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1 Introduction

e Suppose you have several points on a graph:

Y

X

e How do you find the polynomial that passes through points?
e Many methods. We will learn how to do it.

e We will start with a linear model: P(z) =ax+0b

e You've learned this method in algebra class.

e You plug in both points and solve for the coefficients « and b.
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1.1 Example (Fitting a line between two points)

e Let’s find the line that passes through (zg, o) and (z1,y1). So:

yo= P(x9) = azo+b y1 = P(x1) = ax; +b
e So set b = b which leads to vy — azg = y1 — axy
e followed by ar; — axg =Y — Yo
e Solving for a yields: a= <y1 — yo)
T1 — Xy

e We can then find b from: b = y; — ax;.

e Which gives

e This finally gives P(x) = (yl — yo)x +
T1 — Xy

e What do you think? Is it easy?
e Yes, not too bad, but what about adding more points?
e This is difficult to extend to more than two points.

e We can make it easier if we approach it from a different perspective.
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2 Lagrange Polynomials

e Let’s start with an easier form for P(z):

r— r—
To— I 1 — Xy

e This particular form interpolates the two points. You can easily see that when you

plug in zy you get
1 0
Lo — Lo —
P(xo) = < % iyoJr ‘ % iZUl:yo
0— 21 1— o

e and when you plug in x; you get

0 1
xr1 — xr1 —
P(xy) = (= o+ | = Y1 =y
0— 1 1 — Xo

e The form is what makes it easy to do. You don’t have to solve for any of the
coefficients because they solve themselves!

e Plus, it extends to more variables with ease!
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2.1 Example (Lagrange polynomial with n=1) (two points) (a line)

e Find the line that connects (1,5) and (2,7). Let (x0,%0) = (1,5) and
(xla yl) = (27 7)

e It follows that the polynomial (a line in this case) is:
r — I r — I
P pr—
@) = (=2 )+ (222 ) )
xr—2 x—2
= 7
(1=3)o+ (1=3)m
=—5(xr—2)+T7(x—1) (Easiest form to write)
=2r+3 (simplified form (not needed))

e This automatically solves for the polynomial that exactly fits the points.

e To generalize, we add more points to the equation. For example, if we have three
points, then we will have the sum of three terms, for 7 points, seven terms.

e Each one of these terms will cancel out all the terms for the other points and keep
its own term. Then it repeats for all the other points.

e As an example, let’s explain the 2 point case above:
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e We want to write the polynomial like this:

P(z) = Lao(w)yo + La1(z)y1

e In this case, Log(z) = (x — xl) and Lo = (x — xo).

Ty — X1 xr1 — o

e Note that
LQQ(.’L‘O) =1 and L270($1) = (0 and

Lyi(xg) =0 and Lyi(x1) = 1.
o It “picks” the right x at the right time!
e Let’s extend it to three points. This time, we’d like to write
P(x) = Lao(x)yo + Lo, (2)y1 + Laa(7)yo
where the L functions pick the right z’s at the right time.

e S0, how do we do that for three points?
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2.2 Lagrange Polynomial with n = 2 (three points)

P(x) = Lso(z)yo + Ls1(x)y1 + Laa(x)ye

e Here’s our goal:

1
— We want to make P(z() = 1o, which means we need Loy (z0) =0
0

0
— We want to make P(z1) = y;, which means we need Lyi(z) =1
0

0
— We want to make P(z3) = y2, which means we need Loy (z3) =0
1

e It follows that

Lyo(x) = (z —z)(x — ) (2 —wo)(x — o) (z —wo)(x — 1)

L271 (.CE) =

LQQ(I’) =

(950 - 371)(1'0 - 952) (ZU1 - 950)(331 - 562) (952 - %)(1'2 - 951)
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e In general, suppose we have (n + 1) distinct points

(ZCO, y0)7 (xh yl)a T ('CCTH yn)

e The points may also come from a function. In that case, f(zy) = yp = P(z).

