Math 311 Numerical Methods

2.4: Error Analysis for Iterative Methods Solutions of Equations of One Variable

> S. K. Hyde Burden and Faires, any ed.

> > Winter 2025

1 Introduction

- Suppose we have a sequence of real numbers $\{p_n\}_{n=0}^{\infty}$ that converge to a number p .
- In other words, $p_n \to p$.
- We want to talk about how fast the values are converging to p as n increases.
- Allowing us to talk about this enables us to make improvements and progress!
- We can then develop new methods and compare them to the older methods.
- We will be discussing the limit in the box below. Note that the top and bottom are how close the iterations are to **p**. Note also the bottom has a power of a postive α .

$$
\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}},=\quad \ \ \text{\large{\Large \sum}}
$$

(1)

- The answer to this limit will tell us the speed of a sequence.
- What values are possible? (Discuss!)
	- $\rightarrow \infty$ (bad news).
	- $\rightarrow 0$ (good news)
	- \rightarrow somewhere in between $0 < \lambda < \infty$ (finite and positive) (best news)

Convergence a sequence of order α .

Definition. Suppose $\{\boldsymbol p_n\}_{n=0}^\infty$ is a sequence that converges to $\boldsymbol p$. If constants $\lambda > 0$ and $\alpha > 0$ exist with

$$
0 < \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}}, = \lambda < \infty, \quad then \tag{2}
$$

 $\{p_n\}_{n=0}^\infty$ converges to p of order α , with asymptotic error constant λ .

Convergence examples

Definition. Further vocabulary on speeds of convergence include:

- If $\alpha = 1$ and $\lambda > 0$ then the sequence is said to converge **linearly** to **p**.
- If $\alpha = 2$ and $\lambda > 0$ then the sequence is said to converge **quadratically** to **p**.
- If $\alpha = 3$ and $\lambda > 0$ then the sequence is said to converge **cubically** to **p**.
- Similar language is used for larger values of α

Corollary. If $0 < \alpha < 1$ and $\lambda > 0$, the sequence converges sub-linearly to p.

Super-convergence of a sequence of order α .

Definition. Suppose $\{\boldsymbol p_n\}_{n=0}^\infty$ is a sequence that converges to $\boldsymbol p$. If a positive constant $\alpha > 0$ exists with

$$
\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \mathbf{0}, \quad then \tag{3}
$$

- $\{p_n\}_{n=0}^{\infty}$ is said to converge to **p** of order **super-** α .
- (or, equivalently p_n converges super- α -ly to p).
- (Note, the asymptotic error constant here MUST be $\lambda = 0$).

Super-convergence examples

Definition. Further vocabulary on speeds of convergence include:

- If $\alpha = 1$ and $\lambda = 0$ then p_n is said to **superlinearly** converge to p.
- If $\alpha = 2$ and $\lambda = 0$ then p_n is said to **super-quadratically** converge to p .
- If $\alpha = 3$ and $\lambda = 0$ then p_n is said to **super-cubically** converge to p .
- If $\alpha = 4$ and $\lambda = 0$ then p_n is said to **super-quartically** converge to p , etc.

Super- α -convergence implies existence of convergence of order β

Theorem. Suppose $\{p_n\}_{n=0}^{\infty}$ converges super- α -ly to **p**. It follows that:

- There exists $\beta > \alpha$ such that the asymptotic error constant, λ_{β} , is finite and positive. $(0 < \lambda_{\beta} < \infty)$
- In other words, there exists a constant β larger than α such that p_n converges to p of order β

Example.

- The Secant method is known for its superlinear (super-1-ly) convergence.
- This implies that it converges at a rate greater than 1.
- \bullet In fact, that rate is $\beta = \frac{1+\sqrt{5}}{2} \approx 1.618$.
- This means that once it gets close enough, it will improve upon the last iteration by increasing the number of digits correct by 61.8%.

