for every sequence that converges of order α , we have one of the following three options:
 - For α , the sequence p_n converges to p of order α .
 - For all values less than α , the sequence converges super- α -ly to p.
 - For all values greater than α , the sequence does not converges to p.

1.1 Example 1

1. Let $p_n = \frac{1}{n^k}$ for some fixed k > 0. This sequence converges to p = 0. By the definition in (2),

$$\lambda = \lim_{n \to \infty} \frac{|\mathbf{p}_{n+1} - \mathbf{p}|}{|\mathbf{p}_n - \mathbf{p}|^{\alpha}} = \lim_{n \to \infty} \frac{\frac{1}{(n+1)^k}}{\left[\frac{1}{n^k}\right]^{\alpha}} = \lim_{n \to \infty} \left[\frac{n^{\alpha}}{n+1}\right]^k = \left[\lim_{n \to \infty} \frac{n^{\alpha-1}}{1+\frac{1}{n}}\right]^k = \left[\lim_{n \to \infty} n^{\alpha-1}\right]^k$$

It follows that

- If $\alpha < 1$ then $\lambda = 0$, which implies super- α convergence.
- If $\alpha = 1$ then $\lambda = 1$, which implies the sequence converges linearly.
- If $\alpha > 1$ then $\lambda = \infty$, which implies it does not converge at any rate greater than linear.

1.2 Example 2

2. Let $p_n = 10^{-2^n}$. This also converges to 0 and the asymptotic error constant is

$$\lambda = \lim_{n \to \infty} \frac{|\mathbf{p}_{n+1} - \mathbf{p}|}{|\mathbf{p}_n - \mathbf{p}|^{\alpha}} = \lim_{n \to \infty} \frac{10^{-2^{n+1}}}{10^{-\alpha \cdot 2^n}} = \lim_{n \to \infty} 10^{-2 \cdot 2^n} \cdot 10^{\alpha \cdot 2^n} = \lim_{n \to \infty} 10^{(\alpha - 2) \cdot 2^n}$$

• If $\alpha < 2$, then $\lambda = 0$. This means that p_n converges super-linearly to p.

• If
$$\alpha = 2$$
, then $\lambda = 1$. This means that p_n converges quadratically to p_n

• If $\alpha > 2$, then $\lambda = \infty$ and p_n does not converge at a rate larger than $\alpha = 2$.

Using this as a typical quadratic sequence, you can see how fast a quadratically convergent sequence moves. The terms of the sequence are:

$$\begin{array}{c|cccc}
n & p_n \\
\hline
1 & 10^{-2} \\
2 & 10^{-4} \\
3 & 10^{-8} \\
4 & 10^{-16} \\
5 & 10^{-32} \\
6 & 10^{-64}
\end{array}$$

It doubles the number of correct digits with each iteration! Note that after 6 iterations, it is already really small!

2 Fixed Point Iteration (Section 2.2)

How good is fixed point iteration? Let's analyze the fixed point algorithm,

 $\boldsymbol{p_{n\!+\!1}}=g(\boldsymbol{p_n})$

with fixed point p. The key to the speed of convergence is derivatives of g(p).

Convergence of Fixed Point Iteration:

Theorem. Let $g \in C[a, b]$ and $g' \in C(a, b)$. Furthermore, assume there exists k < 1 such that $|g'(x)| \leq k$ for all x in (a, b).

• If $g'(\mathbf{p}) \neq 0$, the sequence converges linearly to the fixed point \mathbf{p} .

• If $g'(\mathbf{p}) = 0$, the sequence converges at least quadratically to the fixed point \mathbf{p} .

Proof. • First, we will show that $p_n \to p$. Start with the statement

$$\boldsymbol{p_n} = g(p_{n-1})$$

 \bullet Subtract p from both sides and take the absolute value:

$$|\boldsymbol{p_n} - \boldsymbol{p}| = |g(p_{n-1}) - \boldsymbol{p}|$$

• Note that since $g(\mathbf{p}) = p$, it follows that

$$|\boldsymbol{p_n} - \boldsymbol{p}| = |g(p_{n-1}) - g(\boldsymbol{p})|$$

• Suppose that $|g'(x)| \leq k < 1$. By the MVT, ξ exists between p_{n-1} and p where

$$\underbrace{|\mathbf{p}_n - \mathbf{p}|}_{\text{left side}} = |g(p_{n-1}) - g(\mathbf{p})| = |g'(\xi)||p_{n-1} - p| \leq \underbrace{k|p_{n-1} - p|}_{\text{right side}}$$

