

3.3: Hermite Interpolation Matching First Derivatives

> S. K. Hyde Burden and Faires, any ed.

> > Winter 2024

1 Introduction

- Osculating polynomials are a generalization of both Taylor Polynomials and Lagrange Polynomials.
- What are Osculating polynomials?

Definition. Let x_0, x_1, \dots, x_n be n + 1 distinct numbers in [a, b] and m_i be a non-negative integer associated with x_i for $i = 0, 1, \dots, n$. Let

 $m = \max_{0 \leq i \leq n} m_i \text{ and } f \in C^m[a, b]$

The osculating polynomial approximating f is the polynomial P of least degree such that

$$\frac{d^k P(x_i)}{dx^k} = \frac{d^k f(x_i)}{dx^k},$$

for each $i = 0, 1, \dots, n$ and $k = 0, 1, \dots, m_i$

- Note that when n = 0, the osculating polynomial approximating f is simply the m_0^{th} Taylor polynomial for f at x_0
- When $m_i = 0$ for $i = 0, 1, \dots, n$, the osculating polynomial is the n^{th} Lagrange

polynomials interpolating f on x_0, x_1, \cdots, x_n .

- The case when $m_i = 1$ for each $i = 0, 1, \dots, n$ gives a class called the Hermite polynomials.
- For a given f, they agree with f at the points x_0, x_1, \dots, x_n AND they agree with f' at those points as well.
- This gives a much better shape to the approximating polynomial.

$n^{\rm th}$ Hermite Polynomial

Theorem.

 $P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \cdots (x - x_n),$ where the constants a_i are solved for.

To obtain the divided-difference coefficients of the interpolatory polynomial P(x) on the (n+1) distinct numbers, x_0, x_1, \dots, x_n for the function f(x):

• Input: numbers x_0, x_1, \cdots, x_n , plus

 Note that the polynomial coefficients follow the top numbers in the table. All the other numbers are only there to create all the numbers at the top.

