

 $P(\beta) = \frac{33}{300} = \frac{11}{100} = .11$ $P(B|Rh+) = \frac{27}{252} = \frac{n(B4Rh)}{n(Ph)} = \frac{3}{28} = .107$ In general (Not blood types): $\boxed{\text{DEF 1.5.1}}$ $P(A|B) = \frac{P(A \cap B)}{P(B)}$, if $P(B) \neq 0$ Note: conditional prob are prob! and rule the apply to prob, also apply to con prob. A the are mutually exclusive, they $P(H_1 \cup A_2 | g) = P(A_1 | g) + P(A_2 | g)$

$$
\frac{\partial h \circ w}{\partial (A_1 \cup A_2 | \beta)} = \frac{\rho((A_1 \cup A_2) \cap B)}{\rho(\beta)} = \frac{\rho(A_1 \cap B) \cup (A_2 \cap B)}{\rho(\beta)}
$$

$$
= \frac{\rho((A_1 \cap B) + \rho'(A_2 \cap B)}{\rho(\beta)}
$$

$$
= \frac{\rho(A_1 \cap B)}{\rho(\beta)} + \frac{\rho(A_2 \cap B)}{\rho(\beta)}
$$

$$
= \frac{\rho(A_1 | \beta)}{\rho(\beta)} + \rho'(A_2 | \beta)
$$

Some other rules: $P(A|B) \ge 0$ $P(S|B) = P(B|B) = 1$ $p(A|B) = 1 - P(A^t|B)$ $p \le P(A|B) \le 1$ $P(A_1 \cup A_2 | B) = P(A_1 | B) + P(A_2 | B) P(A_1 | A_2)$ $P(A_1 \cup A_2 | B) = P(A_1 | B) + P(A_2 | B) - P(A_1 \cap A_2 | B)$

In other words, conditional probabilities behave and follow the same rules that normal probabilities do. They are probabilities!

Thm [51] Multiplication False

\nFor any two events
$$
A_1B_2
$$

\n $p(A \cap B) = P(B) \cdot P(A|B) = P(A) P(B|A)$

\nThis formula is used a lot when sample willout

\nrepancement.

\nFor example, suppose we draw two cards from a $\text{dec} \neq \text{bd}$ standard playing cards

\n $p(A \cdot P(A) \cdot P(A|A)$

\n $= \frac{4}{52} = \frac{4}{51}$

To fall Probability & Bayes Bisk
\nSometimes it is used to partially anewate
\ninto the union of 2 or more disjoint
\newards:
\nFor example B4 B' Can be used to
\nsplit A into:
\n
$$
A = (A \cap B) \cup (A \cap B')
$$

\n $A = (A \cap B) \cup (A \cap B')$
\nThus B_{FS} are multiplied precisely,
\nthen
\n $A = (A \cap B) \cup (A \cap B_2) \cup \cup B_{k}$,
\nthen
\n $A = (A \cap B) \cup (A \cap B_2) \cup \cup (A \cap B_{k})$

Thm 1.52 (law of total Probability	Example	Mixed by 3	
11 B ₁ , B ₂ , ..., B _k is a collection of ME.	Product of the factorics		
and exhaustive events, then, for any A	For any B	Factoring one has two shifts.	
$P(k) = \sum_{i=1}^{k} P(b_i) \cdot P(A B_i)$	DEFINE: $B_1 = \text{Clip probability}$	Apply found used at factry 1 & shift 1.	
$P_{10} = \text{clip probability}$	Apply found used at factry 1 & shift 1.		
$P_{11} = \begin{pmatrix} k & 0 & 0 \end{pmatrix} \cup (A \cap B_1) \cup (A \cap B_2) \cup \cdots \cup (A \cap B_r)$	By $B_2 = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	By $B_3 = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	
$A = \begin{pmatrix} k & 0 & 0 \end{pmatrix} \cup (A \cap B_1) \cup (A \cap B_2) \cup \cdots \cup (A \cap B_r)$	By $B_2 = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	By $B_3 = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	
$P(k) = P\left[\bigcup_{i=1}^{k} A \cap B_i\right] = \frac{P(A \cap B_i)}{P(i)}$	By $P(k) = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	By $B_4 = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	By <math< td=""></math<>