• Thus, the left side is less than or equal to the right side!

$$|\boldsymbol{p_n} - \boldsymbol{p}| \leqslant k |p_{n-1} - \boldsymbol{p}|. \tag{4}$$

• Recursively plugging equation (4) into itself yields:

$$|\boldsymbol{p_n} - \boldsymbol{p}| \leq k|k|p_{n-2} - \boldsymbol{p}|| \leq k|k|k|p_{n-3} - \boldsymbol{p}||| \leq \cdots \leq k^n|p_0 - p|.$$

- Since $0 \leq k < 1$, then $k^n \to 0$ as $n \to \infty$.
- Therefore, $|\mathbf{p_n} \mathbf{p}| \to 0$ as $n \to \infty$ (which is equivalent to $\mathbf{p_n} \to p$).
- Next, it can be shown that convergence speed will depend on the derivatives of g.
- By the Mean Value Theorem, ξ exists between p_{n-1} and p where

$$|\mathbf{p_{n+1}} - \mathbf{p}| = |g(p_n) - g(\mathbf{p})| = |g'(\xi_n)||p_n - p|$$

• Since $p_n \to p$, then $\xi_n \to p$ as $n \to \infty$. Thus,

$$\lim_{n \to \infty} \frac{|\boldsymbol{p}_{n+1} - \boldsymbol{p}|}{|\boldsymbol{p}_n - \boldsymbol{p}|} = \lim_{n \to \infty} |g'(\xi_n)| = \left| g'\left(\lim_{n \to \infty} \xi_n\right) \right| = |g'(\boldsymbol{p})|$$

• It follows that

$$\lim_{n \to \infty} \frac{|\boldsymbol{p}_{n+1} - \boldsymbol{p}|}{|\boldsymbol{p}_n - \boldsymbol{p}|} = |g'(\boldsymbol{p})|$$
(5)

- By the definition of convergence and super-convergence in (2) and (3), we see that: $\begin{cases}
 \text{If } |g'(\boldsymbol{p})| \neq 0, \text{ then } \boldsymbol{p_n} \text{ converges to } \boldsymbol{p} \text{ at a linear rate } (\lambda = |g'(\boldsymbol{p})| > 0). \\
 \text{If } |g'(\boldsymbol{p})| = 0, \text{ then } \boldsymbol{p_n} \text{ converges to } \boldsymbol{p} \text{ at a super-linear rate.}
 \end{cases}$
- To precisely find the order that p_n converges to p, expand g(x) in a Taylor's Polynomial about p. It follows that by Taylor's Theorem,

$$g(x) = g(\mathbf{p}) + g'(\mathbf{p})(x - \mathbf{p}) + \frac{1}{2}g''(\xi)(x - \mathbf{p})^2,$$
(6)

where ξ is between x and p.

• Since $g(\mathbf{p}) = p$ and $g'(\mathbf{p}) = 0$, then it follows that (6) simplifies as

$$g(x) = g(\mathbf{p}) + g'(\mathbf{p})(x - \mathbf{p}) + \frac{1}{2}g''(\xi)(x - \mathbf{p})^2$$

$$g(x) = p + \frac{1}{2}g''(\xi)(x - \mathbf{p})^2$$
(7)

• Evaluate (7) at $x = \mathbf{p_n}$. Note when $x = \mathbf{p_n}$, $g(\mathbf{p_n}) = \mathbf{p_{n+1}}$,

$$g(\mathbf{p_n}) = p + \frac{1}{2}g''(\xi_n)(\mathbf{p_n} - \mathbf{p})^2$$
$$g(\mathbf{p_n}) - \mathbf{p} = \frac{1}{2}g''(\xi_n)(\mathbf{p_n} - \mathbf{p})^2$$
$$\frac{|\mathbf{p_{n+1}} - \mathbf{p}|}{|\mathbf{p_n} - \mathbf{p}|^2} = \frac{1}{2}|g''(\xi_n)|$$

