Math 311

Numerical Methods

3.2: Divided Differences
NIDD, NFDF, NBDF, Stirling

S. K. Hyde

Burden and Faires, any ed.

Winter 2024



1 Introduction

e The previous section focused on interpolation at one point. (Neville’s Method and
Lagrange Polynomials).

e Focus of this section is to generate the polynomials themselves.

n'® Lagrange Polynomial in divided difference form

P(xz) = ap+ai(z —x0) +az(z —20)(x —21) + -+ an(z —20)(x —21) - - (T — 1),
where the constants a; are solved for.

e We know P, (z1) = f(xr). Let’s solve for ag. If we plug z( into P,(x) we get

P =a=fw) = | w=fw) |

e Let’s continue to a;. Plugging x; into P,(z) yields

Bulm) = a0+ ar(m = 20) = o) f(@) = f(0)
o) oo — o) = o) = | @=L
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e Let’s find as. Plugging x5 into P,(x) yields
Pn(ZCQ) = Qo + CL1([E2 — SU()) + CLQ(SCQ — SL’())(SUQ — 331) = f(:CQ)

e At this point, it becomes more difficult (but possible) to do the algebra involved.

e However, if we introduce a new notation, it will become a lot easier

Divided Difference Notations

We define a series of recursively generated divided differences beginning with

f[xz] = f(xz)
flzi, Tiva] = i) = fz)
Tiy1 — X
Flzi, Tig1, Tiva] = flxiv1, Tive] — floi, Tit1]
19 (2 bl (2 xz+2 _ xz
7y Li+1, g L4 Tirk — &
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e With this, we can solve for each of the a;’s easier. So, for example

Py(x) = f(xg) = ap + a1(x2 — xo) + az(r2 — zo) (22 — 21)
flwo) = flwo] + flzo, v1] (22 — 20) + (w2 — 20) (22 — 21)
flwa] — flxo] — flwo, 21](22 — 20) = az(v2 — x0) (22 — 1)
f[@] - f[$1l+ﬂ$1] - f[l.Ol_f[an T1)(22 — 0) = ag(w2 — x0) (22 — 21)

f[xlyl'QT(rl'Q—l’l) f[xowﬁ(rm—a?o)

flzr, wa) (w2 — 21) + flwo, 1](21 — 20) — flT0, 21] (72 — 20) = a2(22 — 0)(T2 — T1)

flz1, mo|(w2 — @1) — flwo, 21](22 — 21) = az(w2 — x0) (22 — 71)

f[xla 562] ($2 - 561) - f[ﬂfo, 561]($2 - 561)
(22 — o) (22 — 1)
_ flwy, o) — flwo, 4]

T2 — Xg

a9 =

flw1, 2] — flxo, 1]
To — Xy

f[l.(h X1, xZ] -

Math 311— (NIDD, NFDF, NBDF, Stirling)



e So the polynomial can be written as:

P,(z) =ap+ Zak(x —xo)(x — ) (T — Tp_q)
k=1

= flzo] + Y flzo, 1, - s @x)(@ — mo) (& — 1) - - - ( — @)

e You can create a Divided Difference Table that looks like this:

Jao)
\ f
[z0,71]
f — T f
[x1] [T0,71,22]
[551,962] [3007961,172@3}
f[a?Q] f[I1,1'2,1‘3] f[xo,xl,xg,mg,x4]
[952,3?3] [331,3?2,9537334}
f _— T f —
[z3] [T2,73,24]
[25,24]
/
Jiaa)
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e Note that the polynomial coefficients follow the top numbers in the table. All the
other numbers are only there to create all the numbers at the top.

