[2.4] Some properties of
expected values
Random Variable.
Random Variable.
Random Variable.
Random Variable.
Thm Z.4.2
Linearity of the Expectation Operton.
If x is a R.V. with pdf f(x), a, b are
Constants, and g(x) & th(x) are Aeal-
valued functions whose domains include
all the possible values of x, then

$$E[u(x)] = \int_{-\infty}^{\infty} u(x)f(x) dx$$
, if X is continuous
 $E[u(x)] = \int_{-\infty}^{\infty} u(x)f(x) dx$, if X is continuous
 $u(x)f(x) dx$, if X is discrete.
 $u(x)f(x) dx$, $u(x) f(x) dx$

(orollary $V_{ar}(x) = E(x^2) - \mu^2$, where $\mu = E(x)$. Proof: Var(X)= E(X-11)2 (by def) $= E \left[\chi^2 - 2\chi u + u^2 \right]$ $= E(\chi) - 2u E(\chi) + u^{2}$ $= E(x) - 2u^2 + u^2$ = E(x2) - 122 $= E(x^2) - [E(x)]^2$ Noto: The variance (or std. dow) provides a measure of the spread."

DEF: The Kth monort about the orgin of a R.V. X is

$$\begin{aligned}
\mathcal{U}'_{E} &= E(X^{E}) \\
\text{and the } E^{\text{th}} \text{ moment about the mean is} \\
\mathcal{U}_{F} &= E(X-U^{E}) = E(X-U)^{E} \\
\text{ote: The mean } \mathcal{U} \text{ is the first moment} \\
\text{about the orgin } \mathcal{U} = \mathcal{U}'_{i} \\
\text{The variance } o^{2} \text{ is the second moment} \\
\text{about the mean } \sigma^{2} = E(X-U)^{2} - U_{E} \\
\text{Then } Yar(aX+b) = a^{2} Var(x)
\end{aligned}$$

N

Note: the mean absolute Joviation is defined as

$$\frac{E[X-u]}{(MAD)}$$
Then 2.45 If a dist is symmetric about
mean *u*, then the third moment about
the mean is D. (e.g. $M_3=D$)
Them. 2.4.6) If x is a R.V.
 $u(x)$ is a non-neg. real valued function,
then for any positive constant $C > 0$,
 $P[u(x) > C] \leq \frac{E[u(x)]}{C}$

Markov inequality set
$$u(x) - |x|^r$$
, roo
then the 2.4.6 gives
 $P[|x| = c] \leq \frac{E[|x|^r]}{c^r}$
Then 2.4.7 Cheby chev's Inequality
If X is R.V with mean u and
If X is R.V with mean u and
rariance σ^2 , then for any $k > 0$,
 $P[|x-u| = k\sigma] \leq \frac{1}{k^2}$
proof: $u(x) = (x-m)^2$
An alternative form is
 $P[|x-m| < k\sigma] = 1 - \frac{1}{k^2}$

This is the first time you are
introduced to the Degenerate
Distribution. It concentrates ALL
its probability on one value, mu

$$1 \text{ Im } 2.4.8$$
 Let $AI = E(O)$ and $\sigma^2 = Var(x)$
 $If \sigma^2 = 0$, then $P[x=u] = 1$
 $P[\sigma f: If x + u \text{ for some integer } i>1 \text{ and}$
 $P[rof: If x + u \text{ for some integer } i>1 \text{ and}$
 $P[x=u] = \frac{U}{i}$ for some integer $i>1 \text{ and}$
 $Thus, [x=u] = \frac{U}{i} [[x-u] = \frac{1}{i}]$
 $Using Boole's traguality
 $P[x=u] = \sum_{i=1}^{n} P[|x-u| = \frac{1}{i}] = \sum_{i=1}^{n} e^2 \sigma^2 = 0 \Rightarrow P[x+u] \le 0$
 $P[x=u] = row (u \text{ mean and variance} can be obtain
in terms D the mean supression for the
 $P[x=u] = \sum_{i=1}^{n} P[|x-u| = \frac{1}{i}] = \sum_{i=1}^{n} e^2 \sigma^2 = 0 \Rightarrow P[x+u] \le 0$
 $P[|x-u|] > ko] = \frac{1}{i}$
 $Ko = 1$
 $K$$$