• p_n converges to p. Further, since ξ_n is always between p_n and p, then ξ_n converges to p as well. It follows that

$$\lim_{n \to \infty} \frac{|\boldsymbol{p_{n+1}} - \boldsymbol{p}|}{|\boldsymbol{p_n} - \boldsymbol{p}|^2} = \frac{1}{2} \lim_{n \to \infty} |g''(\xi_n)| = \frac{1}{2} \left| g''\left(\lim_{n \to \infty} \xi_n\right) \right| = \frac{1}{2} |g''(\boldsymbol{p})|$$

• This yields a similar statement to (5).

$$\lim_{n \to \infty} \frac{|\boldsymbol{p_{n+1}} - \boldsymbol{p}|}{|\boldsymbol{p_n} - \boldsymbol{p}|^2} = \frac{1}{2}|g''(\boldsymbol{p})|$$

• We then can conclude that

 $\begin{cases} \text{If } |g''(\boldsymbol{p})| > 0, \text{ then } \boldsymbol{p_n} \text{ converges to } \boldsymbol{p} \text{ of order } 2 \text{ (quadratically)}. \\ \text{If } g''(\boldsymbol{p}) = 0, \text{ then } \boldsymbol{p_n} \text{ converges to } \boldsymbol{p} \text{ at a super-quadratic rate (at least quadratic)}. \end{cases}$

2.1 Final Thoughts

- A side note: a key to finding faster fixed point methods is to generate a g for which $g'(\mathbf{p}) = 0$. This leads to a quadratic rate.
- We can continue this idea and develop faster methods by finding a function g(x) for which $g'(\mathbf{p}) = g''(\mathbf{p}) = 0$, but $g'''(\mathbf{p}) \neq 0$. This will lead to cubic convergence rate.
- There are some examples of these methods, one called "Halley's Method" and another "Olvert's Method". We get a faster speed by in exchange with more complexity. There is also a series of methods called "Householder's Methods" which can generate sequences of any desired rate.

3 Newton's Method

- We will develop a faster fixed point method using the tricks above.
- We want to find g(x) such that $g'(\mathbf{p}) = 0$, where \mathbf{p} is the fixed point.
- In the past, to solve f(x) = 0, we created g(x) = x f(x), or something similar.
- Let's assume that the form of g(x) is as follows and that we want to find $\phi(x)$ which forces $g'(\mathbf{p}) = 0$.

 $g(x) = x - \phi(x)f(x)$ $g'(x) = 1 - \phi'(x)f(x) - \phi(x)f'(x)$ (Using the product rule)

1

• Since $f(\mathbf{p}) = 0$ and forcing $g'(\mathbf{p}) = 0$, it follows that

$$0 = g'(\mathbf{p}) = 1 - \phi'(\mathbf{p})f(\mathbf{p}) - \phi(\mathbf{p})f'(\mathbf{p}) \implies \phi(\mathbf{p}) = \frac{1}{f'(\mathbf{p})}$$

• Therefore, the function to iterate is:

$$g(x) = x - \phi(x)f(x) = x - \left(\frac{1}{f'(\mathbf{p})}\right)f(x)$$
$$g(x) = x - \frac{f(x)}{f'(\mathbf{p})}$$

- This is VERY similar to Newton's method, except we don't know $f'(\mathbf{p})$.
- Since p is usually unknown, then let $p = p_n$ and then

$$egin{aligned} p_{n+1} = g(p_n) = p_n - rac{f(p_n)}{f'(p_n)}, \end{aligned}$$

which IS Newton's Method.

- We can show quadratic convergence by analyzing the derivative of g(x) at **p**.
- Taking the derivative of this function g(x) is

$$g'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$
(8)

- Since $f(\mathbf{p}) = 0$, then it is clear that $g'(\mathbf{p}) = 0$. Thus, Newton's method will converge at least quadratically!
- However, if f'(p) = 0 at the same time as g'(p), then we might not have quadratic convergence.

3.1 Problems with Newton's Method

• Here's an example of the problem:

Let $f(x) = x^2$, so f'(x) = 2x. This has the the obvious solution of 0. So g(x) is

$$g(x) = x - \frac{x^2}{2x} \Longrightarrow g(x) = \frac{x}{2}$$

- Note that $g'(x) = \frac{1}{2} \neq 0$
- All this method does it repeatedly half the answer from what was there before. This is clearly a linearly converging sequence. (Sounds like the Bisection)
- Why did this fail to have quadratic convergence?

