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1 Introduction

• Suppose you have several points on a graph:

y

x

P

• How do you find the polynomial that passes through points?

• Many methods. We will learn how to do it.

• We will start with a linear model: P (x) = ax+ b

• You’ve learned this method in algebra class.

• You plug in both points and solve for the coefficients a and b.
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1.1 Example (Fitting a line between two points)

• Let’s find the line that passes through (x0, y0) and (x1, y1). So:

y0= P (x0) = ax0 + b y1 = P (x1) = ax1 + b

• So set b = b which leads to y0 − ax0 = y1 − ax1

• followed by ax1 − ax0 = y1 − y0

• Solving for a yields: a =

(
y1 − y0
x1 − x0

)
• We can then find b from: b = y1 − ax1.

• Which gives b = y1 −
(
y1 − y0
x1 − x0

)
x1

• This finally gives P (x) =

(
y1 − y0
x1 − x0

)
x+ y1 −

(
y1 − y0
x1 − x0

)
x1

• What do you think? Is it easy?

• Yes, not too bad, but what about adding more points?

• This is difficult to extend to more than two points.

• We can make it easier if we approach it from a different perspective.

Math 311–Sec3.1: Interpolation and the Lagrange Polynomial (Fitting points to a curve) 3



2 Lagrange Polynomials

• Let’s start with an easier form for P (x):

P (x) =

(
x− x1
x0 − x1

)
y0 +

(
x− x0
x1 − x0

)
y1

• This particular form interpolates the two points. You can easily see that when you
plug in x0 you get

P (x0) =
���

���
��*1(

x0 − x1
x0 − x1

)
y0 +

���
���

��*0(
x0 − x0
x1 − x0

)
y1 = y0

• and when you plug in x1 you get

P (x1) =
��

���
���*0(

x1 − x1
x0 − x1

)
y0 +

��
���

���*1(
x1 − x0
x1 − x0

)
y1 = y1

• The form is what makes it easy to do. You don’t have to solve for any of the
coefficients because they solve themselves!

• Plus, it extends to more variables with ease!
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2.1 Example (Lagrange polynomial with n=1) (two points) (a line)

• Find the line that connects (1, 5) and (2, 7). Let (x0, y0) = (1, 5) and
(x1, y1) = (2, 7).

• It follows that the polynomial (a line in this case) is:

P (x) =

(
x − x1
x0 − x1

)
(y0) +

(
x − x1
x0 − x1

)
(y1)

=

(
x− 2

1− 2

)
(5) +

(
x− 2

1− 2

)
(7)

= −5(x− 2) + 7(x− 1) (Easiest form to write)

= 2x+ 3 (simplified form (not needed))

• This automatically solves for the polynomial that exactly fits the points.

• To generalize, we add more points to the equation. For example, if we have three
points, then we will have the sum of three terms, for 7 points, seven terms.

• Each one of these terms will cancel out all the terms for the other points and keep
its own term. Then it repeats for all the other points.

• As an example, let’s explain the 2 point case above:
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• We want to write the polynomial like this:

P (x) = L2,0(x)y0 + L2,1(x)y1

• In this case, L2,0(x) =

(
x − x1
x0 − x1

)
and L2,1 =

(
x − x0
x1 − x0

)
.

• Note that
L2,0(x0) = 1 and L2,0(x1) = 0 and

L2,1(x0) = 0 and L2,1(x1) = 1.

• It “picks” the right x at the right time!

• Let’s extend it to three points. This time, we’d like to write

P (x) = L2,0(x)y0 + L2,1(x)y1 + L2,2(x)y2

where the L functions pick the right x’s at the right time.

• So, how do we do that for three points?
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2.2 Lagrange Polynomial with n = 2 (three points)

P (x) = L3,0(x)y0 + L3,1(x)y1 + L3,2(x)y2

• Here’s our goal:

– We want to make P (x0) = y0, which means we need
L2,0(x0) = 1
L2,1(x0) = 0
L2,2(x0) = 0

– We want to make P (x1) = y1, which means we need
L2,0(x1) = 0
L2,1(x1) = 1
L2,2(x1) = 0

– We want to make P (x2) = y2, which means we need
L2,0(x2) = 0
L2,1(x2) = 0
L2,2(x2) = 1

• It follows that

L2,0(x) =
( x − x1)( x − x2)

(x0 − x1)(x0 − x2)
L2,1(x) =

( x − x0)( x − x2)

(x1 − x0)(x1 − x2)
L2,2(x) =

( x − x0)( x − x1)

(x2 − x0)(x2 − x1)
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• In general, suppose we have (n+ 1) distinct points

(x0, y0), (x1, y1), · · · , (xn, yn)

• The points may also come from a function. In that case, f(xk) = yk = P (xk).

