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1 Introduction

• Suppose we have a sequence of real numbers {pn}∞n=0 that converge to a number p.

• In other words, pn → p.

• We want to talk about how fast the values are converging to p as n increases.

• Allowing us to talk about this enables us to make improvements and progress!

• We can then develop new methods and compare them to the older methods.

• We will be discussing the limit in the box below. Note that the top and bottom are
how close the iterations are to p. Note also the bottom has a power of a postive α.

lim
n→∞

|pn+1 − p |
|pn − p |α

,= ? (1)

• The answer to this limit will tell us the speed of a sequence.

• What values are possible? (Discuss!)

→ ∞ (bad news).

→ 0 (good news)

→ somewhere in between 0 < λ < ∞ (finite and positive) (best news)
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Convergence a sequence of order α.

Definition. Suppose {pn}∞n=0 is a sequence that converges to p.
If constants λ > 0 and α > 0 exist with

0 < lim
n→∞

|pn+1 − p |
|pn − p |α

,= λ < ∞, then (2)

{pn}∞n=0 converges to p of order α, with asymptotic error constant λ.

Convergence examples

Definition. Further vocabulary on speeds of convergence include:
• If α = 1 and λ > 0 then the sequence is said to converge

:::::::::::
linearly to p.

• If α = 2 and λ > 0 then the sequence is said to converge
:::::::::::::::::::
quadratically to p.

• If α = 3 and λ > 0 then the sequence is said to converge
:::::::::::::
cubically to p.

• Similar language is used for larger values of α

Corollary. If 0 < α < 1 and λ > 0, the sequence converges
:::::::::::::::::
sub-linearly to p.
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Super-convergence of a sequence of order α.

Definition. Suppose {pn}∞n=0 is a sequence that converges to p.
If a positive constant α > 0 exists with

lim
n→∞

|pn+1 − p |
|pn − p |α

= 0, then (3)

• {pn}∞n=0 is said to converge to p of order super-α .

• (or, equivalently pn converges super-α-ly to p).

• (Note, the asymptotic error constant here MUST be λ = 0).

Super-convergence examples

Definition. Further vocabulary on speeds of convergence include:
• If α = 1 and λ = 0 then pn is said to

:::::::::::::::::::
superlinearly converge to p.

• If α = 2 and λ = 0 then pn is said to
:::::::::::::::::::::::::::
super-quadratically converge to p.

• If α = 3 and λ = 0 then pn is said to
:::::::::::::::::::::
super-cubically converge to p.

• If α = 4 and λ = 0 then pn is said to
::::::::::::::::::::::::
super-quartically converge to p, etc.
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Super-α-convergence implies existence of convergence of order β

Theorem. Suppose {pn}∞n=0 converges super-α-ly to p. It follows that:

• There exists β > α such that the asymptotic error constant,
λβ, is finite and positive. (0 < λβ < ∞)

• In other words, there exists a constant β larger than α such that
pn converges to p of order β

Example.

• The Secant method is known for its superlinear (super-1-ly) convergence.

• This implies that it converges at a rate greater than 1.

• In fact, that rate is β = 1+
√
5

2
≈ 1.618.

• This means that once it gets close enough, it will improve upon the last iteration
by increasing the number of digits correct by 61.8%.
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Convergence of order α implies divergence for all β > α

Theorem. Suppose that pn converges to p of order α with λ > 0.

For every β > α, pn :::::
does

:::::
not

::::::::::::
converge to p of order β.

(
lim
n→∞

|pn+1 − p |
|pn − p |β

= ∞

)

Proof. Let ϵ > 0. Suppose β = α + ϵ. It follows that

lim
n→∞

|pn+1 − p |
|pn − p |β

= lim
n→∞

|pn+1 − p |
|pn − p |α+ϵ

= lim
n→∞

|pn+1 − p |
|pn − p |α

(
1

|pn − p|ϵ

)
= lim

n→∞

|pn+1 − p |
|pn − p |α

lim
n→∞

(
1

|pn − p|ϵ

)
= λ · lim

n→∞

(
1

|pn − p|ϵ

)
= ∞

Therefore, it follows that {pn}∞n=0 does not converge to p of order β > α.
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Convergence of order α implies superconvergence for all β < α

Theorem. Suppose {pn}∞n=0 converges to p of order α. It follows that:

For every β < α, pn converges to p of order super-β.

