

2.5: Accelerating Convergence Solutions of Equations of One Variable

> S. K. Hyde Burden and Faires, any ed.

> > Winter 2024

1 Introduction

- It is rare to have quadratic convergence (but they do exist). Search online.
- We will illustrate two methods to speed convergence:
 - Aitkin's Δ^2 method
 - Steffensen's Method.

1.1 Aitken's Method

- Suppose we have a linearly converging sequence $p_n \to p$ as $n \to \infty$.
- \bullet It stands to reason that as n gets large,

$$\frac{p_{n+1} - p|}{|p_n - p|} \approx \frac{|p_{n+2} - p|}{|p_{n+1} - p|} \tag{1}$$

• We can solve (1) for p! To make the algebra easier, we will let n = 0 in the equation.

• Let's go:

$$\frac{|p_1 - p|}{|p_0 - p|} \approx \frac{|p_2 - p|}{|p_1 - p|}$$
(Cross multiply)
$$(p_1 - p)^2 \approx (p_2 - p)(p_0 - p)$$
$$p_1^2 - 2p_1p + p^2 \approx p_2p_0 - p_2p - p_0p + p^2$$
(Now isolate p)

$$p_2 p + p_0 p - 2p_1 p \approx p_2 p_0 - p_1^2$$

$$(p_2 - 2p_1 + p_0) p \approx p_2 p_0 - p_1^2$$

$$p \approx \frac{p_2 p_0 - p_1^2}{p_2 - 2p_1 + p_0}$$

• To make it easier to use, we're going to do an add zero trick:

$$p \approx \frac{p_2 p_0 - p_1^2 - 2p_0 p_1 + 2p_0 p_1 + p_0^2 - p_0^2}{p_2 - 2p_1 + p_0}$$

• Now rearrange

$$p \approx \frac{p_2 p_0 - 2p_0 p_1 + p_0^2 - (p_1^2 - 2p_0 p_1 + p_0^2)}{p_2 - 2p_1 + p_0}$$
$$p \approx \frac{(p_2 - 2p_1 + p_0)p_0 - (p_1 - p_0)^2}{p_2 - 2p_1 + p_0}$$
$$p \approx p_0 - \frac{(p_1 - p_0)^2}{p_2 - 2p_1 + p_0}$$

- You should be able to replicate this on an exam.
- So, let $\hat{p}_n = p$. Aitken's Method defined as

Aitken's Δ^2 Method Definition. $\hat{p}_n = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$

• The sequence defined above converges faster than the original p_n sequence in the following sense:

Convergence speed of \hat{p}_n

Theorem. Let $\{p_n\}_{n=0}^{\infty}$ be a sequence that converges linearly to the limit p with asymptotic constant less than 1 and $p_n - p \neq 0$ for all $n \ge 0$. Then the sequence $\{\hat{p}_n\}$ converges to p faster than $\{p_n\}_{n=0}^{\infty}$ in the sense that

$$\lim_{n \to \infty} \frac{\hat{p}_n - p}{p_n - p} = 0$$

Forward Difference Δp_n

Definition. Given the sequence $\{\mathbf{p}_n\}_{n=0}^{\infty}$, define the **forward difference** Δp_n by $\Delta p_n = p_{n+1} - p_n$, for $n \ge 0$

Higher powers $\Delta^k p_n$ are defined recursively as

$$\Delta^k p_n = \Delta(\Delta^{k-1} p_n), \text{ for } k \ge 2$$

• As a result of the definition, we have

$$\Delta^2 p_n = \Delta (p_{n+1} - p_n) = \Delta p_{n+1} - \Delta p_n = (p_{n+2} - p_{n+1}) - (p_{n+1} - p_n)$$

= $p_{n+2} - 2p_{n+1} - p_n$

• We can redefine Aitken's $\Delta^2 p_n$ using this operator:

- By applying Aitken's Δ^2 method, we can accelerate the original p_n .
- Note that the way Aitkens works is that it takes in a vector (a sequence of numbers) and outputs a new sequence of numbers (with length reduced by 2).
- For example, let's speed up the original fixed point function we tried $(f(x) = \cos x)$
- The R function for implementing Aitkens is

```
aitkens = function(p) {
    ## Inputs: p = sequence of numbers (a vector)
    ## Outputs: phat = sequence of numbers accelerated by Aitken's method
    delta = function(p) { p[1]-(p[2]-p[1])^2/(p[3]-2*p[2]+p[1]) }
    phat = 0
    for (i in 1:(length(p)-2)) phat[i] = delta(p[i:(i+2)])
    return(phat)
    }
```

