

3.0: Overview of Chapter Interpolation and Polynomial Approximation

S. K. Hyde Burden and Faires, any ed.

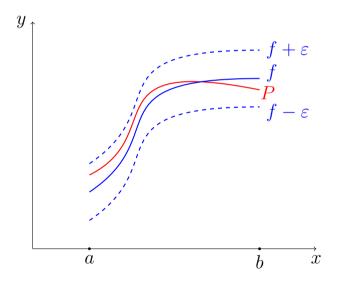
Winter 2024

1 Introduction

- We want to estimate and interpolate functions.
- Taylor Polynomials does NOT DO a good job of this (only fits around ONE point).
- This chapter will talk about several numerical methods to interpolate functions with polynomials. The methods include:
 - Vandermonde Matrices
 - Lagrange Polynomials
 - Neville's Method
 - Divided Differences (several kinds)

- Hermite Polynomials
- Cubic Spline Polynomials
- Parametric Curves (Bézier Curve)

Polynomials are generally: (for finite n)


$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

1.1 Do we have any hope in using polynomials?

Weierstrass Approximation Theorem

Theorem. If f is defined and continuous on [a, b] and $\varepsilon > 0$ is given, then there exists a polynomial P, defined on [a, b], with the property that

 $|f(x) - P(x)| < \varepsilon \text{ for all } x \in [a, b]$