Lagrange Polynomial

P (x) = Ln,0(x)f(x0) + Ln,1(x)f(x1) + · · ·+ Ln,k(x)f(xk) + · · ·+ Ln,n(x)f(xn)

or simply P (x) =
n∑

k=0

Ln,k(x)f(xk), where Ln,k(x) is defined below

Definition as Ln,k

Ln,k(x) =
( x − x0)( x − x1) · · · ( x − xk−1)( x − xk+1) · · · ( x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)

=
n∏

j=0
j ̸=k

(
x − xk
xj − xk

)
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• This makes it so that Ln,k(xj) =

{
0, if j ̸= k

1, if j = k
• Notice that if one of the terms is missing in it.

Ln,k(x) =
( x − x0)( x − x1) · · · ( x − xk−1)( x − xk)( x − xk+1) · · · ( x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1) (xk − xk)︸ ︷︷ ︸
This term is removed!

(xk − xk+1) · · · (xk − xn)

• If you were to plug in xk into the removed term, it would cause a division by zero.
• That’s why the “j ̸= k” is included in this form (take out that problem!)

Ln,k(x) =
n∏

j=0
j ̸=k

(
x − xk
xj − xk

)

• We usually leave out the n in Ln,k(x) and write Lk(x). How good is this function?
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Theorem 3.3 - Validity of Lagrange Interpolating Polynomial

Theorem. If x0, x1, · · · , xn are distinct numbers on [a, b] and f ∈ Cn+1[a, b], then
for each x in [a, b], a number ξ(x) in (a, b) exists with

f(x) = P (x) +
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn),

where P is the interpolating polynomial defined on the previous slide.

• The theorem states that P (x) fits the function as good as possible!

• The error formula in Theorem 3.3 is an important theoretical result because
Lagrange polynomials are used extensively for deriving numerical differentiation
and integration methods (Chapter 4).

• Compare the error term in Theorem 3.3 to Taylor’s Theorem error term:

Rn(x) =
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn),

RTaylors(x) =
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)

n+1
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• They are similar, but the Taylor polynomial concentrates all the known
information at x0.

• Whereas, the Lagrange polynomial spreads out the error information among the
n+ 1 different points.

• Next example will be how to fit a polynomial to 4 points.
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2.3 Example (Four points)

x f(x)
2/3 3/2
1 1
3 1/3
4 1/4

• Let’s use 4 points from f(x) = 1
x . It follows that Lk(x) are:

L0(x) =
( x − 1)( x − 3)( x − 4)

(2/3 − 1)(2/3 − 3)(2/3 − 4)
= −27

70
(x− 1)(x− 3)(x− 4)

L1(x) =
(x− 2/3)(x− 3)(x− 4)

(1− 2/3)(1− 3)(1− 4)
=

1

6
(3x− 2)(x− 4)(x− 3)

L2(x) =
(x− 1)(x− 2/3)(x− 4)

(3− 1)(3− 2/3)(3− 4)
= − 1

14
(3x− 2)(x− 4)(x− 1)

L3(x) =
(x− 1)(x− 2/3)(x− 3)

(4− 1)(4− 2/3)(4− 3)
=

1

30
(3x− 2)(x− 1)(x− 3)

• Note the colored numbers match vertically. It follows a pattern

• So it follows that P (x) = 3/2 · L0(x) + 1 · L1(x) + 1/3 · L2(x) + 1/4 · L3(x)

• If you simplify to standard form, then P (x) = −1
8x

3 + 13
12x

2 − 73
24x+ 37

12

• This polynomial perfectly fits the table. Try it on P (2/3), P (1), P (3), or P (4).

• Note that f(2) = 1/2, whereas P (2) = −1
8(2)

3 + 13
12(2)

2 − 73
24(2) +

37
12 =

1
3

• Here’s a graph of it: https://www.desmos.com/calculator/p3brjfbvdu

• What is it like to expand this to FIVE points?
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2.4 Example (Five points)

x f(x)
2/3 3/2
1 1
3 1/3
4 1/4

2 1/2

• Let’s use the extra point (2, 1/2). It follows that Lk(x) are:

L0(x) =
( x − 1)( x − 3)( x − 4)( x − 2)

(2/3 − 1)(2/3 − 3)(2/3 − 4)(2/3 − 2)
=

81

280
( x − 1)(x− 3)(x− 4)(x− 2)

L1(x) =
(x− 2/3)(x− 3)(x− 4)(x− 2)

(1− 2/3)(1− 3)(1− 4)(1− 2)
= −1

6
(3x− 2)(x− 3)(x− 4)(x− 2)

L2(x) =
(x− 2/3)(x− 1)(x− 4)(x− 2)