Proof. Let ϵ > 0. Suppose β = α− ϵ. It follows that

lim
n→∞

|pn+1 − p |
|pn − p |β

= lim
n→∞

|pn+1 − p |
|pn − p |α−ϵ

= lim
n→∞

|pn+1 − p |
|pn − p |α

(|pn − p|ϵ)

= lim
n→∞

|pn+1 − p |
|pn − p |α

lim
n→∞

(|pn − p|ϵ)

= λ · lim
n→∞

(|pn − p|ϵ) = 0

Therefore, it follows that pn converges to p of order super-β, where β = α− ϵ.

• So, in summary, for every sequence that converges of order α, we have one of the
following three options:

– For α, the sequence pn converges to p of order α.

– For all values less than α, the seqence converges super-α-ly to p.

– For all values greater than α, the seqence does not converges to p.
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1.1 Example 1

1. Let pn =
1

nk
for some fixed k > 0. This sequence converges to p = 0. By the

definition in (2),

λ = lim
n→∞

|pn+1 − p |
|pn − p |α

= lim
n→∞

1

(n+ 1)k[
1

nk

]α = lim
n→∞

[
nα

n+ 1

]k
=

 lim
n→∞

nα−1

1 +
1

n


k

=
[
lim
n→∞

nα−1
]k

It follows that

• If α < 1 then λ = 0, which implies super-α convergence.
• If α = 1 then λ = 1, which implies the sequence converges linearly.
• If α > 1 then λ = ∞, which implies it does not converge at any rate greater
than linear.
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1.2 Example 2

2. Let pn = 10−2n. This also converges to 0 and the asymptotic error constant is

λ = lim
n→∞

|pn+1 − p |
|pn − p |α

= lim
n→∞

10−2n+1

10−α·2n = lim
n→∞

10−2·2n · 10α·2n = lim
n→∞

10(α−2)·2n

• If α < 2, then λ = 0. This means that pn converges super-linearly to p.
• If α = 2, then λ = 1. This means that pn converges quadratically to p.
• If α > 2, then λ = ∞ and pn does not converge at a rate larger than α = 2.

Using this as a typical quadratic sequence, you can see how fast a quadratically
convergent sequence moves. The terms of the sequence are:

n pn

1 10−2

2 10−4

3 10−8

4 10−16

5 10−32

6 10−64

It doubles the number of correct digits with each iteration! Note that after 6
iterations, it is already really small!
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2 Fixed Point Iteration (Section 2.2)

How good is fixed point iteration? Let’s analyze the fixed point algorithm,

pn+1 = g(pn)

with fixed point p. The key to the speed of convergence is derivatives of g(p).

Convergence of Fixed Point Iteration:

Theorem. Let g ∈ C[a, b] and g′ ∈ C(a, b). Furthermore,

assume there exists k < 1 such that |g′(x)| ⩽ k for all x in (a, b).

• If g′(p) ̸= 0, the sequence converges linearly to the fixed point p.

• If g′(p) = 0, the sequence converges at least quadratically to the fixed point p.

Proof. • First, we will show that pn → p. Start with the statement

pn = g(pn−1)

• Subtract p from both sides and take the absolute value:

|pn − p| = |g(pn−1)− p|
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• Note that since g(p) = p, it follows that

|pn − p| = |g(pn−1)− g(p)|

• Suppose that |g′(x)| ⩽ k < 1. By the MVT, ξ exists between pn−1 and p where

|pn − p|︸ ︷︷ ︸
left side

= |g(pn−1)− g(p)| = |g′(ξ)||pn−1 − p| ⩽ k|pn−1 − p|︸ ︷︷ ︸
right side

• Thus, the left side is less than or equal to the right side!

|pn − p| ⩽ k|pn−1 − p|. (4)

• Recursively plugging equation (4) into itself yields:

|pn − p| ⩽ k|k|pn−2 − p|| ⩽ k|k|k|pn−3 − p||| ⩽ · · · ⩽ kn|p0 − p|.

• Since 0 ⩽ k < 1, then kn → 0 as n → ∞.

