Math 311

Numerical Methods

3.2: Divided Differences
NIDD, NFDF, NBDF, Stirling

S. K. Hyde

Burden and Faires, any ed.

Winter 2024

1 Introduction

e The previous section focused on interpolation at one point. (Neville’s Method and
Lagrange Polynomials).

e Focus of this section is to generate the polynomials themselves.

n'® Lagrange Polynomial in divided difference form

P(xz) = ap+ai(z —x0) +az(z —20)(x —21) + -+ an(z —20)(x —21) - - (T — 1),
where the constants a; are solved for.

e We know P, (z1) = f(xr). Let’s solve for ag. If we plug z(into P,(x) we get

P =a=fw) = | w=fw) |

e Let’s continue to a;. Plugging x; into P,(z) yields

Bulm) = a0+ ar(m = 20) = o) f(@) = f(0)
o) oo — o) = o) = | @=L

Math 311— (NIDD, NFDF, NBDF, Stirling)

e Let’s find as. Plugging x5 into P,(x) yields
Pn(ZCQ) = Qo + CL1([E2 — SU()) + CLQ(SCQ — SL’())(SUQ — 331) = f(:CQ)

e At this point, it becomes more difficult (but possible) to do the algebra involved.

e However, if we introduce a new notation, it will become a lot easier

Divided Difference Notations

We define a series of recursively generated divided differences beginning with

f[xz] = f(xz)
flzi, Tiva] = i) = fz)
Tiy1 — X
Flzi, Tig1, Tiva] = flxiv1, Tive] — floi, Tit1]
19 (2 bl (2 xz+2 _ xz
7y Li+1, g L4 Tirk — &

Math 311— (NIDD, NFDF, NBDF, Stirling) 3

e With this, we can solve for each of the a;’s easier. So, for example

Py(x) = f(xg) = ap + a1(x2 — xo) + az(r2 — zo) (22 — 21)
flwo) = flwo] + flzo, v1] (22 — 20) + (w2 — 20) (22 — 21)
flwa] — flxo] — flwo, 21](22 — 20) = az(v2 — x0) (22 — 1)
f[@] - f[$1l+ﬂ$1] - f[l.Ol_f[an T1)(22 — 0) = ag(w2 — x0) (22 — 21)

f[xlyl'QT(rl'Q—l’l) f[xowﬁ(rm—a?o)

flzr, wa) (w2 — 21) + flwo, 1](21 — 20) — flT0, 21] (72 — 20) = a2(22 — 0)(T2 — T1)

flz1, mo|(w2 — @1) — flwo, 21](22 — 21) = az(w2 — x0) (22 — 71)

f[xla 562] ($2 - 561) - f[ﬂfo, 561]($2 - 561)
(22 — o) (22 — 1)
_ flwy, o) — flwo, 4]

T2 — Xg

a9 =

flw1, 2] — flxo, 1]
To — Xy

f[l.(h X1, xZ] -

Math 311— (NIDD, NFDF, NBDF, Stirling)

e So the polynomial can be written as:

P,(z) =ap+ Zak(x —xo)(x —) (T — Tp_q)
k=1

= flzo] + Y flzo, 1, - s @x)(@ — mo) (& — 1) - - - (— @)

e You can create a Divided Difference Table that looks like this:

Jao)
\ f
[z0,71]
f — T f
[x1] [T0,71,22]
[551,962] [3007961,172@3}
f[a?Q] f[I1,1'2,1‘3] f[xo,xl,xg,mg,x4]
[952,3?3] [331,3?2,9537334}
f _— T f —
[z3] [T2,73,24]
[25,24]
/
Jiaa)

Math 311-Sec3.2: Divided Differences (NIDD, NFDF, NBDF, Stirling)

e Note that the polynomial coefficients follow the top numbers in the table. All the
other numbers are only there to create all the numbers at the top.