Convergence of order α implies divergence for all $\beta > \alpha$

Theorem. Suppose that p_n converges to p of order α with $\lambda > 0$. For every $\beta > \alpha$, $\boldsymbol{p_n}$ does not converge to \boldsymbol{p} of order $\boldsymbol{\beta}$. $\sqrt{ }$ $\lim_{n\to\infty}$ $\mid p_{n\!+\!1}-p\!\mid$ $\frac{\boldsymbol{P}^{n+1}-\boldsymbol{P}^{\top}}{\|\boldsymbol{p}_{n}-\boldsymbol{p}\|^{ \beta}}=\infty$ \setminus

Proof. Let $\epsilon > 0$. Suppose $\beta = \alpha + \epsilon$. It follows that

$$
\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\beta}} = \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha + \epsilon}} = \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} \left(\frac{1}{|p_n - p|^{\epsilon}}\right)
$$

$$
= \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} \lim_{n \to \infty} \left(\frac{1}{|p_n - p|^{\epsilon}}\right)
$$

$$
= \lambda \cdot \lim_{n \to \infty} \left(\frac{1}{|p_n - p|^{\epsilon}}\right) = \infty
$$

Therefore, it follows that $\{p_n\}_{n=0}^{\infty}$ does not converge to p of order $\beta > \alpha$.

Convergence of order α implies superconvergence for all $\beta < \alpha$

Theorem. Suppose $\{p_n\}_{n=0}^{\infty}$ converges to **p** of order α . It follows that:

For every $\beta < \alpha$, p_n converges to p of order super- β .

Proof. Let $\epsilon > 0$. Suppose $\beta = \alpha - \epsilon$. It follows that

$$
\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\beta}} = \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha - \epsilon}} = \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} (|p_n - p|^{\epsilon})
$$

$$
= \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} \lim_{n \to \infty} (|p_n - p|^{\epsilon})
$$

$$
= \lambda \cdot \lim_{n \to \infty} (|p_n - p|^{\epsilon}) = 0
$$

Therefore, it follows that p_n converges to p of order super- β , where $\beta = \alpha - \epsilon$.

- So, in summary, for every sequence that converges of order α , we have one of the following three options:
	- For α , the sequence p_n converges to p of order α .
	- For all values less than α , the sequence converges super- α -ly to **p**.
	- For all values greater than α , the sequence does not converges to **p**.

1.1 Example 1

1. Let $p_n =$ 1 n^k for some fixed $k > 0$. This sequence converges to $p = 0$. By the definition in [\(2\)](#page-2-0),

$$
\lambda = \lim_{n \to \infty} \frac{|\mathbf{p}_{n+1} - \mathbf{p}|}{|\mathbf{p}_n - \mathbf{p}|^\alpha} = \lim_{n \to \infty} \frac{\frac{1}{(n+1)^k}}{\left[\frac{1}{n^k}\right]^\alpha} = \lim_{n \to \infty} \left[\frac{n^\alpha}{n+1}\right]^k = \left[\lim_{n \to \infty} \frac{n^{\alpha-1}}{1 + \frac{1}{n}}\right]^k = \left[\lim_{n \to \infty} n^{\alpha-1}\right]^k
$$

It follows that

- If $\alpha < 1$ then $\lambda = 0$, which implies super- α convergence.
- If $\alpha = 1$ then $\lambda = 1$, which implies the sequence converges linearly.
- If $\alpha > 1$ then $\lambda = \infty$, which implies it does not converge at any rate greater than linear.

1.2 Example 2

2. Let $p_n = 10^{-2^n}$. This also converges to 0 and the asymptotic error constant is

$$
\lambda = \lim_{n \to \infty} \frac{|\mathbf{p}_{n+1} - \mathbf{p}|}{|\mathbf{p}_n - \mathbf{p}|^\alpha} = \lim_{n \to \infty} \frac{10^{-2^{n+1}}}{10^{-\alpha \cdot 2^n}} = \lim_{n \to \infty} 10^{-2 \cdot 2^n} \cdot 10^{\alpha \cdot 2^n} = \lim_{n \to \infty} 10^{(\alpha - 2) \cdot 2^n}
$$

• If $\alpha < 2$, then $\lambda = 0$. This means that p_n converges super-linearly to p.

• If
$$
\alpha = 2
$$
, then $\lambda = 1$. This means that p_n converges quadratically to p.

• If $\alpha > 2$, then $\lambda = \infty$ and p_n does not converge at a rate larger than $\alpha = 2$.