• Therefore, |pn − p| → 0 as n → ∞ (which is equivalent to pn → p).

• Next, it can be shown that convergence speed will depend on the derivatives of g.

• By the Mean Value Theorem, ξ exists between pn−1 and p where

|pn+1 − p| = |g(pn)− g(p)| = |g′(ξn)||pn − p|
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• Since pn → p, then ξn → p as n → ∞. Thus,

lim
n→∞

|pn+1 − p |
| pn − p |

= lim
n→∞

|g′(ξn)| =
∣∣∣g′ ( lim

n→∞
ξn

)∣∣∣ = |g′(p)|

• It follows that

lim
n→∞

|pn+1 − p |
| pn − p |

= |g′(p)| (5)

• By the definition of convergence and super-convergence in (2) and (3), we see that:{
If |g′(p)| ≠ 0, then pn converges to p at a linear rate (λ = |g′(p)| > 0).

If |g′(p)| = 0, then pn converges to p at a super-linear rate.

• To precisely find the order that pn converges to p, expand g(x) in a Taylor’s
Polynomial about p. It follows that by Taylor’s Theorem,

g(x) = g(p) + g′(p)(x− p) +
1

2
g′′(ξ)(x− p)2, (6)

where ξ is between x and p.
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• Since g(p) = p and g′(p) = 0, then it follows that (6) simplifies as

g(x) = g(p) +�
���*

0
g′(p)(x− p) +

1

2
g′′(ξ)(x− p)2

g(x) = p+
1

2
g′′(ξ)(x− p)2 (7)

• Evaluate (7) at x = pn. Note when x = pn, g(pn) = pn+1,

g(pn) = p+
1

2
g′′(ξn)(pn − p)2

g(pn)− p =
1

2
g′′(ξn)(pn − p)2

|pn+1 − p |
|pn − p |2

=
1

2
|g′′(ξn)|

• pn converges to p. Further, since ξn is always between pn and p, then ξn converges
to p as well. It follows that

lim
n→∞

|pn+1 − p |
|pn − p |2

=
1

2
lim
n→∞

|g′′(ξn)| =
1

2

∣∣∣g′′ ( lim
n→∞

ξn

)∣∣∣ = 1

2
|g′′(p)|
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• This yields a similar statement to (5).

lim
n→∞

|pn+1 − p |
|pn − p |2

=
1

2
|g′′(p)|

• We then can conclude that{
If |g′′(p)| > 0, then pn converges to p of order 2 (quadratically).

If g′′(p) = 0, then pn converges to p at a super-quadratic rate (at least quadratic).

2.1 Final Thoughts

• A side note: a key to finding faster fixed point methods is to generate a g for which
g′(p) = 0. This leads to a quadratic rate.

• We can continue this idea and develop faster methods by finding a function g(x) for
which g′(p) = g′′(p) = 0, but g′′′(p) ̸= 0. This will lead to cubic convergence rate.

• There are some examples of these methods, one called “Halley’s Method” and
another “Olvert’s Method”. We get a faster speed by in exchange with more
complexity. There is also a series of methods called “Householder’s Methods”
which can generate sequences of any desired rate.
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3 Newton’s Method

• We will develop a faster fixed point method using the tricks above.

• We want to find g(x) such that g′(p) = 0, where p is the fixed point.

• In the past, to solve f(x) = 0, we created g(x) = x− f(x), or something similar.

• Let’s assume that the form of g(x) is as follows and that we want to find ϕ(x)
which forces g′(p) = 0.

g(x) = x− ϕ(x)f(x)

g′(x) = 1− ϕ′(x)f(x)− ϕ(x)f ′(x) (Using the product rule)

• Since f(p) = 0 and forcing g′(p) = 0, it follows that

0 = g′(p) = 1− ϕ′(p)��
��f(p)− ϕ(p)f ′(p) =⇒ ϕ(p) =

1

f ′(p)

• Therefore, the function to iterate is:

g(x) = x− ϕ(x)f(x) = x−
(

1

f ′(p)

)
f(x)

g(x) = x− f(x)

f ′(p)
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• This is VERY similar to Newton’s method, except we don’t know f ′(p).