X y First DD Second DD Third DD Fourth DD

w2 fla) Jler, @z, @i flwo, 21,20, 20,24)

flza, 23] flx1, xo, 3, 4]
r3 flzs] flwa, 3, 4]

Math 311-Sec3.2: Divided Differences (NIDD, NFDF, NBDF, Stirling)

Newton’s Interpolary Divided-Difference Formula

To obtain the divided-difference coeficients of the interpolatory polynomial P(z) on
the (n + 1) distinct numbers, xg, 1, - , z, for the function f(x):

e Input: numbers xg, 1, -, T,, plus f(zo), f(z1),- - f(x,) as the first column
of the matrix F (F()’(), Fl’(), s 7Fn,0)

3
~.
I
—

e Output: The numbers Fy o, Fi11,- - , F,,, where P(x) = Fiill(x—xj).
Step 1 : =0 j=0
for (i =1 to n)

for (7 =1,2,--- i)

50 = I 95 1

T; — CL’i_j

Set E,j =

Step 2 output(Fo,o, Fl,Oa s ,Fn70>; STOP.

e This algorithm is fairly easy to implement. However, there are the same issues as
for Neville’s method since R does not allow arrays that start at 0.

e It’s pretty easy to fix:

Math 311— (NIDD, NFDF, NBDF, Stirling) 7

© W N e oA W N

WO NN N NN NN NN R R R R e e
S © ® N O O A& ®W N R O © ® N O O A W N H O

w
-

b

#

Newton's Interpolatory Divided Difference Formula -

This returns the coefficients of the interpolatory polynomial P where

f is stored in table form as A, which contains the z -values and f(z-values)
tn the first and second columns.

It will also evaluate the polynomial at a certain point.

written by Scott Hyde
i

nidd = function(A,xs) {
Inputs
A = table of nodes with function values
xs = walue to interpolate from the table
##
Note that n below 2s really n+l from algorithm. This is because R does
mnot use 0 as an index, so everything has to be increased by one (except
when subtracting i-j, which needs to be increased by 1 as well
n=dim(A) [1]
x=A[,1]
F=matrix(NA,n,n)
F[,11=A[,2]

for (i in 2:n) {
for (j in 2:1) {
F[i,31 = (F[i,3-11-F[i-1,3-11)/(x[i]-x[i-j+11)

The coefficients of the Newton Interpolary Divided Difference Formula are
the diagonal entries of F

coef=diag(F)

Math 311-Sec3.2: Divided Differences (NIDD, NFDF, NBDF, Stirling)

32
33
34
35

36
37
38
39
40
41

42
43

The next two lines use the coefficients to figure out the interpolation.
First line creates a wvector of the product of z—xj, then the second

finds the dot product of them.

xvec=c (1, cumprod(xs-x[-length(x)]))

interp=sum(coef*xvec)

Next, 1t names the columns appropriately.

names (coef)=paste("a",0: (n-1),sep="")

dimnames (F)=1ist (x,c("f(x)",paste(ordinal(1: (n-1)),"DD")))
return(list(table=F,coef=coef,interp=interp))

MVT applied to flxg,x1,: -+, Ty]

Suppose that f € C"[a,b] and xg, z1,. .., z, are distginct numbers in [a,b]. Then a
number ¢ in (a, b) exists with

F()

f[x(])xl)”')xn]: |
mn!

The theorem uses the Generalized Rolle’s Theorem in the proof.

Math 311-Sec3.2: Divided Differences (NIDD, NFDF, NBDF, Stirling) 9

1.1 Arranging xo,x1,...,x, to have EQUAL spacing
e We now want to apply the theory we have to equal spacing of the x values.
e This was historically done because most tables of numbers were equally spaced

e We will reformulate
Py(x) = flzo] + Y flwo, a1, ax] (@ — zo)(w — 21) -+ (= 2p1)
k=1

with equal spacing.

e So let h = x;,1 — x;. We can then reformulate:

x = x9+ sh (the point to interpolate)
x; = xo + 1h (any general z;)
r—1x;=(s—1i)h (subtract the two)

e Now, we can change (x — x¢)(z — 1) - - - (x — x}_1) into

(sh)(s — D)h(s —=2)h---(s — (k= 1))h = s(s — 1)(s = 2)--- (s — k + 1)h*

Math 311— (NIDD, NFDF, NBDF, Stirling) 10

e For convenience, we will redefine the binomial coefficient for non-integer values of s:

<s):s(s—1)---(s—k+1) (where s € R)

k k! ’

e Therefore, we have
(x —x)(x —21) - (2 — Tpy) = (Z) k!n

e This gives Newton’s Forward Divided Difference Formula (form 1):

Newton’s Forward Divided Difference Formula (form 1)

P,(x) = Py(xg + sh) Z flzo, x1, -+, xg] (Z) kIR

o If we use Aitken’s A? operator, we can make a similification to the notation.