Lagrange Polynomial

or simply P(z Z L x(x , where L, ;(x) is defined below

Definition as L,

(# —mo)(z —a1) (2 —2p1)(& — Tpq) - (T — Tn)
(l‘k—xo)(SUk—xl)"'(ﬂfk—Slik—l)(xk—fkﬂ)'“(fﬁk—In)

(x —xk>
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0, ifj#k
1, ifj==k
e Notice that if one of the terms is missing in it.

e This makes it so that L, i(z;) = {

(2 —a)(x —21)- (2 —2) (@ —a)(x —ape) -~ (@ — )

Ln,kz(w) - (xk _ iEo)(l"k _ xl) R (xk; — 37k—1) (xk — a:k)(xk — $k+1) T ($k; - xn)

This term is removed!

e If you were to plug in zj into the removed term, it would cause a division by zero.
e That’s why the “j # k” is included in this form (take out that problem!)

- r — Tk

tuate) - 11 (222)
j=0 NI
il

e We usually leave out the n in L, ;(x) and write L;(z). How good is this function?
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Theorem 3.3 - Validity of Lagrange Interpolating Polynomial

Theorem. If zg,x1, - ,x, are distinct numbers on [a,b] and f € C"[a,b], then
for each x in [a,b], a number &(x) in (a,b) exists with
FrrE(e))

f(z) = P(x) + et D) (x —xo)(x —21) - -+ (T — ),

where P is the interpolating polynomial defined on the previous slide.

e The theorem states that P(z) fits the function as good as possible!

e The error formula in Theorem 3.3 is an important theoretical result because
Lagrange polynomials are used extensively for deriving numerical differentiation

and integration methods (Chapter 4).

e Compare the error term in Theorem 3.3 to Taylor’s Theorem error term:

fU(E(x))
rofo) = LD oo (0= )
f(n+1)<€<r)) n+1
RT(LleT‘S<x) (TL n 1)' (:C 33())
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e They are similar, but the Taylor polynomial concentrates all the known
information at x.

e Whereas, the Lagrange polynomial spreads out the error information among the
n + 1 different points.

e Next example will be how to fit a polynomial to 4 points.
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2.3 Example (Four points)

e Let’s use 4 points from f(x) = —. It follows that Ly(x) are: o)
=z = =9 - Do
s L T R WY T 3 | 1
. ( )( —2/%( )_ L .
<a: ><x 2/3><x D L o
e Note the colored numbers match vertically. It follows a pattern
e So it follows that P(x) =3/2- Ly(x) + 1+ Li(x) + 1/3 o(x) + V1 Ly(x)
e If you simplify to standard form, then P(z) = —32% + Ba? — 24x + i’—;

e This polynomial perfectly fits the table. Try it on P(2/3) P(1), P(3), or P(4).

e Note that f(2) = 1/2, whereas P(2) = —£(2)* + 13(2)? — 2(2) + 3 = 5

e Here’s a graph of it: https://www.desmos.com/calculator/p3brjfbvdu

e What is it like to expand this to FIVE points?
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https://www.desmos.com/calculator/p3brjfbvdu

2.4 Example (Five points)

e Let’s use the extra point (2,1/2). It follows that Li(x) are: x| flz)
Lo(z) = E;{:BE;;?;EQZ: ;E;’g: g - %(;g 1)@ - 3) (@ 4)(x - 2) 2/3 | 3/
o= G Loy, 3 | s
) = GG A= e 2 D=2 ’

Li(z) = E”U::?jigx:i;?:gg“’: ;: (3 =)@~ Dz -3z - 2)

Lu(z) = Ex:%f:gg:":ggfi ; = G- D34

e [t follows that

P(x) =3/2- Lo(x) +1- Li(z) + 13- L

e If you simplify to standard form, then P(x) = %:13

e This polynomial perfectly fits the table.
e Note that this time f(2) = 1/2!

o(x) + /4 La(x) +1/2 - Ly(x)

_ 2,3 1252 55 43
387+ /T 2T+t 15

e Here’s a graph of it: https://www.desmos.com/calculator/yf28jveamnw

e Let’s go over to it and explore what it looks like.
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e Note that adding another point required us to START OVER. Knowledge of the
current polynomial cannot be used to help with the next one.

e Which is the best polynomial? Remember that
Fr(g(e))
=P
fla) = Pla) + 0 =5
That means that the error is bound by:

max |fUY) ()
x€la,b]

(@) - Pla)l <

e This bound works well IF we know f"*1)(z). What if you don’t know them?

e When we do not know the derivatives, then there is NO way to tell which
polynomial is the best.