Using this as a typical quadratic sequence, you can see how fast a quadratically convergent sequence moves. The terms of the sequence are:

It doubles the number of correct digits with each iteration! Note that after 6 iterations, it is already really small!

2 Fixed Point Iteration (Section 2.2)

How good is fixed point iteration? Let's analyze the fixed point algorithm,

 $\boxed{\quad p_{n+1}=g(\boldsymbol{p}_n) \quad}$

with fixed point **p**. The key to the speed of convergence is derivatives of $q(\mathbf{p})$.

Convergence of Fixed Point Iteration:

Theorem. Let $g \in C[a, b]$ and $g' \in C(a, b)$. Furthermore, assume there exists $k < 1$ such that $|g'(x)| \leq k$ for all x in (a, b) .

• If $g'(\mathbf{p}) \neq 0$, the sequence converges linearly to the fixed point **p**.

• If $g'(\mathbf{p}) = 0$, the sequence converges at least quadratically to the fixed point \mathbf{p} .

Proof. • First, we will show that $p_n \to p$. Start with the statement

$$
\boldsymbol{p_n} = g(p_{n-1})
$$

• Subtract \boldsymbol{p} from both sides and take the absolute value:

$$
|\boldsymbol{p_n}-\boldsymbol{p}|=|g(p_{n-1})-\boldsymbol{p}|
$$

• Note that since $g(\mathbf{p}) = p$, it follows that

$$
|\boldsymbol{p_n}-\boldsymbol{p}|=|g(p_{n-1})-g(\boldsymbol{p})|
$$

• Suppose that $|g'(x)| \leq k < 1$. By the MVT, ξ exists between p_{n-1} and p where

$$
\underbrace{\left|\boldsymbol{p_n}-\boldsymbol{p}\right|}_{\text{left side}}=\left|g(p_{n-1})-g(\boldsymbol{p})\right|=\left|g'(\xi)\right|\left|p_{n-1}-p\right|\leqslant \underbrace{k\left|p_{n-1}-p\right|}_{\text{right side}}
$$

• Thus, the left side is less than or equal to the right side!

$$
|\boldsymbol{p_n} - \boldsymbol{p}| \leqslant k |p_{n-1} - \boldsymbol{p}|. \tag{4}
$$

• Recursively plugging equation [\(4\)](#page-10-0) into itself yields:

$$
|\bm{p_n} - \bm{p}| \leq k |k| p_{n-2} - \bm{p}| \leq k |k| k |p_{n-3} - \bm{p}| \leq \cdots \leq k^n |p_0 - p|.
$$

- Since $0 \leq k < 1$, then $k^n \to 0$ as $n \to \infty$.
- Therefore, $|\mathbf{p}_n \mathbf{p}| \to 0$ as $n \to \infty$ (which is equivalent to $\mathbf{p}_n \to p$).
- Next, it can be shown that convergence speed will depend on the derivatives of g.
- By the Mean Value Theorem, ξ exists between p_{n-1} and p where

$$
|\boldsymbol{p_{n+1}} - \boldsymbol{p}| = |g(p_n) - g(\boldsymbol{p})| = |g'(\xi_n)||p_n - p|
$$

• Since $p_n \to p$, then $\xi_n \to p$ as $n \to \infty$. Thus,

$$
\lim_{n\to\infty}\frac{|\mathbf{p}_{n+1}-\mathbf{p}|}{|\mathbf{p}_n-\mathbf{p}|}=\lim_{n\to\infty}|g'(\xi_n)|=\Big|g'\left(\lim_{n\to\infty}\xi_n\right)\Big|=|g'(\mathbf{p})|
$$

• It follows that

$$
\lim_{n\to\infty}\frac{|\,\mathbf{p}_{n+1}-\mathbf{p}\,|}{|\,\mathbf{p}_n\,-\mathbf{p}\,|} = |g'(\mathbf{p})|\tag{5}
$$

- By the definition of convergence and super-convergence in [\(2\)](#page-2-0) and [\(3\)](#page-3-0), we see that: \int If $|g'(p)| \neq 0$, then p_n converges to p at a linear rate $(\lambda = |g'(p)| > 0)$. If $|g'(p)| = 0$, then p_n converges to p at a super-linear rate.
- To precisely find the order that p_n converges to p, expand $q(x)$ in a Taylor's Polynomial about p . It follows that by Taylor's Theorem,

$$
g(x) = g(p) + g'(p)(x - p) + \frac{1}{2}g''(\xi)(x - p)^2,
$$
\n(6)

where ξ is between x and p.

