[1.3] Definition of Probability

DEF:

$$0 \le P(A)$$
 for every A
 $P(S) = 1$
 $P(\bigcup_{i=1}^{N} A_i) = \sum_{i=1}^{N} P(A_i)$ if $A_i \cap A_j = \phi$
whenever $i \ne j$

first consignance:	Probability in Discrete Spaces	EX" Cointoss
$P(\phi) = 0$	The assignment of prob in the case of discrete	S=ZHH, HT, TH, TTS
$S \cup \phi = S$	The assignment of prob in the case of discrete Graces can be reduced to assigning probability to elementary events.	=> prob of each evend is Y4.
$P(S \cup \psi) = P(S)$	let zeig beancient o	$p(HH) = \frac{1}{4} = \frac{1}{4} (HH) = \frac{1}{4}$
$P(s) + P(\psi) = P(s)$	P(Zei3) = Pi	P(TH) = P(TT)
$P(\phi) = 0$	So, to satisfy the axiomsof prob (deta Prob pizzo for all i.	X= # of heads in 2 too
	S P = 1	5= 20,1,23 Nal => P(ench)= 1/37 => P(ench)= 1/37
	$\sum_{\alpha \in I} p_{\alpha} = 1$	$p(x=1)=p(HT)+p(TH)$ $=\frac{1}{4}+\frac{1}{4}$
		= 1/2
		P(0)-P(2)= 1/4.

Classical Prob

- finite number of outcomes
- equally likely outcomes

$$S = \sum e_1, e_2, \cdots, e_N \sum$$

 $R_1 = P_2 = \cdots = P_N = \frac{1}{N}$
 $\frac{e^{anyevent}}{N} = \frac{\#of_Ways Acan Occur}{fotal size \overline{\eta} Sample space}$.
Pandom Selection
If an object is chosen from a finite collectrop
of distinct objects in Such a manner that each
 $D_1 = D_2 + D_2$
 $D_2 = D_2 + D_2$
 $P_1 = D_2 + D_2$
 $P_2 = D_2$
 $P_2 =$