A statistic is a random variable!

- It has a distribution
- We call this the sampling distribution **(8.3) Sampling Dist.**
A statistic is a random var
- It has a distribution
- We call this the <u>sampli</u>
or <u>derived distribution</u>.

Linear Combinations of Normal Variables

Thm: If $X_i \sim N(\mu_i, \sigma_i^2); i = 1, ..., n$ denote independent RV's, then $Y = \sum_{i=1}^n a_i X_i \sim N\left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2\right)$ Proof: Use MGF's Corollary: If $X_1, X_2, ..., X_n$ denotes a RS from $N(\mu, \sigma^2)$, then $\overline{X} \sim N(\mu, \sigma^2/n)$. ompare to CLT!
If $X_1, X_2, ..., X_n$ denotes a RS with mean μ variance σ^2 , then $\frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \xrightarrow{d} N(0, 1)$, Compare to CLT!

The Chi-Squared Distribution χ^2

prounouce "Chi" as in kite

If $Y \sim GAM(2,\nu/2)$, where ν = degrees of freedom, then Y is said to follow a χ^2 distribution with degrees of freedom ν

```
In stats notation, Y \sim \chi^2(\nu)Thm: If Y \sim \chi^2(\nu), then
M_Y(t) = (1 - 2t)^{-\nu/2} and E[Y] = \nu<br>E[Y^r] = \frac{2^r \Gamma(\frac{\nu}{2} + r)}{\Gamma(\frac{\nu}{2})} and Var[Y] = 2\nu
```
Thm: If $X \sim GAM(\theta, \kappa)$, then $Y = \frac{2X}{\theta} \sim \chi^2(2\kappa)$. Proof: Use MGFs Note: $M_X(t) = (1 - \theta t)^{-\kappa}$

$$
M_Y(t) = E[e^{tY}] = E[e^{t\frac{2X}{\theta}}] = E[e^{\frac{2t}{\theta}X}] = M_X\left(\frac{2t}{\theta}\right) = \left(1 - \theta\left(\frac{2t}{\theta}\right)\right)^{-\kappa} = (1 - 2t)^{-2\kappa/2}
$$

That's the MGF for the $\chi^2(2\kappa)$ dist!

We can use a Chi-square table to compute the CDF for ANY Gamma dist. You can consider it like a "Standard Gamma Dist" In particular, if $X \sim GAM(\theta, \kappa)$, then $F_X(x) = F_Y\left(\frac{2X}{\theta}; 2\kappa\right)$, where $Y \sim \chi^2(2\kappa)$ $EX: X = time$ in years until failure of a component $X \sim GAM(\theta = 3, \kappa = 2)$ Find the 10th percentile Try it for problem 37 or 38 in $P[X \le x_{0.10}] = F_Y\left(\frac{2x_{0.10}}{\theta}\right) = 0.10$ chapter 3 from your textbook. So $\frac{2x_{0.10}}{\theta} = \chi_{0.10}^2(2\kappa)$ \leftarrow Look up in the χ^2 table. In that one, X is $GAM(5,4)$ or X is $GAM(1,3)$ $\frac{2x_{0.10}}{3} = \chi_{0.10}^2(4)$ You can use it to find prob. as Thus, $x_{0.10} = \frac{3}{2} \chi_{0.10}^2(4) = \frac{3}{2}(1.06) = 1.59$ well as percentiles.

Thm: the sum of independent χ^2 RVs Thm: If $Y_i \sim \chi^2(\nu_i)$ are i.d., then $V = \sum Y_i \sim \chi^2(\sum \nu_i)$ Thm: the Square of Standard If $Z \sim N(0, 1)$, then $Z^2 \sim \chi^2(1)$. Normal is a Chi-square with df=1 Corollary 8.3.2If X_1, X_2, \ldots, X_n denotes a random sample from $N(\mu, \sigma^2)$, then $\sum_{i=1}^{n} \frac{(X_i - \mu)^2}{\sigma^2} \sim \chi^2(n)$ and $\frac{n(\overline{X} - \mu)}{\sigma^2} \sim N(0, 1)$ Proof: Since $\frac{X_i - \mu}{\sigma} \sim N(0, 1)$, then $\left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(1) \Longrightarrow$ Thus, $\sum_{i=1}^n \frac{(X_i - \mu)^2}{\sigma^2} \sim \chi^2\left(\sum_{i=1}^n 1\right) = \chi^2(n)$ Since $\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma} = \frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$, then $\left(\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}}\right)^2 \sim \chi^2(1)$

What is the distribution of $S^2 = \sum_{i=1}^n \frac{(X_i - \overline{X})^2}{n-1}$?

This is difficult to know since $X_i - \overline{X}$ is not independent of $X_j - \overline{X}$. Note $\sum X_i - \overline{X} = 0$ always! Thm: If $X_1, X_2, ..., X_n$ denotes a RS from $N(\mu, \sigma^2)$, then

- 1. \overline{X} and the terms $X_i \overline{X}$; $i = 1, ..., n$ are independent
- 2. \overline{X} and S^2 are independent. 3. $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$