• Since $g(p) = p$ and $g'(p) = 0$, then it follows that [\(6\)](#page-11-0) simplifies as

$$
g(x) = g(\mathbf{p}) + g'(\mathbf{p})(x - \mathbf{p}) + \frac{1}{2}g''(\xi)(x - \mathbf{p})^2
$$

$$
g(x) = p + \frac{1}{2}g''(\xi)(x - \mathbf{p})^2
$$
 (7)

• Evaluate [\(7\)](#page-12-0) at $x = p_n$. Note when $x = p_n$, $g(p_n) = p_{n+1}$,

$$
g(\mathbf{p}_n) = p + \frac{1}{2}g''(\xi_n)(\mathbf{p}_n - \mathbf{p})^2
$$

$$
g(\mathbf{p}_n) - \mathbf{p} = \frac{1}{2}g''(\xi_n)(\mathbf{p}_n - \mathbf{p})^2
$$

$$
\frac{|\mathbf{p}_{n+1} - \mathbf{p}|}{|\mathbf{p}_n - \mathbf{p}|^2} = \frac{1}{2}|g''(\xi_n)|
$$

• p_n converges to p. Further, since ξ_n is always between p_n and p, then ξ_n converges to p as well. It follows that

$$
\lim_{n\to\infty}\frac{|\,\mathbf{p}_{\boldsymbol{n}+1}-\boldsymbol{p}\,|}{|\,\mathbf{p}_{\boldsymbol{n}}-\boldsymbol{p}\,|^2}=\frac{1}{2}\lim_{n\to\infty}|g''(\xi_n)|=\frac{1}{2}\left|g''\left(\lim_{n\to\infty}\xi_n\right)\right|=\frac{1}{2}|g''(\boldsymbol{p})|
$$

• This yields a similar statement to (5) .

$$
\lim_{n\to\infty}\frac{|\,\mathbf{p}_{n+1}-\mathbf{p}\,|}{|\,\mathbf{p}_n-\mathbf{p}\,|^2}=\frac{1}{2}|g''(\mathbf{p})|
$$

• We then can conclude that

If $|g''(p)| > 0$, then p_n converges to p of order 2 (quadratically). If $g''(p) = 0$, then p_n converges to p at a super-quadratic rate (at least quadratic).

2.1 Final Thoughts

- A side note: a key to finding faster fixed point methods is to generate a g for which $g'(\boldsymbol{p}) = 0$. This leads to a quadratic rate.
- We can continue this idea and develop faster methods by finding a function $q(x)$ for which $g'(\mathbf{p}) = g''(\mathbf{p}) = 0$, but $g'''(\mathbf{p}) \neq 0$. This will lead to cubic convergence rate.
- There are some examples of these methods, one called "Halley's Method" and another "Olvert's Method". We get a faster speed by in exchange with more complexity. There is also a series of methods called "Householder's Methods" which can generate sequences of any desired rate.

3 Newton's Method

- We will develop a faster fixed point method using the tricks above.
- We want to find $g(x)$ such that $g'(p) = 0$, where **p** is the fixed point.
- In the past, to solve $f(x) = 0$, we created $g(x) = x f(x)$, or something similar.
- Let's assume that the form of $g(x)$ is as follows and that we want to find $\phi(x)$ which forces $g'(\mathbf{p}) = 0$.