X y  First DD Second DD Third DD Fourth DD

w2 fla) Jler, @z, @i flwo, 21,20, 20,24)

flza, 23] flx1, xo, 3, 4]
r3  flzs] flwa, 3, 4]
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Newton’s Interpolary Divided-Difference Formula

To obtain the divided-difference coeficients of the interpolatory polynomial P(z) on
the (n + 1) distinct numbers, xg, 1, - , z, for the function f(x):

e Input: numbers xg, 1, -, T,, plus f(zo), f(z1),- - f(x,) as the first column
of the matrix F (F()’(), Fl’(), s 7Fn,0)

3
~.
I
—

e Output: The numbers Fy o, Fi11,- - , F,,, where P(x) = Fiill(x—xj).
Step 1 : =0 j=0
for (i =1 to n)

for (7 =1,2,--- i)

50 = I 95 1

T; — CL’i_j

Set E,j =

Step 2 output(Fo,o, Fl,Oa s ,Fn70>; STOP.

e This algorithm is fairly easy to implement. However, there are the same issues as
for Neville’s method since R does not allow arrays that start at 0.

e It’s pretty easy to fix:
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#

# Newton's Interpolatory Divided Difference Formula -

# This returns the coefficients of the interpolatory polynomial P where

# f is stored in table form as A, which contains the z -values and f(z-values)
# tn the first and second columns.

# It will also evaluate the polynomial at a certain point.

# written by Scott Hyde
i

nidd = function(A,xs) {
## Inputs
## A = table of nodes with function values
## xs = walue to interpolate from the table
##
## Note that n below 2s really n+l from algorithm. This is because R does
## mnot use 0 as an index, so everything has to be increased by one (except
## when subtracting i-j, which needs to be increased by 1 as well
n=dim(A) [1]
x=A[,1]
F=matrix(NA,n,n)
F[,11=A[,2]

for (i in 2:n) {
for (j in 2:1) {
F[i,31 = (F[i,3-11-F[i-1,3-11)/(x[i]-x[i-j+11)

## The coefficients of the Newton Interpolary Divided Difference Formula are
##  the diagonal entries of F

coef=diag(F)
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32
33
34
35

36
37
38
39
40
41

42
43

## The next two lines use the coefficients to figure out the interpolation.
## First line creates a wvector of the product of z—xj, then the second

##  finds the dot product of them.

xvec=c (1, cumprod(xs-x[-length(x)]))

interp=sum(coef*xvec)

## Next, 1t names the columns appropriately.

names (coef)=paste("a",0: (n-1),sep="")

dimnames (F)=1ist (x,c("f(x)",paste(ordinal(1: (n-1)),"DD")))
return(list(table=F,coef=coef,interp=interp))

MVT applied to flxg,x1,: -+, Ty]

Suppose that f € C"[a,b] and xg, z1,. .., z, are distginct numbers in [a,b]. Then a
number ¢ in (a, b) exists with

F()

f[x(])xl)”')xn]: |
mn!

The theorem uses the Generalized Rolle’s Theorem in the proof.
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1.1 Arranging xo,x1,...,x, to have EQUAL spacing
e We now want to apply the theory we have to equal spacing of the x values.
e This was historically done because most tables of numbers were equally spaced

e We will reformulate
Py(x) = flzo] + Y flwo, a1, ax] (@ — zo)(w — 21) -+ (= 2p1)
k=1

with equal spacing.

e So let h = x;,1 — x;. We can then reformulate:

x = x9+ sh (the point to interpolate)
x; = xo + 1h ( any general z;)
r—1x;=(s—1i)h ( subtract the two)

e Now, we can change (x — x¢)(z — 1) - - - (x — x}_1) into

(sh)(s — D)h(s —=2)h---(s — (k= 1))h = s(s — 1)(s = 2)--- (s — k + 1)h*
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e For convenience, we will redefine the binomial coefficient for non-integer values of s:

<s):s(s—1)---(s—k+1) (where s € R)

k k! ’

e Therefore, we have
(x —x)(x —21) - (2 — Tpy) = (Z) k!n

e This gives Newton’s Forward Divided Difference Formula (form 1):

Newton’s Forward Divided Difference Formula (form 1)