Zero of Multiplicity m

Definition. A solution p of f(x) = 0 is said to be a zero of multiplicity m of f if f(x) can be written as

$$f(x) = (x - \mathbf{p})^m q(x), \text{ for } x \neq p, \text{ where } \lim_{x \to p} q(x) \neq 0.$$

Zero of Multiplicity m (Part 2)

Theorem.

The function $f \in C^m[a, b]$ has a zero of multiplicity m at p if and only if

$$f(\mathbf{p}) = f'(\mathbf{p}) = f''(\mathbf{p}) = \cdots = f^{(m-1)}(\mathbf{p}) = 0, \quad but \quad f^{(m)}(\mathbf{p}) \neq 0.$$

3.2 Example

The function $f(x) = 2\cos x - 2 - x^2$ has a zero of multiplicity 2 at x = 0. Here is why:

$$f(x) = 2\cos x - 2 - x^2 \implies f(0) = 2(1) - 2 - 0^2 = 0$$

$$f'(x) = -2\sin x - 2x \implies f'(0) = -2(0) - 2(0) = 0$$

$$f''(x) = -2\cos x - 2 \implies f''(0) = -2(1) - 2 = -4 \neq 0$$

• When the zero is NOT simple, then Newton's method will converge linearly.

4 Modified Newton's Method

- What can we do to fix this problem, if possible?
- There are two methods to fix this:

$$-g(x) = x - \frac{mf(x)}{f'(x)}$$
. (Problem 8 in Section 2.4, 5th Ed.)

– Apply Newton's Method to
$$\mu(x) = \frac{f(x)}{f'(x)}$$

- The first method requires knowledge of the multiplicity of the root. This information is not available in general.
- The second method has the advantage of not requiring knowledge of m.
- Let's focus on the second method.

- Suppose $f(x) = (x \mathbf{p})^m q(x)$, where $\lim_{x \to p} q(x) \neq 0$.
- It follows that $f'(x) = m(x \mathbf{p})^{m-1}q(x) + (x \mathbf{p})^m q'(x)$
- The new function $\mu(x)$ simplifies to

$$\mu(x) = \frac{f(x)}{f'(x)} = \frac{(x - \mathbf{p})^m q(x)}{m(x - \mathbf{p})^{m-1} q(x) + (x - \mathbf{p})^m q'(x)}$$

= $\frac{(x - \mathbf{p})^m q(x)}{(x - \mathbf{p})^{m-1} [mq(x) + (x - \mathbf{p})q'(x)]}$ (Factor out $(x - \mathbf{p})^{m-1}$)
= $\frac{(x - \mathbf{p})q(x)}{mq(x) + (x - \mathbf{p})q'(x)}$ (Cancel factor of $(x - \mathbf{p})^{m-1}$)

- What remains is a <u>simple</u> root of $\mu(x)$ at x = p.
- So apply Newton's to $\mu(x) = \frac{f(x)}{f'(x)}!$
- We will now ignore the form of f(x) above, and keep it general.

• So it follows

$$g(x) = x - \frac{\mu(x)}{\mu'(x)} = x - \frac{\frac{f(x)}{f'(x)}}{\frac{d}{dx}\left(\frac{f(x)}{f'(x)}\right)}$$

$$= x - \frac{\frac{f(x)}{f'(x)}}{\frac{f'(x) \cdot f'(x) - f(x)f''(x)}{[f'(x)]^2}}$$

$$= x - \frac{f(x)}{f'(x)}\left(\frac{[f'(x)]^2}{f'(x) \cdot f'(x) - f(x)f''(x)}\right)$$

$$g(x) = x - \frac{f(x)f'(x)}{[f'(x)]^2 - [f(x)][f''(x)]}$$
(9)

• It follows that the "Modified Newton's Method" is

$$p_{n+1} = p_n - \frac{f(p_n)f'(p_n)}{[f'(p_n)]^2 - [f(p_n)][f''(p_n)]}$$
(10)

4.1 Example 1 of Modified Newton's Method

• The previous example of a slow down was applying Newton's Method to $f(x) = x^2$, which lead to $g(x) = \frac{1}{2}x$.

