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1 Introduction

e Suppose we have a sequence of real numbers {p,}~ , that converge to a number ).
e In other words, p,, — p.

e We want to talk about how fast the values are converging to p as n increases.

e Allowing us to talk about this enables us to make improvements and progress!

e We can then develop new methods and compare them to the older methods.

e We will be discussing the limit in the box below. Note that the top and bottom are
how close the iterations are to p. Note also the bottom has a power of a postive a.

lim 1P =Pl ? (1)

a’
n—00 \pn—p\ .

e The answer to this limit will tell us the speed of a sequence.

e What values are possible? (Discuss!)

— 00 (bad news).
— 0 (good news)

— somewhere in between 0 < A < oo (finite and positive) (best news)
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Convergence a sequence of order «.

Definition. Suppose {p,} 1S a sequence that converges to p.
If constants A > 0 and o > 0 ewxist with

0 < lim |pm_1_p|,:)\<oo, then (2)
n—00 ‘ Pn — D |a
{pn} converges to p of order o, with asymptotic error constant \.

Convergence examples

Definition. Further vocabulary on speeds of convergence include:
o [fa=1 and \ > 0 then the sequence is said to converge linearly to p.
o [fa=2 and X\ > 0 then the sequence is said to converge quadratically to p.
o [fa =3 and X\ > 0 then the sequence is said to converge cubically to p.
e Similar language is used for larger values of «

Corollary. If 0 < a < 1 and A > 0, the sequence converges sub-linearly to p.
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Super-convergence of a sequence of order a.

Definition. Suppose {p,} 1S a sequence that converges to p.
If a positive constant o > 0 exists with

lim [P = P| _ 0, | then (3)

n—00 |pn—p‘o‘_

o {p,} 15 said to converge to p of order super-o .
e (or, equivalently p, converges super-a-ly to p).
e (Note, the asymptotic error constant here MUST be X = 0).

Super-convergence examples

Definition. Further vocabulary on speeds of convergence include:
o [fa=1 and A = 0 then p, s said to superlinearly converge to p.
o If a=2 and A =0 then p, is said to super-quadratically converge to p.
o [fa=3 and X\ =0 then p, is said to super-cubically converge to p.
o [fa=4 and A = 0 then p,, s said to super-quartically converge to p, etc.
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Super-a-convergence implies existence of convergence of order 3

Theorem. Suppose {p,} converges super-a-ly to p. It follows that:

e There exists B > a such that the asymptotic error constant,
Ag, is finite and positive. (0 < Ag < 00)
e In other words, there exists a constant 3 larger than o such that
Prn converges to p of order (3

Example.
e The Secant method is known for its superlinear (super-1-ly) convergence.
e This implies that it converges at a rate greater than 1.
e In fact, that rate is 3 = 1+T‘/5 ~ 1.618.

e This means that once it gets close enough, it will improve upon the last iteration
by increasing the number of digits correct by 61.8%.
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Convergence of order o implies divergence for all 8 > «

Theorem. Suppose that p,, converges to p of order a with A > 0.

For every B > «, p, does not converge to p of order 3. | lim |pn+1_p|6:oo

Proof. Let € > 0. Suppose 8 = a + €. It follows that

— — — 1
g [Pt =P | Paen =P [Pen P ( )
n—00 |pn—p|5 n—00 |pn—p|0‘+6 n—00 |pn—p|a ‘pn—p‘e
— 1
= lim —| Pr1 — P| lim (—)
n—00 |pn —p|a n—00 |pn —p|E
1
=\ lim (—) = 00
n—00 |pn — p|6
Therefore, it follows that {p,,} does not converge to p of order 3 > «. []
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Convergence of order o« implies superconvergence for all 3 < «

Theorem. Suppose {p,} converges to p of order a.. It follows that:

For every p < a, p, converges to p of order super-f3.

Proof. Let € > 0. Suppose 8 = a — €. It follows that

n—00 |pn—p|5 n—00 |pn—p|0‘_6 n—00 |pn—p’0‘

= lim Puis = p| lim (|pn — p[)

(|pn — p[%)

n—00 |pn—p|an—>oo(
=A-lim (|p, —p|)=0
n—oo
Therefore, it follows that p,, converges to p of order super-3, where f = a — e. []

e So, in summary, for every sequence that converges of order a, we have one of the
following three options:
— For «, the sequence p,, converges to p of order a.
— For all values less than «, the seqence converges super-a-ly to p.

