[Chap 4] Joint Distributions

In Many applications, there are more than one random variable of interest. $(\chi_1,\chi_2,...,\chi_k)$ It is convenient to regard these variables as components of a K-dimensional variables as components of a K-dimensional vector $X=(X_1,X_2,\cdots,X_F)$, which assumes

Values , x= (x, k2, ..., x, in a k-dimensional letters

Euclidean Space. The variable may round from reported measures or x different characteristics.

[4.2] Joint Discrete Distributions DEF: the joint paf of the k-dim

discrete R.V $X=(X_1,X_2,...,X_{pr})$ is defined to be $f(X_1, X_2, \dots, X_k) = P(X_1 = X_1, X_2 = X_2, \dots, X_k = X_k)$ Note this is an intersection

for all possible values of X. EX. Extended Hypergeometric

 $X \sim HYP(n, M_1, M_2, \dots, M_k, N)$ Suppose a collection consists of a finite number of items, N, and there are k+1 different types of items

$$M_1 \text{ are of type 1} \\ M_2 \text{ are of type 2} \\ \vdots \\ M_k \text{ are of type } k \\ M_{k+1} \text{ are of type } k \\ M_{k+1} \text{ are of type } k + 1 \\ \text{YMA } \text{ \mathbb{N} $\mathbb{N$$

When selection is with replace won, then

we have the multinomial, a generalization

of the binomial.

$$x \sim \text{MULT}(n, p_1, p_2, \dots, p_k)$$

$$x \sim \text{MULT}(n, p$$

 $= \frac{775975200}{420} = 0.000705745$

[Thm 4.2.1]		Note:	a 1-thoi	ngh th	ne an	13kin	As of seeds)	
f(x1, x2,, xx) is a joint pdf iff			functi	e are in	de pen d te Geed,	ent on s (x.)	he last is the other to	h.
$f(x_1, x_2, \dots, x_k) \ge 0$ and		f(x, x2)	0		2	3	4	
		0		ary gamban ang and Managamban and Antonio and Antonio and Antonio and Antonio and Antonio and Antonio and Anto				
Ex. Two dimensional Hypergeometric								
Suppose a bin contains 1000 flower seeds	Reds	2			and the same of th			
400 are red	(x_1)	3		many states when the major suggesting to pro-		are a second and the second are second as the second are second are second as the second are second are second as the sec		
200 are pink 400 are white		4			and a comment of the	and the second s	ethymenteth 24-batheneylgradadings	
you that I seeds are selected at random.		and transmission of the property of the second seco						

$$f(x_{1},x_{2}) = \frac{(400)(x_{1})(x_{2})(4-x_{1}-x_{2})}{(1000)(4)}$$
Note: a 1-though three are 3 k into 8 seeds on the 12 true formular than the last is functionally dependent to the 12 true functional function

$$f(x_{1}, x_{2}) = \begin{cases} 0 & 1 & 2 & 3 & 4 \\ 0 & 0.006 & 0.027 & 0.038 & 0.0511 & 0.0254 \\ 0 & 0.006 & 0.027 & 0.038 & 0.0511 & 0.0254 \\ 0 & 0.0254 & 0.0511 & 0.022 & 0 & 0 \\ 0 & 0.0254 & 0.0511 & 0.022 & 0 & 0 \\ 0 & 0.0254 & 0 & 0 & 0 & 0 \\ 0 & 0.0254 & 0 & 0 & 0 & 0 \\ 0 & 0.0254 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.0254 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.0254 & 0 & 0 &$$

... + P(I white # 4 red) = f(0,1) + f(1,1) + f(2,1) + f(3,1) + f(4,1)= .0127 + .0769 + .1541 + .1022 + 0 = .3459 Note that this is a probability without any regard to the red seeds Such probabilities you sum up over all the probabilities. To find these,

P(1 white) = P(1 white # 0 red) + P(1 white # 1 red) + ..

What is the P(|white, | red, Zpink) = f(1,1) = .0769

What is prob of 1 white?

DEF! If (X,,X2) of discrete RV. has the joint pat f(x,1x2) then the marginal pat of xit x2 are $f_1(x_1) = \sum_{x_2} f(x_1, x_2)$ f2(x2) = \(\xi(x1, x2)

To get the marginal for white seeds,
add the columns down. You'll get the same answer
as the red:

To get the marginal for pink seeds:

To get the marginal for pink seeds:

You're looking for constant value of pink

You're looking for constant value of pink

1) Make a new table where pink is

one of the variables begindes white or red

one of then follow the example of buffers

and then follow the example of buffers

2) Just try to do it from the current

Joint CDF DET The joint OF & k random vars X1, X2, ..., Xx is the function defined by $F(X_1,X_2, | X_K) = P(X_1 \leq x_1, X_2 \leq x_2, | X_K \leq x_K)$ A function F(X,X2) is a bivariate CDF iff In $F(X_1,X_2) = F(-\infty,X_2) = 0$ for all X_2 $\lim_{x \to \infty} F(x_1, x_2) = F(x_1, -\infty) = 0$ for all x, X1->- 00 X7-7-00 $\lim_{x\to\infty} F(x_1,x_2) = F(\infty,\infty) = 1$ X-300 1/2-50

 $F(b,d) - F(b,c) - F(a,d) + F(a,c) \ge 0$ for all acb and ced (Monotonicity)

and $\lim_{h \to 0^+} F(x_1 + h, x_2) = \lim_{h \to 0^+} F(x_1, x_2 + h) = F(x_1, x_2)$ $\lim_{h \to 0^+} f(x_1 + h, x_2) = \lim_{h \to 0^+} F(x_1, x_2) = \lim_{h \to 0^+} F(x_1, x_2)$ for all x_1, x_2 (Right (ontinuous)