e First, note that Af(xg) = f(x1) — f(xp). This means that
fx1) = flzo) _ Af(wo)

T1 — Xy h

f[.%‘o, xl] -

Math 311— (NIDD, NFDF, NBDF, Stirling) 11

e And

A T A i)
Flao,an.g] = S0z = floom]) 2R - G A ()
0 ’ To — Xy 2h 2h?

e In general,
1

fleo, x1, -+ 2] = Wﬁkf(ﬂfo)

e So we can reformulate NFDF

Newton’s Forward Divided-Difference Formula (form 2)

Po(z) = Pu(mo + sh) = Z (Z) AR £ ()

k=0

e You can also reorder the indices from the back to the front. (e.g. ., x, 1, -+, o)

e In this case, we get

Py(x) = flan] + > fln Tnr, - 20)(x — 20)(x — 2) - (2 — 21)
k=1

Math 311— (NIDD, NFDF, NBDF, Stirling) 12

e Using equal spacing (like before) yields

Po(x) = flan] + shf[wn1,20] + 5(s + 1)h* fl2n 2, Tn 1, 2]
+s(s+1)---(s+n—1h"flxo, -, x)

Backward Difference operator

Vpn = Pn — Pn-1 Vkpn — v(vk_lpn)
. Vf(x, V2Ff(x,
ThlS makes f[xn—la .I'n] - fT(L)7 f[xn—% Tn—1, xn] — %
k
and in general flz, j, -+, 2, = %}(Lfn)

e which means that

s(s+1)
)

s(s+1)---(s+n—1)
n!

P.(x) = flx,] + sV f(x,) + V2 f(zn) + -+

V" f(zn)

e Note that the binomial coefficient idea doesn’t seem to work because the terms are
increasing (instead of decreasing).

Math 311-Sec3.2: Divided Differences (NIDD, NFDF, NBDF, Stirling) 13

e But it really still works! Here’s the trick:

s(s+1)---(s+k—1) :(_1)k(—1)k3(3+1)---(3+k—1)

(mult by 1 trick)

k! k!
B (_1)k_8(_8 —1)(=s—=2)---(=s—k+1)
B k!
(distribute the -1’s)
= (—=1)* (_]:> (recognize the binomial pattern!)

Pe) = >0 () v

e Note that we now have 4 different formulas for the polynomial that interpolates all
the points.

Math 311— (NIDD, NFDF, NBDF, Stirling) 14

e Each gives the SAME polynomial, but they are used in different places, depending
on the situation.

e The NIDD should be used when there is not equal spacing.

e The NFDF should be used when the value of x is close to z

e The NBDF should be used when the value of x is close to z,,

e Stirlings formula should be when the value of z is near the center of the table.
e Stirling is part of a category of methods called “centered-difference formulas”.
e Difference in notation too. Choose zy to be near the point being approximated.
e Call the ones directly below x(as x1, xs, etc.

e Label the ones above zy as z_1, x_», etc.

e It uses the coefficients in the middle of the table (see Table 3.9 in book)

e Depending on the value of n (odd or even), you use a different formula. Here is the
summary of it:

Math 311— (NIDD, NFDF, NBDF, Stirling) 15

Stirling’s Formula (n = 2m + 1)

If n =2m +1 (is odd), then "
Po(x) = Pomi1(z) = flawo] + = (flw_1, @] + o, 21]) + 82B> flw_1, w0, 1]

2
s(s? — 1)h3
+ %(f[x_l, L0 5517552] + f[x_g, 1,20, :cl])

+ 832 = 1) (s —4)--- (s = (m — DDA flx_m, -+, T
s(s2— 1) .- (s2 — m2)R2m+!
2

(f[x—my Tt 7xm+1] + f[x—m—la Tt 7xm])

Stirling’s Formula (n = 2m)

If n = 2m (is even), then
B(x) = Pom(2) = flwo] +

s(s?2 —1)h3
+ %(-f{x—bx(ﬁxl:xﬂ + f[x—%x—l;xnyl])

+ (2 = 1)(= 4) - (8 = (m = DN flo—m, -+]

sh

5 (flz—1,70) + flzo, 71]) + s*h* fw_1, T0, 21]

Math 311-Sec3.2: Divided Differences (NIDD, NFDF, NBDF, Stirling) 16