(3− 2/3)(3− 1)(3− 4)(3− 2)
=− 1

14
(3x− 2)(x− 1)(x− 4)(x− 2)

L3(x) =
(x− 2/3)(x− 1)(x− 3)(x− 2)

(4− 2/3)(4− 1)(4− 3)(4− 2)
=

1

60
(3x− 2)(x− 1)(x− 3)(x− 2)

L4(x) =
(x− 2/3)(x− 1)(x− 3)(x− 4)

(2− 2/3)(2− 1)(2− 3)(2− 4)
=

1

8
(3x− 2)(x− 1)(x− 3)(x− 4)

• It follows that

P (x) = 3/2 · L0(x) + 1 · L1(x) + 1/3 · L2(x) + 1/4 · L3(x) + 1/2 · L4(x)

• If you simplify to standard form, then P (x) = 3
8x

4 − 2
3x

3 + 125
48 x

2 − 55
12x+ 43

12

• This polynomial perfectly fits the table.

• Note that this time f(2) = 1/2!

• Here’s a graph of it: https://www.desmos.com/calculator/yf28jveamw

• Let’s go over to it and explore what it looks like.
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• Note that adding another point required us to START OVER. Knowledge of the
current polynomial cannot be used to help with the next one.

• Which is the best polynomial? Remember that

f(x) = P (x) +
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn),

That means that the error is bound by:

|f(x)− P (x)| ⩽
max
x∈[a,b]

|f (n+1)(x)|

(n+ 1)!
|(x− x0)(x− x1) · · · (x− xn)|

• This bound works well IF we know f (n+1)(x). What if you don’t know them?

• When we do not know the derivatives, then there is NO way to tell which
polynomial is the best.

• All we can do is use the rule that higher degree polynomial gives the smallest error.

• Example 3 in Sec 3.1 (5th ed,) gives an example, where a lower degree polynomial
worked better. But without knowledge of the derivatives, we would not know that.

• There is a fix for adding points!! Or at least a partial fix

• We can generate better approximations recursively (this is called Neville’s
Method). (Neville Longbottom????)
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Standard for naming polynomials for a set of points

Definition.

• Let f be defined at x0, x1, · · · , xn, and suppose that m1,m2, · · · ,mk are k

distinct integers with 0 ⩽ mi ⩽ n for each i.

• The Lagrange polynomial that agrees with f at the k points xm1
, xm2

, · · · , xmk

is denoted Pm1,m2,··· ,mk
.

• Examples: (each are the Lagrange polynomial that fits the indicated points.)

– P0,1,5,6(x) agrees at the points x0, x1, x5, and x6.

– P8,9(x) agrees at the points x8 and x9.

• How do we use this?

• First, a theorem that shows how to combine two previous polys to generate a new
one.
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Theorem 3.5

Theorem. Let f be defined at x0, x1, · · · , xk and let xj and xi be two distinct
numbers in this set. (so 0 ⩽ i, j ⩽ k) Then

P (x) =
(x− xj)P0,1,··· ,j−1,j+1,··· ,k(x)− (x− xi)P0,1,··· ,i−1,i+1,··· ,k(x)

xi − xj

describes the kth Lagrange polynomial that interpolates f at the k + 1 points
x0, x1, · · · , xk

• More detail:

– P0,1,··· ,j−1,j+1,··· ,k(x) agrees with every point BUT xj.

– P0,1,··· ,i−1,i+1,··· ,k(x) agrees with every point BUT xi.

• Suppose i = 2, j = 3, and k = 6. Then it follows that

– P0,1,2,4,5,6(x) doesn’t agree with x3.

– P0,1,3,4,5,6(x) doesn’t agree with x2. We can combine them to:

– P0,1,2,3,4,5,6(x) =
(x− x2)P0,1,2,4,5,6(x)− (x− x3)P0,1,3,4,5,6(x)

x3 − x2
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• This is very versatile, and can be used to add a point anywhere in the set.
However, we will focus on adding points at the end. (e.g. go from 0,1,2 to 0,1,2,3).

• In this case, the mi’s follow in succession. (no missing gaps) (e.g. 2,3,4,5 or 0,1,2,
etc.)

• Then we can create an algorithm that generates successive approximations from
previous approximations.

Neville’s Method

Theorem.

• Let 0 ⩽ i ⩽ j denote the interpolating polynomial of degree j on the j + 1
numbers xi−j, xi−j−1, · · · , xi−1, xi.