- Let's try the modified procedure on this function now.
- So f'(x) = 2x and f''(x) = 2. The Modified Newton's simplifies to

$$g(x) = x - \frac{f(x)f'(x)}{[f'(x)]^2 - [f(x)][f''(x)]} = x - \frac{x^2(2x)}{[2x]^2 - [x^2][2]}$$
$$= x - \frac{2x^3}{4x^2 - 2x^2} = x - \frac{2x^3}{2x^2} = x - x = 0$$

- Woah! That is really sped up! The guess is always 0! It found the root in 1 step!
- Any function like $f(x) = (x c)^2$ will converge in 1 iteration to x = c using the modified Newton's Method.

4.2 Example 2 of Modified Newton's Method

- Apply it to a similar problem: $f(x) = x^3 3x + 2$ has a double root at x = 1
- Newton's Method applied to it is $g(x) = x \frac{x^3 3x + 2}{3x^2 3}$.
- With an initial guess of $x_0 = 2$, it takes 35 iterations to converge within 10^{-13} .
- The Modified Newton's simplifies to $(f'(x) = 3x^2 3 \text{ and } f''(x) = 6x)$

$$g(x) = x - \frac{f(x)f'(x)}{[f'(x)]^2 - [f(x)][f''(x)]} = x - \frac{(x^3 - 3x + 2)(3x^2 - 3)}{[3x^2 - 3]^2 - [x^3 - 3x + 2][6x]} = \frac{4x + 2}{x^2 + 2x + 3}$$

- With an initial guess of $x_0 = 2$, it takes 4 iterations to converge within 10^{-10} .
- 4.3 Example with $f(x) = 2\cos x 2 x^2$
 - In example 2.3, we used $f(x) = 2\cos x 2 x^2$.
 - It had a zero of multiplicity 2 at x = 0.
 - Starting with a guess of $x_0 = 1$, we applied Newton's and Modified Newton's to it.
 - It takes 37 iterations to converge within 10^{-8} with Newton's.
 - It takes 7 iterations to converge within 10^{-8} with Modified Newton's.

4.4 Orders of Common Methods

Method	Iteration Formula $(p_{n+1} =)$ or Combination	Worst Order	Best Order	Global Convergence?
Bisection	Not iteration	1	1	Yes
Fixed Point	$p_{n+1} = g(p_n)$	ϵ	_	No
Newton's	$p_{n+1} = g(p_n) = p_n - \frac{f(p_n)}{f'(p_n)}$	1	2	No
Steffensen's	Fixed Pt & Aitkens	2	2	No
Modified Newton's I	$p_{n+1} = g(p_n) = p_n - rac{f(p_n)f'(p_n)}{[f'(p_n)]^2 - f(p_n)f''(p_n)}$	2	2	No
Modified Newton's II	$g(\boldsymbol{p_n}) = \boldsymbol{p_n} - m \frac{f(\boldsymbol{p_n})}{f'(\boldsymbol{p_n})}$	2	2	No
Secant	$\boldsymbol{p_{n+1}} = g(\boldsymbol{p_n}) = p_n - \frac{f(\boldsymbol{p_n})(\boldsymbol{p_n} - p_{n-1})}{f(\boldsymbol{p_n}) - f(p_{n-1})}$	_	1.618	No
False Position	hybrid $J(\mathbf{p}_n) = J(\mathbf{p}_{n-1})$	1	1.618	Yes
Illinois	hybrid	—	1.442	Yes
Halley's Method	$p_{n+1} = g(p_n) = p_n - \frac{f(p_n)f'(p_n)}{[f'(p_n)]^2 - \frac{1}{2}f(p_n)f''(p_n)}$	_	3	No

4.5 Other Methods we didn't cover

Method	Iteration Formula $(p_{n+1} =)$ or Combination	Worst Order	Best Order	Global Convergence?
Brent's	hybrid	1.618	1.839	Yes
IQI	Inverse Quadratic Interpolation		1.839	No
ITP Method	Interpolate, Truncate, and Project	1	> 1	Yes
Mueller's Method	secant & IQI		1.839	?
Laguerre's Method	general poly root solver	1	3	Almost
Jenkins-Traub Method	complete polynomial root solver	1	2.618	Yes
Ridder's Method	false position variant	1.414	2	Yes
Durand-Kerner Method	simultaneously all roots of polynomial	1	2	Yes
Aberth Method	simultaneously all roots of polynomial	1	3	Yes