— For all values greater than «, the seqence does not converges to p.
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1.1 Example 1

1
1. Let pp, = — for some fixed k > 0. This sequence converges to p = 0. By the
n
definition in ([2)),

1 k
— 1)k a 1k a—1
A= lim |pn+1—p| = lim M — lim | ——| = |lm | = [lim n®"
n—00 ‘pn —-p ‘0‘ n—00 1 n—oo |m + 1 n—00 1 l n—00
nk n

It follows that

e If < 1 then A\ = 0, which implies super-a convergence.

e If & =1 then A = 1, which implies the sequence converges linearly.

e If &« > 1 then A = oo, which implies it does converge at any rate greater
than linear.
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1.2 Example 2

2. Let p,, = 1072". This also converges to 0 and the asymptotic error constant is

— 1072 . . .
A= lim M = lim — lim 10—2-2 . 1004-2 — lim 10(04—2)-2

n—00 ‘pn —p |O‘ n—oo 10Q—a2" n—00 n—+00

o If @ < 2, then A = 0. This means that p,, converges super-linearly to p.
o If & =2, then A = 1. This means that p,, converges quadratically to p.
e I[f @ > 2, then A\ = oo and p,, does not converge at a rate larger than a = 2.

Using this as a typical quadratic sequence, you can see how fast a quadratically
convergent sequence moves. The terms of the sequence are:

L Dn
1072
10~
10~8

T W DN =

6 1079

It doubles the number of correct digits with each iteration! Note that after 6
iterations, it is already really small!
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2 Fixed Point Iteration (Section 2.2)

How good is fixed point iteration? Let’s analyze the fixed point algorithm,

DPnt1 = 9(Dn)

with fixed point p. The key to the speed of convergence is derivatives of g(p).

Convergence of Fixed Point Iteration:

Theorem. Let g € Cla,b] and ¢ € C(a,b). Furthermore,

assume there exists such that[ J(2)] <k | forall z in (a,b).

e If ¢ (p) # 0, the sequence converges linearly to the fized point p.
e If ¢'(p) =0, the sequence converges at least quadratically to the fixed point p.

Proof. e First, we will show that p,, — p. Start with the statement
Prn = g(Pn-1)
e Subtract p from both sides and take the absolute value:
[pn — Pl = lg(pn-1) — P
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e Note that since g(p) = p, it follows that
[pn — Pl = [9(pn-1) — 9(p)|

e Suppose that |¢'(x)] < k < 1. By the MVT, ¢ exists between p,,_1 and p where

Pn — Pl = [9(Pn-1) — 9()| = |9'(EIIPa—1 — p| < k|pa—1 — 1|
—— —_——
left side right side

e Thus, the left side is less than or equal to the right side!
[pn — | < klpn1 —p|. (4)
e Recursively plugging equation into itself yields:
P — p| < klklpn—2 — pl| < E|k|k[pn—s — pll| < - < E"[po — pl.
e Since 0 < k < 1, then k" — 0 as n — oc.
e Therefore, |p, — p| — 0 as n — oo (which is equivalent to p,, — p).

e Next, it can be shown that convergence speed will depend on the derivatives of g.

e By the Mean Value Theorem, ¢ exists between p,, 1 and p where

P — Pl = 19(pn) — 9(P) = |9 (&)l lpn — Pl
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e Since p, — p, then &, — p as n — oo. Thus,

11 |pn—|—1_p|

= lim [¢/(&)] = |¢' (Jim & )| = l9/(p)]
n—00 | Pn —p| n—00
e It follows that
p — P
lim 221 Pl ) (5)

n—00 | Pn —p|

e By the definition of convergence and super-convergence in and , we see that:
{If |d'(p)| # 0, then p,, converges to p at a linear rate (A = |¢'(p)| > 0).

If |¢'(p)| = 0, then p,, converges to p at a super-linear rate.

e To precisely find the order that p,, converges to p, expand g(z) in a Taylor’s
Polynomial about p. It follows that by Taylor’s Theorem,

1

9(x) = 9(p) + g'(P)(x = p) + 59" ()@ = p)*, (6)

where £ is between x and p.
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e Since g(p) = p and ¢'(p) = 0, then it follows that (6] simplifies as

g(r) = g(p) +M2 —p) + %g"(@(:c —p)’
1

9(x) = p+59"(€)(x - p)* (7)

e Evaluate (7)) at = p,,. Note when = = p,,, g(pn) = Pnt1,

9(pn) =+ 56"(€:) (pn — P
g(Pn) — P = %g"(ﬁn)(pn —p)?
‘pn—i-l - pl o 1 "

e p,, converges to p. Further, since &, is always between p,, and p, then &, converges
to p as well. It follows that

1 1,
n—00 |pn—p|2_2n—>oo _2|g ()]

o (i)

n—0o0
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e This yields a similar statement to ([9]).
: ‘ Prnta — D | 1 "
lim ——— = -
29 (Pl
e We then can conclude that
{If |g"(p)| > 0, then p,, converges to p of order 2 (quadratically).

