Math 311

3.2: Divided Differences NIDD, NFDF, NBDF, Stirling

S. K. Hyde

Burden and Faires, any ed.

Winter 2024

1 Introduction

- The previous section focused on interpolation at one point. (Neville's Method and Lagrange Polynomials).
- Focus of this section is to generate the polynomials themselves.

$n^{ m th}$ Lagrange Polynomial in divided difference form

$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) + \dots + (x - x_{n-1}),$$
 where the constants a_i are solved for.

• We know $P_n(x_k) = f(x_k)$. Let's solve for a_0 . If we plug x_0 into $P_n(x)$ we get

$$P_n(x_0) = a_0 = f(x_0) \qquad \Longrightarrow \qquad \boxed{a_0 = f(x_0)}$$

• Let's continue to a_1 . Plugging x_1 into $P_n(x)$ yields

$$P_n(x_1) = a_0 + a_1(x_1 - x_0) = f(x_1)$$

$$f(x_0) + a_1(x_1 - x_0) = f(x_1) \implies a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

• Let's find a_2 . Plugging x_2 into $P_n(x)$ yields

$$P_n(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) = f(x_2)$$

- At this point, it becomes more difficult (but possible) to do the algebra involved.
- However, if we introduce a new notation, it will become a lot easier

Divided Difference Notations

We define a series of recursively generated divided differences beginning with

$$f[x_i] = f(x_i)$$

$$f[x_i, x_{i+1}] = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$

$$\vdots \qquad \vdots$$

$$f[x_i, x_{i+1}, \dots, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] - f[x_i, x_{i+1}, x_{i+k-1}]}{x_{i+k} - x_i}$$

• With this, we can solve for each of the a_k 's easier. So, for example

$$P_{2}(x) = f(x_{2}) = a_{0} + a_{1}(x_{2} - x_{0}) + a_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$f[x_{2}] = f[x_{0}] + f[x_{0}, x_{1}](x_{2} - x_{0}) + a_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$f[x_{2}] - f[x_{0}] - f[x_{0}, x_{1}](x_{2} - x_{0}) = a_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$\underbrace{f[x_{2}] - f[x_{1}]}_{f[x_{1}, x_{2}](x_{2} - x_{1})} + \underbrace{f[x_{1}] - f[x_{0}]}_{f[x_{0}, x_{1}](x_{1} - x_{0})} - f[x_{0}, x_{1}](x_{2} - x_{0}) = a_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$f[x_{1}, x_{2}](x_{2} - x_{1}) + f[x_{0}, x_{1}](x_{1} - x_{0}) - f[x_{0}, x_{1}](x_{2} - x_{0}) = a_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$f[x_{1}, x_{2}](x_{2} - x_{1}) - f[x_{0}, x_{1}](x_{2} - x_{1}) = a_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$a_{2} = \underbrace{\frac{f[x_{1}, x_{2}](x_{2} - x_{1}) - f[x_{0}, x_{1}](x_{2} - x_{1})}_{(x_{2} - x_{0})}}_{(x_{2} - x_{0})(x_{2} - x_{1})}$$

$$a_{2} = \underbrace{\frac{f[x_{1}, x_{2}](x_{2} - x_{1}) - f[x_{0}, x_{1}](x_{2} - x_{1})}_{x_{2} - x_{0}}}_{(x_{2} - x_{0})(x_{2} - x_{1})}$$

• So the polynomial can be written as:

$$P_n(x) = a_0 + \sum_{k=1}^n a_k(x - x_0)(x - x_1) \cdots (x - x_{k-1})$$

$$= f[x_0] + \sum_{k=1}^n f[x_0, x_1, \cdots, x_k](x - x_0)(x - x_1) \cdots (x - x_{k-1})$$

• You can create a Divided Difference Table that looks like this:

• Note that the polynomial coefficients follow the top numbers in the table. All the other numbers are only there to create all the numbers at the top.

X	y	First DD	Second DD	Third DD	Fourth DD
x_0	$f[x_0]$				
		$f[x_0, x_1]$			
x_1	$f[x_1]$		$f[x_0, x_1, x_2]$		
		$f[x_1, x_2]$		$f[x_0, x_1, x_2, x_3]$	
x_2	$f[x_2]$		$f[x_1, x_2, x_3]$		$f[x_0, x_1, x_2, x_3, x_4]$
		$f[x_2, x_3]$		$f[x_1, x_2, x_3, x_4]$	
x_3	$f[x_3]$	a.c. 1	$f[x_2, x_3, x_4]$		
	a.r. 1	$f[x_3, x_4]$			
x_4	$f[x_4]$				

Newton's Interpolary Divided-Difference Formula

To obtain the divided-difference coefficients of the interpolatory polynomial P(x) on the (n+1) distinct numbers, x_0, x_1, \dots, x_n for the function f(x):

- Input: numbers x_0, x_1, \dots, x_n , plus $f(x_0), f(x_1), \dots f(x_n)$ as the first column of the matrix $F(F_{0,0}, F_{1,0}, \dots, F_{n,0})$
- Output: The numbers $F_{0,0}, F_{1,1}, \dots, F_{n,n}$, where $P(x) = \sum_{i=0}^{n} F_{i,i} \prod_{j=0}^{i-1} (x x_j)$. Step 1: for (i = 1 to n) $for (j = 1, 2, \dots, i) \text{ Set } F_{i,j} = \frac{F_{i,j-1} - F_{i-1,j-1}}{r_i - r_{i-1,j-1}}.$

Step 2 output($F_{0,0}, F_{1,0}, \dots, F_{n,0}$); STOP.

