

Further, Note the def. of F(x) $F(x) = P[X \in x]$ $P[a \angle X \leq b] = P[X \leq b] - P(X \leq a)$ = $F(b) - F(a)$ $P(x= x= b) = P(x= b) - P(x \le a)$ $A|_{56}$ = $P(X\leq b)-P(X\leq a)+P[X=a]$ This term exists for $\overline{F(b)}$ - $\overline{F(a)}$ + $\overline{P[x=a]}$ discrete RVs, but disappears for

For a continuous probability distribution,

$$
P\{x=c\}=0
$$
, Hence,
 $P\{a < x < b\} = P\{a \le x \le b\} = P\{a < x \le b\} = P\{a \le x \le b\}$

Thm: 23.1
A function $f(x)$ is a pdf for some continuous
R.V. X iff x iff
i) $f(x) \ge 0$ for all $x \in (-\infty, \infty)$ $\int_{0}^{\infty} f(x) dx$ $2)$ integrate here! Compare to discrete. sum here!2) $\Sigma f(x_i) =$

Suppose
$$
\frac{C(1+x)^{-3}}{D}
$$
, x $\neq 0$
\nwhere C is a constant.
\nBy prop 1, C $\neq 0$ in order for $f(x)\neq 0$
\nBy prop 2,
\n
$$
I = \int_{-\infty}^{\infty} f(x)dx = \int_{0}^{\infty} C(1+x)^{-3}dx
$$
\n
$$
= \int_{0}^{\infty} \frac{C(1+x)^{-2}}{-2}dx
$$
\n
$$
= \int_{0}^{\infty} \frac{C(1+x)^{-2}}{-2}dx
$$
\n
$$
= \int_{0}^{\infty} \frac{1}{2}dx
$$
\n
$$
= \int_{-\infty}^{\infty} \frac{1}{2}dx
$$
\n
$$
= \int_{-\infty}^{\infty} \frac{1}{2}dx
$$

 $\underline{\mathcal{E}}$ x:

Hence
$$
\begin{cases} (x) = \begin{cases} 2(1+x)^{-3}, & x > 0 \\ 0, & x \le 0 \end{cases} \end{cases}
$$

The cdf for x is $F(x) = P[X \in x] = \int_{0}^{x} f(t) dt$ Suppose $x \in O$, then $F(x) = \int_{0}^{x} f(t) dt = \int_{0}^{x} 0 dt = 0$

$$
S_{nppo} = \frac{1}{2} \times \frac{1}{
$$

$$
\int_{0}^{X} f(t)dt = \int_{0}^{X} 2(1+t)^{-3}dt = \frac{2(1+t)^{-2}}{-2}
$$

$$
= 1 - \frac{1}{(1+x)^{2}}
$$

$$
F(X) = \begin{cases} 0, & \text{if } x \le 0 \\ 1 - \frac{1}{(1+x)^{2}}, & x > 0 \end{cases}
$$

Note:
$$
f(x)
$$
 is not a probability, although it can be used to a 45) and probability that $f(x)$ should infer the $f(x)$.

\nNote: $P(a \le x \le b) = \int_{a}^{b} f(x)dx = F(b) - F(a)$

\n $\text{DEF}: \quad \text{If } x \text{ is } l \text{ on } t \text{ with pdf } f(x)$, the number of $g(x)$ is $f(x) = \int_{a}^{b} f(x)dx$.

\nUse $f(x) = \int_{a}^{b} x f(x)dx$

\nIf $f(x) = \int_{a}^{b} x f(x)dx$

\nIf $f(x) = \int_{a}^{b} x f(x)dx$

\nTherefore, $f(x) = \int_{a}^{b} x f(x)dx$

\nCompare to the discrete RV case. Instead of an integral like above, it uses a summation instead.

$$
\frac{DEF[2.3.3]}{If02P21, then a 100 x Pth percentile\nof the distribution of a continuous F.V.X\n15 a solution XP to the equation\n
$$
F(XP) = P
$$
$$

We can also think of this in terms of
\nquantiles (e.g. the 97th percentile is the
\n97 quantity
\nThe median of the d15+ X is a
\n
$$
50^{th}
$$
 percentile, denoted by X, s or m.
\n 50^{th} percentile, denoted by X, s or m.
\n 64 partender com pronont
\n 64 partender com pronont
\n 64 perrelar com pronont
\n 64 peritus (in months)
\n 64 peritus (or 100)

Let's find the median of this random variable. Start on the next page:

[23] Cont
\nFind the median of
$$
F(x) = 1 - e^{-(\frac{x}{3})^2}
$$
, $x > 0$.
\nMedian is when $F(x, s) = .5$
\n
$$
1 - e^{-(\frac{x}{3})^2} = .5
$$
\n
$$
1 - .5 = e^{-(\frac{x}{3})^2}
$$
\n
$$
.5 = e^{-(\frac{x}{3})^2}
$$
\n
$$
ln(s) = -(\frac{x}{3})^2
$$
\n
$$
ln(s) = -(\frac{x}{3})^2
$$
\n
$$
3\sqrt{-ln(s)} = x, 5
$$
\n
$$
x, y = 3\sqrt{ln 2} = 2.4977
$$

DEF: If the pdf has a unique max at x=m. $(e.g. max x f(x) = f(m_0))$, then m_0 is called the mode of x Ex. The pat of the previous example is $\mathcal{L}(x) = \left(\frac{2}{4}\right) xe^{-\left(\frac{x}{2}\right)^2}$, $x > 0$
 $\int'(x) = 0 = \frac{2}{4}\left[x e^{-\left(\frac{x}{2}\right)^2}\left(-\frac{2}{4}x\right) + e^{-\left(\frac{x}{2}\right)^2}\right]$ = $\frac{2}{9}e^{(\frac{x}{3})^2} \left[-\frac{2}{7}x^2 + 1 \right] = 0$ $x = \frac{2}{\sqrt{3}}x^2 + 1 = 0 \Rightarrow x^2 = \frac{4}{2}$
 $x = \frac{3}{\sqrt{2}} = 2.121$ months In general, the mean, median, and mode are all different, but there are Goes when they agree.

DEF: A list with
$$
pdf + (x)
$$
 is said to be symmetric about c. If

\n
$$
f(c-x) = f(c+x) \quad for all x.
$$
\nAsymmetric, distribution, and called Skewed dist.

\nAssymmetric, distribution

\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x - x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x - x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x - x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x - x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x + x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x + x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x + x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x + x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x + x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x + x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x + x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x + x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x + x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x + x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x + x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x + x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1}^{1} (x + x) e^{-x} dx
$$
\n
$$
f(x) = \frac{1}{2} \int_{1
$$