If ¢"(p) =0, then p, converges to p at a super-quadratic rate (at least quadratic).
[l

2.1 Final Thoughts

e A side note: a key to finding faster fixed point methods is to generate a g for which
¢'(p) = 0. This leads to a quadratic rate.

e We can continue this idea and develop faster methods by finding a function g(x) for
which ¢'(p) = ¢"(p) = 0, but ¢"”(p) # 0. This will lead to cubic convergence rate.

e There are some examples of these methods, one called “Halley’s Method” and
another “Olvert’s Method”. We get a faster speed by in exchange with more
complexity. There is also a series of methods called “Householder’s Methods”
which can generate sequences of any desired rate.

Math 311- (Solutions of Equations of One Variable 14



3 Newton’s Method

e We will develop a faster fixed point method using the tricks above.
e We want to find g(x) such that ¢’(p) = 0, where p is the fixed point.
e In the past, to solve f(z) =0, we created g(z) = — f(x), or something similar.

e Let’s assume that the form of g(x) is as follows and that we want to find ¢(x)
which forces ¢'(p) = 0.

9(x) =z — ¢(x) f(z)
gdx)=1=¢'(x)f(x) — od(x)f () (Using the product rule)

e Since f(p) = 0 and forcing ¢'(p) = 0, it follows that

0=yg'(p)=1-¢(p) tw) — é(p —  d(p) =

e Therefore, the function to iterate is:

g(@) = v — $(@)f(x) = @ ( f,(lp)) /(@)
i)

gle) =2 = f'(p)
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e This is VERY similar to Newton’s method, except we don’t know f'(p).

e Since p is usually unknown, then let p = p,, and then

f(pn)

Prt1 = 9(Pn) = Pn — ,
T f(pa)

which IS Newton’s Method.
e We can show quadratic convergence by analyzing the derivative of g(z) at p.

e Taking the derivative of this function g(z) is

/ [f' (@) = f)f"(=) _ fz)f" ()
7o) PP 7P )
e Since f(p) = 0, then it is clear that ¢’(p) = 0. Thus, Newton’s method will
converge at least quadratically!

e However, if f/'(p) = 0 at the same time as ¢'(p), then we might not have quadratic
convergence.
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3.1 Problems with Newton’s Method
e Here’s an example of the problem:

Let f(x) = 22, so f'(x) = 2x. This has the the obvious solution of 0. So g(z) is

33'2

x
g(x)—x—gﬁg(x)—g
e Note that ¢'(z) =3 # 0

e All this method does it repeatedly half the answer from what was there before.
This is clearly a linearly converging sequence. (Sounds like the Bisection)

e Why did this fail to have quadratic convergence?

Zero of Multiplicity m

Definition. A solution p of f(x) = 0 is said to be a zero of multiplicity m of f if
f(x) can be written as

£(@) = (o = p)"a(@), for @ #p, where limq(z) #0.
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Zero of Multiplicity m (Part 2)

Theorem.
The function f € C™|a,b] has a zero of multiplicity m at p if and only if
fo)=Ff) =f'p)=--=f"Dp)=0, but [f™(p)#0.

3.2 Example

The function f(z) = 2cosz — 2 — 2? has a zero of multiplicity 2 at = 0. Here is why:

f(zx)= 2cosz —2—2” — f(0)= 2(1)—2-0? =0
f(x) = —2sinz — 2z — £(0) = —2(0) — 2(0) —0
f"(z) = —2cosx — 2 — (0) = —2(1) — 2 =440

e When the zero is NOT simple, then Newton’s method will converge linearly.
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4 Modified Newton’s Method

e What can we do to fix this problem, if possible?

e There are two methods to fix this:

—g(z) =2 — ﬂ;/f((x)) (Problem 8 in Section 2.4, 5th Ed.)
T
— Apply Newton’s Method to u(x) = ]]:/((x))
x

e The first method requires knowledge of the multiplicity of the root. This
information is not available in general.

e The second method has the advantage of not requiring knowledge of m.

e Let’s focus on the second method.
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e Suppose f(x) = (x — p)"q(x), where lim g(x) # 0.