Various Probs:
\n
$$
f'(B_1) = \frac{25}{100}, \quad P(B_2) = \frac{35}{100} \quad | \quad P(B_3) = \frac{40}{100}
$$
\n
$$
f'(B_1) = \frac{20}{100}
$$
\n
$$
f'(B_1) = P(B_1) \cdot P(A|B_1) + P(B_2) \cdot P(A|B_2) + P(B_3) \cdot P(A|B_3)
$$
\n
$$
= \frac{25}{100} \left(\frac{5}{25}\right) + \frac{35}{100} \left(\frac{10}{35}\right) + \frac{40}{100} \left(\frac{5}{40}\right)
$$
\n
$$
= \frac{20}{100} \qquad \text{Tree Diagram} \quad s_{15} \qquad k \quad (A \cap 3,)
$$
\n
$$
= \frac{s_{100}}{s_{100}} \qquad \frac{s_{100}}{s_{100}} \qquad \frac{10!s_{5}}{s_{100}} \qquad k \quad (A \cap 3,)
$$
\n
$$
= \frac{40! \cdot 10! s_{5}}{s_{100}} \qquad \frac{10!s_{5}}{s_{100}} \qquad k \quad (A \cap 3,)
$$

Suppose the chips are sorted into 3 boxes: Box $1 - 25$ microchips from shift) n_{2} $B_{0} \times 2 - 35$ ± 1 factory₂ $\mathcal{F}(\mathbf{r})$ Box } = 40 ~ 14 10 det 5 det 500 20 good $25, 904$ 35 good. $\beta 0 x$ Box. $Box 2$ Pick a box at random, the Experiment: a chip at random. $\leq p(\text{Box}_i) \cdot p(A|\text{Box}_i)$ $f(A)=c$ $\mathbf{L}^{\mathbf{a}}$ $= \frac{1}{3} \cdot \frac{5}{25} + \frac{1}{3} \cdot \frac{10}{35} + \frac{1}{3} \cdot \frac{5}{40} = \frac{57}{280}$ 57

Independence:

\n

Two Events A4B	one called independent	
if $p(A \cap B) = P(A) \cdot P(B)$		
Ohnuuix, they are dependent.		
Thm1.5.4	A ₁ B events	$P(A) > 0$, $P(B) > 0$
Thm1.5.4	A ₁ B events	$P(A) = P(A(B)$ and $P(B) = P(B A)$
Thm 1.5.5	A [*] B are independent if $P(B) = P(B A)$	
following pairs are independent	A [*] B and B	
2. A ^t and B		
3. A ^t and B ^t		

```
1.5.3\sqrt{v}The k events A_{1,1} ..., D_k are
       Said to be mutually indep. If
      for evens j=2,...,k and
       every subset of distinct indices.
                  \hat{\psi}_{ij} \hat{\psi}_{ij} ..., \hat{\psi}_{\hat{\mathbf{j}}}\rho(\mathbf{A}_{i,j} \cap \mathbf{A}_{i,j} \cap \cdots \cap \mathbf{A}_{i,j})= P(A_{i_1}) \cdot P(A_{i_2}) \cdots P(A_{i_j})pairwise independence does notimply
         independence of 3 or more events.
Note:
```
New idea: Suppose the component obtained is defective,
\nbut it is not known which box it comes from:
\nThus it is possible to compute the prob. that
\nit count 4 mm a particular by given it was defective
\nby using Bayes pree formula.
\nBayes The
\n*P(B₃|A) =*
\n
$$
P(B_3|A) =
$$

\n $P(B_4|B_3) \cdot P(A|B_4)$

Proof :	\n $P(Bj A) = \frac{P(Bj \cap A)}{P(A)}$ \n
\n $\begin{array}{r}\n P(Bj) \cdot P(A Bj) \\ P(Bk) \cdot P(A Bk)\n \end{array}$ \n	
\n $\begin{array}{r}\n S_0 \setminus A & p_{\text{old}} \\ S_0 \setminus A & p_{\text{old}} \\ S_0 \setminus B_1 \setminus B_2 \end{array}$ \n	
\n $\begin{array}{r}\n S_0 \setminus A & p_{\text{old}} \\ S_0 \setminus B_1 \setminus B_2 \end{array}$ \n	
\n $\begin{array}{r}\n S_0 \setminus B_1 \setminus B_2 \setminus B_1 \end{array}$ \n	
\n $\begin{array}{r}\n P(B_1 A) = P(B_1) \cdot P(A B_1) \\ P(B_1 A) = P(B_1) \cdot P(A B_1) + P(B_2) \cdot P(A B_2) \\ P(B_1 B_2) = P(B_1) \cdot P(B_1) \cdot P(B_2) \cdot P(B B_2) + P(B_2) \cdot P(B B_2) \\ P(B_1 B_2) = \frac{56}{171} \cdot 0.327485\n \end{array}$ \n	