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Introduction

Numerical Quadrature

Numerical integration, also called numerical quadrature are used to evaluate a
definite integral of a function that has no explicit antiderivative (or it’s just
difficult). To make the notation below more compact, define yk = f(xk). The main
idea is to approximate it as a linear combination of ak and yk.∫ b

a

f(x)dx =
n∑

k=0

akf(xk) =
n∑

k=0

akyk,
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Closed Newton-Cotes Formulas

• Typically, the integral of any function evaluates the anti-derivative of that function
at the endpoints.

• Split the interval [a, b] evenly into n intervals with width h =
b− a

n
.

Partition of Interval

x0

a

x1 x2 · · · xk · · · xn−1 xn

b
x0 = a,

xk = x0 + kh

xn = b

• It’s called “closed” since the endpoints x0 and xn are used in the calculation of the
integral.

• The coefficients ak are derived by using a Lagrange polynomial of degree n which
fits the function at each of the node points and then we integrate the formula.
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n Name Formula

1 Trapezoid rule

∫ x1

x0

f(x)dx =
h

2
[y0 + y1]−

h3

12
f ′′(ξ)

2 Simpson’s rule

∫ x2

x0

f(x)dx =
h

3
[y0 + 4y1 + y2]−

h5

90
f (4)(ξ)

3
Simpson’s
three-eighths
rule

∫ x3

x0

f(x)dx =
3h

8
[y0 + 3y1 + 3y2 + y3]−

3h5

80
f (4)(ξ)

4 Boole’s rule

∫ x4

x0

f(x)dx =
2h

45
[7y0 + 32y1 + 12y2 + 32y3 + 7y4]−

8h7

945
f (6)(ξ)

5

∫ x5

x0

f(x)dx =
5h

288
[19y0 + 75y1 + 50y2 + 50y3 + 75y4 + 19y5]−

275h7

12096
f (6)(ξ)

6

∫ x6

x0

f(x)dx =
h

140
[41y0 + 216y1 + 27y2 + 272y3 + 27y4 + 216y5 + 41y6]−

9h9

1400
f (8)(ξ)
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Open Newton-Cotes Formulas

• Sometimes it is desirable to not evaluate the function at the end points. (For
example, when we have a discontinuity at the endpoints).

• Split the interval [a, b] is split evenly into n+ 2 intervals with width h =
b− a

n+ 2
.

Partition of Interval

x−1

a

x0 x1 · · · xk · · · xn xn+1

b

x−1 = a

x0 = a+ h,

xk = x0 + kh

xn = b− h

xn+1 = b

• It’s called “open” since the endpoints a and b are NOT used in the calculation of
the integral (a = x−1 and b = xn+1 are not used).

• The coefficients ak are derived by using a Lagrange polynomial of degree n which
fits the function at each of the node points.

• Here are the answers for the first few values of n, where ξ ∈ (x0, xn).
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n Name Formula

0 Midpoint rule

∫ x1

x−1

f(x)dx = 2h y0 +
h3

3
f ′′(ξ)

1

∫ x2

x−1

f(x)dx =
3h

2
[y0 + y1]−

3h3

4
f ′′(ξ)

2 Milne’s rule

∫ x3

x−1

f(x)dx =
4h

3
[2y0 − y1 + 2y2]−

14

45
h5f (4)(ξ)

3

∫ x4

x−1

f(x)dx =
5h

24
[11y0 + y1 + y2 + 11y3]−

95

144
h5f (4)(ξ)

4

∫ x5

x−1

f(x)dx =
3h

10
[11y0 − 14y1 + 26y2 − 14y3 + 11y4]−

41

40
h7f (6)(ξ)

5

∫ x6

x−1

f(x)dx =
7h

1440
[611y0 − 453y1 + 562y2 + 562y3 − 453y4 + 611y5]−

5257

8640
h7f (6)(ξ)

Math 311–Sec4.3: Elements of Numerical Integration (Closed and Open Newton–Cotes) GoBack 6