- This algorithm is fairly easy to implement. However, there are the same issues as for Neville's method since R does not allow arrays that start at 0.
- It's pretty easy to fix:

```
Newton's Interpolatory Divided Difference Formula -
     This returns the coefficients of the interpolatory polynomial P where
     f is stored in table form as A, which contains the x -values and f(x-values)
       in the first and second columns.
     It will also evaluate the polynomial at a certain point.
    written by Scott Hyde
 10
 nidd = function(A,xs) {
11
     ## Inputs
12
        \overline{A} = table of nodes with function values
13
         xs = value to interpolate from the table
14
15
     ## Note that n below is really n+1 from algorithm. This is because R does
16
     ## not use 0 as an index, so everything has to be increased by one (except
17
     ## when subtracting i-j, which needs to be increased by 1 as well
18
     n=dim(A)[1]
19
     x=A[,1]
20
     F=matrix(NA,n,n)
21
     F[,1]=A[,2]
22
23
     for (i in 2:n) {
^{24}
       for (j in 2:i) {
25
        F[i,j] = (F[i,j-1]-F[i-1,j-1])/(x[i]-x[i-j+1])
26
27
28
     ## The coefficients of the Newton Interpolary Divided Difference Formula are
29
          the diagonal entries of F
30
     coef=diag(F)
31
```

```
## The next two lines use the coefficients to figure out the interpolation.
32
      ## First line creates a vector of the product of x-xj, then the second
33
           finds the dot product of them.
34
      xvec=c(1,cumprod(xs-x[-length(x)]))
35
      interp=sum(coef*xvec)
36
37
      ## Next, it names the columns appropriately.
38
      names(coef)=paste("a",0:(n-1),sep="")
39
      dimnames(F)=list(x,c("f(x)",paste(ordinal(1:(n-1)),"DD")))
40
      return(list(table=F,coef=coef,interp=interp))
41
42 | }
43
```

MVT applied to $f[x_0, x_1, \dots, x_n]$

Suppose that $f \in C^n[a, b]$ and x_0, x_1, \ldots, x_n are distginct numbers in [a, b]. Then a number ξ in (a, b) exists with

$$f[x_0, x_1, \cdots, x_n] = \frac{f^{(n)}(\xi)}{n!}$$

The theorem uses the Generalized Rolle's Theorem in the proof.

1.1 Arranging x_0, x_1, \ldots, x_n to have EQUAL spacing

- We now want to apply the theory we have to equal spacing of the x values.
- This was historically done because most tables of numbers were equally spaced
- We will reformulate

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_{k-1})$$

with equal spacing.

• So let $h = x_{i+1} - x_i$. We can then reformulate:

$$x = x_0 + sh$$
 (the point to interpolate)
 $x_i = x_0 + ih$ (any general x_i)
 $x - x_i = (s - i)h$ (subtract the two)

• Now, we can change $(x-x_0)(x-x_1)\cdots(x-x_{k-1})$ into

$$(sh)(s-1)h(s-2)h\cdots(s-(k-1))h = s(s-1)(s-2)\cdots(s-k+1)h^k$$

 \bullet For convenience, we will redefine the binomial coefficient for non-integer values of s:

$$\binom{s}{k} = \frac{s(s-1)\cdots(s-k+1)}{k!},$$
 (where $s \in \mathbb{R}$)

• Therefore, we have

$$(x - x_0)(x - x_1) \cdots (x - x_{k-1}) = \binom{s}{k} k! h^k$$

• This gives Newton's Forward Divided Difference Formula (form 1):

Newton's Forward Divided Difference Formula (form 1)

$$P_n(x) = P_n(x_0 + sh) = \sum_{k=0}^n f[x_0, x_1, \dots, x_k] \binom{s}{k} k! h^k$$

- If we use Aitken's Δ^2 operator, we can make a similification to the notation.
- First, note that $\Delta f(x_0) = f(x_1) f(x_0)$. This means that

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{\Delta f(x_0)}{h}$$

• And

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{\frac{\Delta f(x_1)}{h} - \frac{\Delta f(x_0)}{h}}{2h} = \frac{\Delta^2 f(x_0)}{2h^2}$$