P,(x) = Py(xg + sh) Z flzo, x1, -+, xg] (Z) kIR

o If we use Aitken’s A? operator, we can make a similification to the notation.

e First, note that Af(xg) = f(x1) — f(xp). This means that
fx1) = flzo) _ Af(wo)

T1 — Xy h

f[.%‘o, xl] -
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e And

A T A i)
Flao,an.g] = S0z = floom]) 2R - G A ()
0 ’ To — Xy 2h 2h?

e In general,
1

fleo, x1, -+ 2] = Wﬁkf(ﬂfo)

e So we can reformulate NFDF

Newton’s Forward Divided-Difference Formula (form 2)

Po(z) = Pu(mo + sh) = Z (Z) AR £ ()

k=0

e You can also reorder the indices from the back to the front. (e.g. ., x, 1, -+, o)

e In this case, we get

Py(x) = flan] + > fln Tnr, - 20)(x — 20)(x — 2) - (2 — 21)
k=1
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e Using equal spacing (like before) yields

Po(x) = flan] + shf[wn1,20] + 5(s + 1)h* fl2n 2, Tn 1, 2]
+s(s+1)---(s+n—1h"flxo, -, x)

Backward Difference operator

Vpn = Pn — Pn-1 Vkpn — v(vk_lpn)
. Vf(x, V2Ff(x,
ThlS makes f[xn—la .I'n] - fT(L )7 f[xn—% Tn—1, xn] — %
k
and in general flz, j, -+, 2, = %}(Lfn)

e which means that

s(s+1)
)

s(s+1)---(s+n—1)
n!

P.(x) = flx,] + sV f(x,) + V2 f(zn) + -+

V" f(zn)

e Note that the binomial coefficient idea doesn’t seem to work because the terms are
increasing (instead of decreasing).
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e But it really still works! Here’s the trick:

s(s+1)---(s+k—1) :(_1)k(—1)k3(3+1)---(3+k—1)

(mult by 1 trick)

k! k!
B (_1)k_8(_8 —1)(=s—=2)---(=s—k+1)
B k!
(distribute the -1’s)
= (—=1)* (_]:> (recognize the binomial pattern!)

Pe) = >0 () v

e Note that we now have 4 different formulas for the polynomial that interpolates all
the points.
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e Each gives the SAME polynomial, but they are used in different places, depending
on the situation.

e The NIDD should be used when there is not equal spacing.

e The NFDF should be used when the value of x is close to z

e The NBDF should be used when the value of x is close to z,,

e Stirlings formula should be when the value of z is near the center of the table.
e Stirling is part of a category of methods called “centered-difference formulas”.
e Difference in notation too. Choose zy to be near the point being approximated.
e Call the ones directly below x( as x1, xs, etc.

e Label the ones above zy as z_1, x_», etc.

e It uses the coefficients in the middle of the table (see Table 3.9 in book)

e Depending on the value of n (odd or even), you use a different formula. Here is the
summary of it:
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Stirling’s Formula (n = 2m + 1)

If n =2m +1 (is odd), then "
Po(x) = Pomi1(z) = flawo] + = (flw_1, @] + o, 21]) + 82B> flw_1, w0, 1]

2
s(s? — 1)h3
+ %(f[x_l, L0 5517552] + f[x_g, 1,20, :cl])

+ 832 = 1) (s —4)--- (s = (m — DDA flx_m, -+, T
s(s2— 1) .- (s2 — m2)R2m+!
2

(f[x—my Tt 7xm+1] + f[x—m—la Tt 7xm])

Stirling’s Formula (n = 2m)

If n = 2m (is even), then
B(x) = Pom(2) = flwo] +

s(s?2 —1)h3
+ %(-f{x—bx(ﬁxl:xﬂ + f[x—%x—l;xnyl])

+ (2 = 1)( = 4) - (8 = (m = DN flo—m, -+ ]

sh

5 (flz—1,70) + flzo, 71]) + s*h* fw_1, T0, 21]
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