(= 20)(z — 1) -+ (& = wn),

(& = @0)(z = 21) -+ (2 = )

e All we can do is use the rule that higher degree polynomial gives the smallest error.

e Example 3 in Sec 3.1 (5th ed,) gives an example, where a lower degree polynomial
worked better. But without knowledge of the derivatives, we would not know that.

e There is a fix for adding points!! Or at least a partial fix

e We can generate better approximations recursively (this is called Neville’s
Method). (Neville Longbottom??777)
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Standard for naming polynomials for a set of points

Definition.

o Let f be defined at xg, 1, -+ ,x,, and suppose that my,ma,--- ,my are k
distinct integers with 0 < m; < n for each i.

e The Lagrange polynomial that agrees with f at the k points Tp,, Tm,, " , Tm,

is denoted Py, my . my-

e Examples: (each are the Lagrange polynomial that fits the indicated points.)

— Py156(x) agrees at the points xg, x1, x5, and .
— Ps () agrees at the points xg and .
e How do we use this?

e First, a theorem that shows how to combine two previous polys to generate a new
one.
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Theorem 3.5

Theorem. Let f be defined at xo, 21, - , 2 and let x; and x; be two distinct
numbers in this set. (so 0 <i,7 < k) Then

(.CL‘ — :Uj)P(),l’...7j_1’j+1,...,k(x) — (.CL’ — xi)P(),l’...7i_17¢+1,...,k($)
T; — ZL'J'

P(z) =

describes the kth Lagrange polynomial that interpolates f at the k + 1 points
Lo, L1, Tk

e More detail:
— Py1. jo1j+1. k(x) agrees with every point BUT z;.
— Py1.i—1i41,. x(7) agrees with every point BUT z;.
e Suppose 1 = 2, j = 3, and k = 6. Then it follows that
— Py12.456(x) doesn’t agree with x3.

— Py13456(x) doesn’t agree with xo. We can combine them to:

(z — 22) Po12456(T) — (2 — 23) Po13456(T)
T3 — T2

— Py123ase(z) =
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e This is very versatile, and can be used to add a point anywhere in the set.
However, we will focus on adding points at the end. (e.g. go from 0,1,2 to 0,1,2,3).

e In this case, the m;’s follow in succession. (no missing gaps) (e.g. 2,3,4,5 or 0,1,2,
etc.)

e Then we can create an algorithm that generates successive approximations from
previous approximations.

Neville’s Method

Theorem.

o Let 0 <t < j denote the interpolating polynomaial of degree 7 on the j + 1
numbers T;_;, Ti—i_1, " ,Ti—1, T;.

o In other words, Q;j = Pi—ji—jt1,.i-1

e Then it follows that

N4

() O S el ) @ |

xTr; — xi_j

Qij(z) =
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Matrix Describing Neville’s Algorithm

Using the notation for Neville’s method given above, we have the following matrix

. y First Second Third Fourth
Order Order Order Order

o Yo = Hy

1 =D P

To Y= P P12

x3 yz3 =1  Pa3 Pio3 P23

Ty Y4 = Py Psy P34 Pio34 Py123.4

It is easier to program if we change it to: Q;; = Pi—ji—jt1,..i—1,-

First Second Third Fourth
* y Order Order Order Order
X Qo,o
1 Q10 Q11
To Q2o Q21 Q2.2

x3 Qs,o Q3,1 Q3,2 Q373
Ty Q4,0 Q4,1 Q4,2 Q4,3 Q4,4
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Notes on Neville’s Algorithm and R