• Since p is usually unknown, then let p = pn and then

pn+1 = g(pn) = pn −
f(pn)

f ′(pn)
,

which IS Newton’s Method.

• We can show quadratic convergence by analyzing the derivative of g(x) at p.

• Taking the derivative of this function g(x) is

g′(x) = 1− [f ′(x)]2 − f(x)f ′′(x)

[f ′(x)]2
=

f(x)f ′′(x)

[f ′(x)]2
(8)

• Since f(p) = 0, then it is clear that g′(p) = 0. Thus, Newton’s method will
converge at least quadratically!

• However, if f ′(p) = 0 at the same time as g′(p), then we might not have quadratic
convergence.
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3.1 Problems with Newton’s Method

• Here’s an example of the problem:
Let f(x) = x2, so f ′(x) = 2x. This has the the obvious solution of 0. So g(x) is

g(x) = x− x2

2x
=⇒ g(x) =

x

2

• Note that g′(x) = 1
2 ̸= 0

• All this method does it repeatedly half the answer from what was there before.
This is clearly a linearly converging sequence. (Sounds like the Bisection)

• Why did this fail to have quadratic convergence?

Zero of Multiplicity m

Definition. A solution p of f(x) = 0 is said to be a zero of multiplicity m of f if
f(x) can be written as

f(x) = (x− p)mq(x), for x ̸= p, where lim
x→p

q(x) ̸= 0.
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Zero of Multiplicity m (Part 2)

Theorem.
The function f ∈ Cm[a, b] has a zero of multiplicity m at p if and only if

f(p) = f ′(p) = f ′′(p) = · · · = f (m−1)(p) = 0, but f (m)(p) ̸= 0.

3.2 Example

The function f(x) = 2 cosx− 2− x2 has a zero of multiplicity 2 at x = 0. Here is why:

f(x) = 2 cosx− 2− x2 =⇒ f(0) = 2(1)− 2− 02 = 0

f ′(x) = −2 sinx− 2x =⇒ f ′(0) = −2(0)− 2(0) = 0

f ′′(x) = −2 cosx− 2 =⇒ f ′′(0) = −2(1)− 2 = −4 ̸= 0

• When the zero is NOT simple, then Newton’s method will converge linearly.

Math 311–Sec2.4: Error Analysis for Iterative Methods (Solutions of Equations of One Variable) GoBack 18



4 Modified Newton’s Method

• What can we do to fix this problem, if possible?

• There are two methods to fix this:

– g(x) = x− mf(x)

f ′(x)
. (Problem 8 in Section 2.4, 5th Ed.)

– Apply Newton’s Method to µ(x) =
f(x)

f ′(x)
.

• The first method requires knowledge of the multiplicity of the root. This
information is not available in general.

• The second method has the advantage of not requiring knowledge of m.

• Let’s focus on the second method.
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• Suppose f(x) = (x− p)mq(x), where lim
x→p

q(x) ̸= 0.

• It follows that f ′(x) = m(x− p)m−1q(x) + (x− p)mq′(x)

• The new function µ(x) simplifies to

µ(x) =
f(x)

f ′(x)
=

(x− p)mq(x)

m(x− p)m−1q(x) + (x− p)mq′(x)

=
(x− p)mq(x)

(x− p)m−1[mq(x) + (x− p)q′(x)]
(Factor out (x− p)m−1)

=
(x− p)q(x)

mq(x) + (x− p)q′(x)
(Cancel factor of (x− p)m−1)

• What remains is a simple root of µ(x) at x = p.

• So apply Newton’s to µ(x) =
f(x)

f ′(x)
!

• We will now ignore the form of f(x) above, and keep it general.
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• So it follows

g(x) = x− µ(x)

µ′(x)
= x−

f(x)
f ′(x)

d
dx

(
f(x)
f ′(x)

)
= x−

f(x)
f ′(x)

f ′(x)·f ′(x)−f(x)f ′′(x)
[f ′(x)]2

= x− f(x)

f ′(x)

(
[f ′(x)]2

f ′(x) · f ′(x)− f(x)f ′′(x)

)
g(x) = x− f(x)f ′(x)

[f ′(x)]2 − [f(x)][f ′′(x)]
(9)

• It follows that the “Modified Newton’s Method” is

pn+1 = pn − f(pn)f
′(pn)

[f ′(pn)]2 − [f(pn)][f ′′(pn)]
(10)

4.1 Example 1 of Modified Newton’s Method

• The previous example of a slow down was applying Newton’s Method to f(x) = x2,
which lead to g(x) = 1

2x.
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• Let’s try the modified procedure on this function now.