 $g(x) = x - \phi(x) f(x)$ $g'(x) = 1 - \phi'(x) f(x) - \phi(x) f'(x)$ (Using the product rule)

• Since $f(\mathbf{p}) = 0$ and forcing $g'(\mathbf{p}) = 0$, it follows that

$$
0 = g'(\boldsymbol{p}) = 1 - \phi'(\boldsymbol{p})f(\boldsymbol{p}) - \phi(\boldsymbol{p})f'(\boldsymbol{p}) \qquad \Longrightarrow \qquad \phi(\boldsymbol{p}) = \frac{1}{f'(\boldsymbol{p})}
$$

• Therefore, the function to iterate is:

$$
g(x) = x - \phi(x)f(x) = x - \left(\frac{1}{f'(\mathbf{p})}\right)f(x)
$$

$$
g(x) = x - \frac{f(x)}{f'(\mathbf{p})}
$$

- This is VERY similar to Newton's method, except we don't know $f'(\mathbf{p})$.
- Since **p** is usually unknown, then let $p = p_n$ and then

$$
p_{n+1}=g(p_n)=p_n-\frac{f(p_n)}{f'(p_n)},
$$

which IS Newton's Method.

- We can show quadratic convergence by analyzing the derivative of $g(x)$ at p .
- Taking the derivative of this function $g(x)$ is

$$
g'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}
$$
(8)

- Since $f(\mathbf{p}) = 0$, then it is clear that $g'(\mathbf{p}) = 0$. Thus, Newton's method will converge at least quadratically!
- However, if $f'(p) = 0$ at the same time as $g'(p)$, then we might not have quadratic convergence.

3.1 Problems with Newton's Method

• Here's an example of the problem:

Let $f(x) = x^2$, so $f'(x) = 2x$. This has the the obvious solution of 0. So $g(x)$ is

$$
g(x) = x - \frac{x^2}{2x} \Longrightarrow g(x) = \frac{x}{2}
$$

- Note that $g'(x) = \frac{1}{2} \neq 0$
- All this method does it repeatedly half the answer from what was there before. This is clearly a linearly converging sequence. (Sounds like the Bisection)
- Why did this fail to have quadratic convergence?

Zero of Multiplicity m

Definition. A solution **p** of $f(x) = 0$ is said to be a zero of multiplicity m of f if $f(x)$ can be written as

$$
f(x) = (x - p)^m q(x), \text{ for } x \neq p, \text{ where } \lim_{x \to p} q(x) \neq 0.
$$

Zero of Multiplicity m (Part 2)

Theorem.

The function $f \in C^m[a, b]$ has a zero of multiplicity m at **p** if and only if

$$
f(\mathbf{p}) = f'(\mathbf{p}) = f''(\mathbf{p}) = \cdots = f^{(m-1)}(\mathbf{p}) = 0, \quad but \quad f^{(m)}(\mathbf{p}) \neq 0.
$$

3.2 Example

The function $f(x) = 2\cos x - 2 - x^2$ has a zero of multiplicity 2 at $x = 0$. Here is why:

$$
f(x) = 2 \cos x - 2 - x^2 \implies f(0) = 2(1) - 2 - 0^2 = 0
$$

\n
$$
f'(x) = -2 \sin x - 2x \implies f'(0) = -2(0) - 2(0) = 0
$$

\n
$$
f''(x) = -2 \cos x - 2 \implies f''(0) = -2(1) - 2 \implies -4 \neq 0
$$

• When the zero is NOT simple, then Newton's method will converge linearly.

4 Modified Newton's Method

- What can we do to fix this problem, if possible?
- There are two methods to fix this:

$$
- g(x) = x - \frac{mf(x)}{f'(x)}.
$$
 (Problem 8 in Section 2.4, 5th Ed.)

$$
- Apply Newton's Method to \mu(x) = \frac{f(x)}{f'(x)}.
$$

• The first method requires knowledge of the multiplicity of the root. This information is not available in general.

 $f'(x)$

- The second method has the advantage of not requiring knowledge of m .
- Let's focus on the second method.
- Suppose $f(x) = (x p)^m q(x)$, where $\lim_{x \to p} q(x) \neq 0$.
- It follows that $f'(x) = m(x p)^{m-1}q(x) + (x p)^m q'(x)$
- The new function $\mu(x)$ simplifies to

$$
\mu(x) = \frac{f(x)}{f'(x)} = \frac{(x - \mathbf{p})^m q(x)}{m(x - \mathbf{p})^{m-1} q(x) + (x - \mathbf{p})^m q'(x)}
$$