Definition.

e Unfortunately, R does not allow zero indices in its programming.

e Using Python or C would probably be better.

e However, we can fizx it.

e We need to adjust the algorithm by shifting away from zero.

o Adjustments: start the counters at 2 and increase the vector entry z[i-7]
with x[1-7+1]

e Also populate the first column before performing the loop below.

for (¢ in 2:(n+1)) {
for (7 in 2:7) { o o . ' _
Qli, j] = (zs —z[i —j +1])Q[i, 5 — 1] — (zs —x[i])Q[i — 1,5 — 1]

x[i] — x[t — 5 + 1]
+
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2.5 Example: Neville’s Method

e We will estimate the value of the function at x = 2 using Neville’s Method.

e The following data set are the values of the
Digamma function at 4 points.

e The real value at x = 2 is 0.422784335098467.
e How good will Neville’s work?
e Let’s start by just using nodes 1 & 2.

2.5 0.7031566406452434 0.36982330731191

1| > x=seq(.5,by=1,length=4)

»| > y=digamma (x)

s| > A=cbind(x,y)

«| > neville(A,2,1:2) # Only use 2 points now.
s| $table

6 f(x) first order

71 1.5 0.0364899739785769 NA

8

$interp
[1] 0.36982330731191

[
=}

-
-

Node =z

f(z)

0 0.5 —1.9635100260214231

W DN =

1.5 0.0364899739785769
2.5 0.7031566406452434
3.5 1.1031566406452433

e The estimate is 0.3698 with error of 0.052961027

e Now let’s use the full capability of it.
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e Now we will show using all the nodes. Node f(z)

e The true value z = 2 is 0.422784335098467. 0 0.5 —1.9635100260214231

1 1.5 0.0364899739785769
e This shows first. second, and third order
A Droximations ’ ’ 2 2.5 0.7031566406452434
PP 3 35  1.1031566406452433
e Don’t specify any nodes this time. 4 4.5  1.3888709263595289
1| $table
2 f(x) first order second order
3] 0.5 -1.9635100260214231 NA NA
4«4/ 1.5 0.0364899739785769 1.0364899739785769 NA
5| 2.5 0.7031566406452434 0.3698233073119102 0.5364899739785769
6] 3.5 1.1031566406452433 0.5031566406452435 0.4031566406452435
71 4.5 1.3888709263595289 0.6745852120738149 0.4602994977881005
8 third order fourth order
o] 0.5 NA NA
0| 1.5 NA NA
nl 2.5 NA NA
121 3.5 0.4698233073119102 NA
131 4.5 0.4126804501690530 0.4483947358833388
15| $interp
w| [1] 0.4483947358833388

e Every single number is a different approximation to the function evaluated at 2.

e The best value is the bottom right of the matrix. (a fourth order approx)
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2.6 Inverse Interpolation

e Inverse Interpolation is an alternative to using Bisection or Newton’s.
e Inverse Quadratic Interpolation is used in Mueller’s and Brent’s method.
e We can find a zero of the function by evaluating the inverse at 0 ( zero = f~1(z)).

e To estimate the inverse, we just switch x and y in the matrix.

> neville(A,0)

.| $table

3 f(x) first order second order third order
4] =1.96351002602142 0.5 NA NA NA
5| 0.0364899739785769 1.5 1.4817550130107118 NA NA
6| 0.703156640645243 2.5 1.4452650390321347 1.454886851852138 NA
7] 1.10315664064524 3.5 0.7421083983868916 1.469319571082143 1.464127761279594
s| 1.38887092635953 4.5 -0.3610482422583534 1.873325778135062 1.458418666306317
0 fourth order

10| —1.96351002602142 NA

11| 0.0364899739785769 NA

12| 0.703156640645243 NA

131 1.10315664064524 NA

1.38887092635953 1.460783909438539

=
o

$interp
[1] 1.460783909438539

[
(=)

[
J

e The zero is 1.460783909438539.
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