• In other words, Qi,j = Pi−j,i−j+1,··· ,i−1,i

• Then it follows that

Qi,j(x) =
(x− xi−j)Qi,j−1 − (x− xi)Qi−1,j−1

xi − xi−j
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Matrix Describing Neville’s Algorithm

Using the notation for Neville’s method given above, we have the following matrix

x y
First
Order

Second
Order

Third
Order

Fourth
Order

x0 y0 = P0

x1 y1 = P1 P0,1

x2 y2 = P2 P1,2 P0,1,2

x3 y3 = P3 P2,3 P1,2,3 P0,1,2.3

x4 y4 = P4 P3,4 P2,3,4 P1,2,3,4 P0,1,2,3,4

It is easier to program if we change it to: Qi,j = Pi−j,i−j+1,...,i−1,i.

x y
First
Order

Second
Order

Third
Order

Fourth
Order

x0 Q0,0

x1 Q1,0 Q1,1

x2 Q2,0 Q2,1 Q2,2

x3 Q3,0 Q3,1 Q3,2 Q3,3

x4 Q4,0 Q4,1 Q4,2 Q4,3 Q4,4
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Notes on Neville’s Algorithm and R

Definition.

• Unfortunately, R does not allow zero indices in its programming.
• Using Python or C would probably be better.
• However, we can fix it.
• We need to adjust the algorithm by shifting away from zero.
• Adjustments: start the counters at 2 and increase the vector entry x[i-j]

with x[i-j+1]

• Also populate the first column before performing the loop below.

for (i in 2:(n+1)) {

for (j in 2:i) {

Q[i, j] =
(xs− x[i− j + 1])Q[i, j − 1]− (xs− x[i])Q[i− 1, j − 1]

x[i]− x[i− j + 1]
}

}
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2.5 Example: Neville’s Method

• We will estimate the value of the function at x = 2 using Neville’s Method.

Node x f(x)

0 0.5 −1.9635100260214231
1 1.5 0.0364899739785769
2 2.5 0.7031566406452434
3 3.5 1.1031566406452433

• The following data set are the values of the
Digamma function at 4 points.

• The real value at x = 2 is 0.422784335098467.

• How good will Neville’s work?

• Let’s start by just using nodes 1 & 2.

R Code

1 > x=seq(.5,by=1,length=4)
2 > y=digamma(x)
3 > A=cbind(x,y)
4 > neville(A,2,1:2) # Only use 2 points now.
5 $table
6 f(x) first order
7 1.5 0.0364899739785769 NA
8 2.5 0.7031566406452434 0.36982330731191
9

10 $interp
11 [1] 0.36982330731191

• The estimate is 0.3698 with error of 0.052961027

• Now let’s use the full capability of it.
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Node x f(x)

0 0.5 −1.9635100260214231
1 1.5 0.0364899739785769
2 2.5 0.7031566406452434
3 3.5 1.1031566406452433
4 4.5 1.3888709263595289

• Now we will show using all the nodes.

• The true value x = 2 is 0.422784335098467.

• This shows first, second, and third order
approximations

• Don’t specify any nodes this time.
R Code

1 $table
2 f(x) first order second order
3 0.5 -1.9635100260214231 NA NA
4 1.5 0.0364899739785769 1.0364899739785769 NA
5 2.5 0.7031566406452434 0.3698233073119102 0.5364899739785769
6 3.5 1.1031566406452433 0.5031566406452435 0.4031566406452435
7 4.5 1.3888709263595289 0.6745852120738149 0.4602994977881005
8 third order fourth order
9 0.5 NA NA

10 1.5 NA NA
11 2.5 NA NA
12 3.5 0.4698233073119102 NA
13 4.5 0.4126804501690530 0.4483947358833388
14

15 $interp
16 [1] 0.4483947358833388

• Every single number is a different approximation to the function evaluated at 2.

• The best value is the bottom right of the matrix. (a fourth order approx)
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2.6 Inverse Interpolation

• Inverse Interpolation is an alternative to using Bisection or Newton’s.

• Inverse Quadratic Interpolation is used in Mueller’s and Brent’s method.

• We can find a zero of the function by evaluating the inverse at 0 ( zero = f−1(x)).

• To estimate the inverse, we just switch x and y in the matrix.

R Code

1 > neville(A,0)
2 $table
3 f(x) first order second order third order
4 -1.96351002602142 0.5 NA NA NA
5 0.0364899739785769 1.5 1.4817550130107118 NA NA
6 0.703156640645243 2.5 1.4452650390321347 1.454886851852138 NA
7 1.10315664064524 3.5 0.7421083983868916 1.469319571082143 1.464127761279594
8 1.38887092635953 4.5 -0.3610482422583534 1.873325778135062 1.458418666306317
9 fourth order

10 -1.96351002602142 NA
11 0.0364899739785769 NA
12 0.703156640645243 NA
13 1.10315664064524 NA
14 1.38887092635953 1.460783909438539
15

16 $interp
17 [1] 1.460783909438539

• The zero is 1.460783909438539.
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