• In general,

$$f[x_0, x_1, \cdots, x_k] = \frac{1}{k!h^k} \Delta^k f(x_0)$$

• So we can reformulate NFDF

Newton's Forward Divided-Difference Formula (form 2)

$$P_n(x) = P_n(x_0 + sh) = \sum_{k=0}^n \binom{s}{k} \Delta^k f(x_0)$$

- You can also reorder the indices from the back to the front. (e.g. x_n, x_{n-1}, \dots, x_0)
- In this case, we get

$$P_n(x) = f[x_n] + \sum_{k=1}^n f[x_n, x_{n-1}, \dots, x_0](x - x_n)(x - x_{n-1}) \cdots (x - x_1)$$

• Using equal spacing (like before) yields

$$P_n(x) = f[x_n] + shf[x_{n-1}, x_n] + s(s+1)h^2 f[x_{n-2}, x_{n-1}, x_n] + s(s+1)\cdots(s+n-1)h^n f[x_0, \cdots, x_n]$$

Backward Difference operator

$$\nabla p_n = p_n - p_{n-1} \qquad \qquad \nabla^k p_n = \nabla(\nabla^{k-1} p_n)$$

This makes
$$f[x_{n-1}, x_n] = \frac{\nabla f(x_n)}{n}, \quad f[x_{n-2}, x_{n-1}, x_n] = \frac{\nabla^2 f(x_n)}{2h^2}$$

and in general $f[x_{n-k}, \dots, x_n] = \frac{\nabla^k f(x_n)}{k!h^k}$

• which means that

$$P_n(x) = f[x_n] + s\nabla f(x_n) + \frac{s(s+1)}{2}\nabla^2 f(x_n) + \dots + \frac{s(s+1)\cdots(s+n-1)}{n!}\nabla^n f(x_n)$$

• Note that the binomial coefficient idea doesn't seem to work because the terms are increasing (instead of decreasing).

• But it really still works! Here's the trick:

$$\frac{s(s+1)\cdots(s+k-1)}{k!} = (-1)^k \frac{(-1)^k s(s+1)\cdots(s+k-1)}{k!} \qquad \text{(mult by 1 trick)}$$

$$= (-1)^k \frac{-s(-s-1)(-s-2)\cdots(-s-k+1)}{k!}$$

$$= (-1)^k \binom{-s}{k} \qquad \text{(recognize the binomial pattern!)}$$

Newton's Backward Divided-Difference Formula (both forms)

$$P_n(x) = f[x_n] + \sum_{k=1}^n \frac{s(s+1)\cdots(s+k-1)}{k!} \nabla^k f(x_n)$$

$$P_n(x) = \sum_{k=0}^n (-1)^k {\binom{-s}{k}} \nabla^k f(x_n)$$

• Note that we now have 4 different formulas for the polynomial that interpolates all the points.

- Each gives the SAME polynomial, but they are used in different places, depending on the situation.
- The NIDD should be used when there is not equal spacing.
- The NFDF should be used when the value of x is close to x_0
- The NBDF should be used when the value of x is close to x_n
- Stirlings formula should be when the value of x is near the center of the table.
- Stirling is part of a category of methods called "centered-difference formulas".
- Difference in notation too. Choose x_0 to be near the point being approximated.
- Call the ones directly below x_0 as x_1 , x_2 , etc.
- Label the ones above x_0 as x_{-1} , x_{-2} , etc.
- It uses the coefficients in the middle of the table (see Table 3.9 in book)
- \bullet Depending on the value of n (odd or even), you use a different formula. Here is the summary of it:

Stirling's Formula (n = 2m + 1)

If
$$n = 2m + 1$$
 (is odd), then
$$P_n(x) = P_{2m+1}(x) = f[x_0] + \frac{sh}{2} (f[x_{-1}, x_0] + f[x_0, x_1]) + s^2 h^2 f[x_{-1}, x_0, x_1]$$

$$+ \frac{s(s^2 - 1)h^3}{2} (f[x_{-1}, x_0, x_1, x_2] + f[x_{-2}, x_{-1}, x_0, x_1])$$

$$+ s^2 (s^2 - 1)(s^2 - 4) \cdots (s^2 - (m - 1)^2)h^{2m} f[x_{-m}, \cdots, x_m]$$

$$+ \frac{s(s^2 - 1) \cdots (s^2 - m^2)h^{2m+1}}{2} (f[x_{-m}, \cdots, x_{m+1}] + f[x_{-m-1}, \cdots, x_m])$$

Stirling's Formula (n = 2m)

If
$$n = 2m$$
 (is even), then
$$P_n(x) = P_{2m}(x) = f[x_0] + \frac{sh}{2}(f[x_{-1}, x_0] + f[x_0, x_1]) + s^2h^2f[x_{-1}, x_0, x_1] + \frac{s(s^2 - 1)h^3}{2}(f[x_{-1}, x_0, x_1, x_2] + f[x_{-2}, x_{-1}, x_0, x_1]) + s^2(s^2 - 1)(s^2 - 4) \cdots (s^2 - (m - 1)^2)h^{2m}f[x_{-m}, \cdots, x_m]$$