• So f ′(x) = 2x and f ′′(x) = 2. The Modified Newton’s simplifies to

g(x) = x− f(x)f ′(x)

[f ′(x)]2 − [f(x)][f ′′(x)]
= x− x2(2x)

[2x]2 − [x2][2]

= x− 2x3

4x2 − 2x2
= x− 2x3

2x2
= x− x = 0

• Woah! That is really sped up! The guess is always 0! It found the root in 1 step!

• Any function like f(x) = (x− c)2 will converge in 1 iteration to x = c using the
modified Newton’s Method.
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4.2 Example 2 of Modified Newton’s Method

• Apply it to a similar problem: f(x) = x3 − 3x+ 2 has a double root at x = 1

• Newton’s Method applied to it is g(x) = x− x3 − 3x+ 2

3x2 − 3
.

• With an initial guess of x0 = 2, it takes 35 iterations to converge within 10−13.

• The Modified Newton’s simplifies to (f ′(x) = 3x2 − 3 and f ′′(x) = 6x)

g(x) = x− f(x)f ′(x)

[f ′(x)]2 − [f(x)][f ′′(x)]
= x− (x3 − 3x+ 2)(3x2 − 3)

[3x2 − 3]2 − [x3 − 3x+ 2][6x]
=

4x+ 2

x2 + 2x+ 3

• With an initial guess of x0 = 2, it takes 4 iterations to converge within 10−10.

4.3 Example with f(x) = 2cosx− 2− x2

• In example 2.3, we used f(x) = 2 cosx− 2− x2.

• It had a zero of multiplicity 2 at x = 0.

• Starting with a guess of x0 = 1, we applied Newton’s and Modified Newton’s to it.

• It takes 37 iterations to converge within 10−8 with Newton’s.

• It takes 7 iterations to converge within 10−8 with Modified Newton’s.
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4.4 Orders of Common Methods

Method Iteration Formula (pn+1 =) or Combination
Worst
Order

Best
Order

Global
Convergence?

Bisection Not iteration 1 1 Yes

Fixed Point pn+1 = g(pn) ϵ – No

Newton’s pn+1 = g(pn) = pn − f(pn)

f ′(pn)
1 2 No

Steffensen’s Fixed Pt & Aitkens 2 2 No

Modified Newton’s I pn+1 = g(pn) = pn − f(pn)f
′(pn)

[f ′(pn)]2 − f(pn)f ′′(pn)
2 2 No

Modified Newton’s II g(pn) = pn −m
f(pn)

f ′(pn)
2 2 No

Secant pn+1 = g(pn) = pn −
f(pn)(pn − pn−1)

f(pn)− f(pn−1)
– 1.618 No

False Position hybrid 1 1.618 Yes

Illinois hybrid – 1.442 Yes

Halley’s Method pn+1 = g(pn) = pn − f(pn)f
′(pn)

[f ′(pn)]2 − 1
2
f(pn)f ′′(pn)

– 3 No
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4.5 Other Methods we didn’t cover

Method Iteration Formula (pn+1 =) or Combination
Worst
Order

Best
Order

Global
Convergence?

Brent’s hybrid 1.618 1.839 Yes

IQI Inverse Quadratic Interpolation 1.839 No

ITP Method Interpolate, Truncate, and Project 1 > 1 Yes

Mueller’s Method secant & IQI 1.839 ?

Laguerre’s Method general poly root solver 1 3 Almost

Jenkins-Traub Method complete polynomial root solver 1 2.618 Yes

Ridder’s Method false position variant 1.414 2 Yes

Durand-Kerner Method simultaneously all roots of polynomial 1 2 Yes

Aberth Method simultaneously all roots of polynomial 1 3 Yes

Math 311–Sec2.4: Error Analysis for Iterative Methods (Solutions of Equations of One Variable) GoBack 25