=
$$
\frac{(x - \mathbf{p})^m q(x)}{(x - \mathbf{p})^{m-1} [mq(x) + (x - \mathbf{p})q'(x)]}
$$
 (Factor out $(x - \mathbf{p})^{m-1}$)
=
$$
\frac{(x - \mathbf{p})q(x)}{mq(x) + (x - \mathbf{p})q'(x)}
$$
 (Cancel factor of $(x - \mathbf{p})^{m-1}$)

- What remains is a simple root of $\mu(x)$ at $x = p$.
- So apply Newton's to $\mu(x) =$ $f(x)$ $f'(x)$!
!
- We will now ignore the form of $f(x)$ above, and keep it general.

• So it follows

$$
g(x) = x - \frac{\mu(x)}{\mu'(x)} = x - \frac{\frac{f(x)}{f'(x)}}{\frac{d}{dx}(\frac{f(x)}{f'(x)})}
$$

\n
$$
= x - \frac{\frac{f(x)}{f'(x) \cdot f'(x) - f(x)f''(x)}}{\frac{f'(x)}{f'(x)|^2}}
$$

\n
$$
= x - \frac{f(x)}{f'(x)}(\frac{[f'(x)]^2}{f'(x) \cdot f'(x) - f(x)f''(x)})
$$

\n
$$
g(x) = x - \frac{f(x)f'(x)}{[f'(x)]^2 - [f(x)][f''(x)]}
$$
\n(9)

• It follows that the "Modified Newton's Method" is

$$
\boldsymbol{p_{n+1}} = \boldsymbol{p_n} - \frac{f(\boldsymbol{p_n})f'(\boldsymbol{p_n})}{[f'(\boldsymbol{p_n})]^2 - [f(\boldsymbol{p_n})][f''(\boldsymbol{p_n})]}
$$
(10)

4.1 Example 1 of Modified Newton's Method

• The previous example of a slow down was applying Newton's Method to $f(x) = x^2$, which lead to $g(x) = \frac{1}{2}x$.

- Let's try the modified procedure on this function now.
- So $f'(x) = 2x$ and $f''(x) = 2$. The Modified Newton's simplifies to

$$
g(x) = x - \frac{f(x)f'(x)}{[f'(x)]^2 - [f(x)][f''(x)]} = x - \frac{x^2(2x)}{[2x]^2 - [x^2][2]}
$$

$$
= x - \frac{2x^3}{4x^2 - 2x^2} = x - \frac{2x^3}{2x^2} = x - x = 0
$$

- Woah! That is really sped up! The guess is always 0! It found the root in 1 step!
- Any function like $f(x) = (x c)^2$ will converge in 1 iteration to $x = c$ using the modified Newton's Method.

4.2 Example 2 of Modified Newton's Method

- Apply it to a similar problem: $f(x) = x^3 3x + 2$ has a double root at $x = 1$
- Newton's Method applied to it is $g(x) = x$ $x^3 - 3x + 2$ $3x^2 - 3$.
- With an initial guess of $x_0 = 2$, it takes 35 iterations to converge within 10^{-13} .
- The Modified Newton's simplifies to $(f'(x) = 3x^2 3$ and $f''(x) = 6x$)

$$
g(x) = x - \frac{f(x)f'(x)}{[f'(x)]^2 - [f(x)][f''(x)]} = x - \frac{(x^3 - 3x + 2)(3x^2 - 3)}{[3x^2 - 3]^2 - [x^3 - 3x + 2][6x]} = \frac{4x + 2}{x^2 + 2x + 3}
$$

- With an initial guess of $x_0 = 2$, it takes 4 iterations to converge within 10^{-10} .
- 4.3 Example with $f(x) = 2\cos x 2 x^2$
	- In example 2.3, we used $f(x) = 2\cos x 2 x^2$.
	- It had a zero of multiplicity 2 at $x=0$.
	- Starting with a guess of $x_0 = 1$, we applied Newton's and Modified Newton's to it.
	- It takes 37 iterations to converge within 10^{-8} with Newton's.
	- It takes 7 iterations to converge within 10[−]⁸ with Modified Newton's.

4.4 Orders of Common Methods

4.5 Other Methods we didn't cover