T—p
e It follows that f'(z) = m(z — p)" q(z) + (z — p)"¢'(z)
e The new function pu(z) simplifies to

() = flx) (z — p)"q(x)
f'(@) m(z —p)"lq(e) + (x — p)"q'(x)
_ (z —p)"q(z)
(z —p)"Hmg(z) + (2 — p)¢'(2)]
(z — p)g(x)

" mg(z) + (x — p)¢(2) (Cancel factor of (z — p)

(Factor out (z — p)™™1)

m—l)

e What remains is a simple root of p(z) at x = p.
),
()

e We will now ignore the form of f(z) above, and keep it general.

e So apply Newton’s to u(x)
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e So it follows

p(x) F
TG T g (e
f(z)
_ f'(x)
f'(@)-f' ()= f(x) [ (x)
[ (x)]?
S oY ) )
f'() f(’(ﬂ)ﬁ) (f;( x) — f(z)f"(x)
o) =~ [ = P ¥
e It follows that the “Modified Newton’s Method” is
f(pn)f/(pn)

Pt = B = TP — @[ ()]

4.1 Example 1 of Modified Newton’s Method

e The previous example of a slow down was applying Newton’s Method to f(x) = 22,

which lead to g(z) = 3.
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e Let’s try the modified procedure on this function now.

e So f'(x) = 2z and f"(z) = 2. The Modified Newton’s simplifies to

e @@ 2
Lf/(@)]? = [f(@)][f"(x)] 22]? — [27][2]
R 0
TP T o T P Ty T T

e Woah! That is really sped up! The guess is always 0! It found the root in 1 step!

e Any function like f(x) = (x — ¢)? will converge in 1 iteration to x = ¢ using the
modified Newton’s Method.
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4.2 Example 2 of Modified Newton’s Method

e Apply it to a similar problem: f(z) = 23 — 3z + 2 has a double root at z = 1
23 — 3z + 2

3x2—3
e With an initial guess of xy = 2, it takes 35 iterations to converge within 1013
e The Modified Newton’s simplifies to (f/(x) = 32* — 3 and f”(x) = 6x)

g(z) =z — f(x)f'(x) o (2% — 32 + 2)(322 — 3) B Ar 49
(@) = [f(@)][f" ()] 322 — 3] — [23 — 3z + 2|[62] 2?2422+ 3

e Newton’s Method applied to it is g(z) = = —

e With an initial guess of xy = 2, it takes 4 iterations to converge within 1071,

4.3 Example with f(z) = 2cosz — 2 — 2
e In example 2.3, we used f(z) =2cosx — 2 — 2°.
e It had a zero of multiplicity 2 at x = 0.
e Starting with a guess of o = 1, we applied Newton’s and Modified Newton’s to it.

o It takes 37 iterations to converge within 10~® with Newton’s.

e It takes 7 iterations to converge within 10~® with Modified Newton’s.
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4.4 Orders of Common Methods

. o Worst  Best Global
Method Iteration Formula (p,+; =) or Combination Order Order Convergence?
Bisection Not iteration 1 1 Yes
Fixed Point D1 = 9(Pn) € - No
f(Pn)
Newton’s Prt1 = 9(Pn) = Pn — 1 2 No
it = 9(Pn) f'(pn)
Steffensen’s Fixed Pt & Aitkens 2 2 No
: f(pn) f'(Pn)
Modified Newton’s I  p,1 = g(pn) = pn — 2 2 No
o =9 =P SR ) )
Modified Newton’s IT ¢(p,) = p, — m;,((pn)) 2 2 No
Pn
f(pTL)(pn - pn—l)
Secant Pri1 = 9(Pn) = pn — - 1.618 No
ot =9 = ) Fa)
False Position hybrid 1 1.618 Yes
[llinois hybrid - 1.442 Yes
f(pn) f'(Pn)

Halley's Method — Prs = 9lbn) =P = [ 0 Thp ) P00 N
n ) n n
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4.5 Other Methods we didn’t cover

Method Iteration Formula (p,1; =) or Combination \groégi OBrZSetr Con(x}/éigzlllce?
Brent’s hybrid 1.618  1.839 Yes

1QI Inverse Quadratic Interpolation 1.839 No

ITP Method Interpolate, Truncate, and Project 1 > 1 Yes
Mueller’s Method secant & 1QI 1.839 ?
Laguerre’s Method general poly root solver 1 3 Almost
Jenkins-Traub Method complete polynomial root solver 1 2.618 Yes
Ridder’s Method false position variant 1.414 2 Yes
Durand-Kerner Method simultaneously all roots of polynomial 1 2 Yes
Aberth Method simultaneously all roots of polynomial 1 3 Yes
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