• $g = function(x) \{ cos(x) \}$

• Start with initial guess of x = 1 and n = 30 for iterations.

```
iter = 30 #number of iterations
fixpt = 1 #fixpt=initial guess; values after will be added
```

- Now a simple fixed pt loop (Look to code root_fixedpt.r for prettier code.
- To perform fixed point on g do:

for (i in 2:iter) fixpt[i] = g(fixpt[i-1]) #fast-no check-fixed point method

• The variable fixedpt contains the sequence p_n . Let's accelerate it using aitkens.

```
phat = aitkens(fixpt)
```

• Compare the fixpt method with Aitkens (NA is added to end of phat so they have the same size)

```
p=1; for (i in 2:300) p=g(p) # find the fixed pt to analyze the absolute error
compare = cbind(fixpt,abs(fixpt-p),c(phat,NA,NA),abs(c(phat,NA,NA)-p))
colnames(compare)=c("fixed pt", "abs err", "Aitkens", "abs error")
```

```
4 options(width=100)
```

- 5 noquote(formatC(compare,digits=15,format="f"))
- Here is the result: (Note that Aitkens has 5 correct digits when fixed pt has only 2!)

1	f	fixed pt	abs err	Aitkens	abs error
2	[1,] 1	.00000000000000000	0.260914866784839	0.728010361467617	0.011074771747544

2 Steffensen's Method

- Steffensen's Method is a modification of the fixed point method.
- It combined Fixed Point and Aitken's, but in a different order than above.
- Note that Aitken's requires three points to generate a new value.
- In a nutshell, Steffensen's has two steps:
 - 1. Start with initial guess p_0 , then run fixed point twice: $p_1 = g(p_0)$ and $p_2 = g(p_1)$.
 - 2. Then take the points (p_0, p_1, p_2) and run Aitken's method once to get a new p_0 .
- However, each round has 3 numbers (0,1,2). We need to keep track of the round number, so we will add a "current round" number k (starts at 0).

Steffensen's Method Algorithm

Definition. Starting with round k = 0 and initial guess $p_0^{(0)}$, then do repeatedly the following two steps for k = 1 to end: 1. Let $p_1^{(k)} = g(p_0^{(k)})$ and Let $p_2^{(k)} = g(p_1^{(k)})$, 2. $p_0^{(k+1)} = \Delta^2(p_0^{(k)}, p_1^{(k)}, p_2^{(k)})$. Increment k, goto 1.

- Think "Fixed Point Fixed Point Aitken's" is "Steffensen's".
- Usually $p_0^{(k)}$ is the sequence that we say Steffensen's generates.
- But the more complete Steffensen's also keeps track of $p_1^{(k)}$ and $p_2^{(k)}$.

Convergence rate of Steffensen's

Theorem. Suppose that x = g(x) has the solution p with $g'(p) \neq 1$. If there exists $a \ \delta > 0$ such that $q \in C^3[p - \delta, p + \delta]$, then Steffensen's method gives quadratic convergence for any $p_0 \in [p - \delta, p + \delta]$.

- Let's check out Steffensen's on $f(x) = \cos x$
 - > g = function(x) { cos(x) }
 > bb=steff(1,g)

3	> bb #	#this shows itera	tions and zero	
4	\$iterations			
5	р	_n g($(p) \qquad abs(g(p)-p)$	
6	0 1.0000000000000	00 0.5403023058681	40 4.59697694131860e-01	
7	1 0.7280103614676	17 0.7464997560452	220 1.84893945776032e-02	
8	2 0.7390669669086	74 0.7390973701357	781 3.04032271070120e-05	
9	3 0.7390851331660	75 0.7390851332482	225 8.21495094172064e-11	
10				
11	\$zero			
12	[1] 0.73908513316	6075		

- It only took 3 iterations!
- The **steff** procedure has the option to show a complete record of all the iterations, including the fixed point ones.
- Here is a complete record of the iterations including the fixed point.

1	>	<pre>steff(1,g,1e-15,10</pre>	00,complete=TRUE)	
2		p_0^(n)	p_1^(n)	p_2^(n)
3	0	1.000000000000000000	0.540302305868140	0.857553215846393
4	1	0.728010361467617	0.746499756045220	0.734070283736530
5	2	0.739066966908674	0.739097370135781	0.739076890222895
6	3	0.739085133166075	0.739085133248225	0.739085133192888
7	4	0.739085133215161	NA	NA