[8.4] The t, F, and Beta Distributions.

Let's introduce the "Student's t distribution".

- -Named after William Gosset, Guiness Brewrey in Dublin, Ireland
- -He could not publish under his own name (prob for competition)

-Why "Student"? Silly name isn't it!

BIOMETRIKA.

THE PROBABLE ERROR OF A MEAN.

BY STUDENT.

Why use it?

 $-\overline{X}$ can be used to make inferences about μ

-But, \overline{X} depends on σ^2 , which is most likely not known.

-We'd like to substitute S^2 in for σ^2 , but what effect does it have on the dist. of \overline{X}

Thm: If $Z \sim N(0,1)$, and $C \sim \chi^2(\nu)$, and if $Z \perp \!\!\! \perp C$, then

$$T = \frac{Z}{\sqrt{\frac{C}{\nu}}}$$
 is referred to as Student's t Distribution with ν degrees of freedom, denoted by

Proof: The joint density of Z and C is
$$1 - z^2/2 \qquad 1 \qquad \nu/2 = 0$$

$$f_{Z,C}(z,c) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \cdot \frac{1}{2^{\nu/2} \Gamma(\nu/2)} c^{\nu/2-1} e^{-c/2} = \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2}) \sqrt{2\pi}} c^{\frac{\nu}{2}-1} e^{-\frac{z^2}{2}-\frac{c}{2}}$$

So the joint dist. of W, T is

ty of
$$Z$$
 and C is

The Jacobian is: $|J| = \begin{vmatrix} \frac{\partial C}{\partial W} & \frac{\partial C}{\partial T} \\ \frac{\partial Z}{\partial W} & \frac{\partial Z}{\partial T} \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ \sim & \sqrt{\frac{W}{\nu}} \end{vmatrix} = \sqrt{\frac{W}{\nu}}$

$$C$$
 is

Make the transformation $T = \frac{Z}{\sqrt{\frac{C}{\nu}}}$ and W = C. Then $C = W \& Z = T\sqrt{\frac{W}{\nu}}$.

 $f_{W,T}(w,t) = f_{Z,C}(z,c)|J| = f_{Z,C}\left(t\sqrt{\frac{w}{u}},w\right)\sqrt{\frac{w}{u}}$

 $= \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})\sqrt{2\pi}} w^{\frac{\nu}{2}-1} e^{-\frac{1}{2}t^2\frac{w}{\nu}+w} \sqrt{\frac{w}{\nu}} = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})\sqrt{2\pi}\sqrt{\nu}} w^{\frac{\nu-1}{2}} e^{-\frac{1}{2}(\frac{t^2}{\nu}+1)w}$

$$f_T(t) = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})\sqrt{2\pi}\sqrt{\nu}} \int_0^\infty w^{\frac{\nu-1}{2}} e^{-\frac{1}{2}(\frac{t^2}{\nu}+1)w} dw \qquad \text{Let } u = \frac{1}{2}\left(1+\frac{t^2}{\nu}\right)w$$

$$\text{Then } w = \frac{u}{\frac{1}{2}\left(1+\frac{t^2}{\nu}\right)} \text{ and } dw = \frac{du}{\frac{1}{2}\left(1+\frac{t^2}{\nu}\right)}$$

$$f_T(t) = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})\sqrt{2\pi}\sqrt{\nu}} \int_0^\infty \left(\frac{u}{\frac{1}{2}\left(1+\frac{t^2}{\nu}\right)}\right)^{\frac{\nu-1}{2}} e^{-u} \left(\frac{du}{\frac{1}{2}\left(1+\frac{t^2}{\nu}\right)}\right)$$
Factor out all constants in the integral and you are left with:

Which leaves the pdf of T as:

$$V J_0$$
 (ts in th

$$\int_0^{\infty} \int_0^{\infty} \int_0^{\infty} ds$$
 in the

 $f_T(t) = \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2}) \sqrt{2\pi} \sqrt{\nu}} \left(\frac{1}{\frac{1}{2} (1 + \frac{t^2}{\nu})} \right)^{\frac{\nu}{2}} \int_0^\infty u^{\frac{\nu+1}{2} - 1} e^{-u} du$

$$\int_0^{\infty} \int_0^{\infty} dt$$

 $f_T(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} \left(1 + \frac{t^2}{\nu}\right)^{-(\frac{\nu+1}{2})}$

Thm: If $T \sim t(\nu)$, then for $\nu > 2r$, $E[T^{2r}] = \frac{\Gamma(r + \frac{1}{2})\Gamma(\frac{\nu}{2} - r)}{\sqrt{\pi}\Gamma(\frac{\nu}{2})}$

$$\sqrt{\pi}\Gamma(\frac{\nu}{2})$$

$$E[T^{2r-1}] = 0, r = 1, 2, \dots$$

$$Var(T) = \frac{\nu}{2}, \nu > 2$$

Thm: If X_1, X_2, \ldots, X_n denotes a random sample from $N(\mu, \sigma^2)$, then

 $\frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t(n-1)$ $\operatorname{Var}(T) = \frac{\nu}{\nu - 2}, \nu > 2$ Snedecor's F Distribution ν_1 = numerator degrees of freedom

 ν_2 = denominator degrees of freedom Thm: If $V_1 \sim \chi^2(\nu_1)$ and $V_2 \sim \chi^2(\nu_2)$ are independent, then the random variable

$$X = \frac{V_1/\nu_1}{V_2/\nu_2} = \frac{\nu_2}{\nu_1} \frac{V_1}{V_2} \sim F(\nu_1, \nu_2) \text{ is known as Snedecor's F Distribution}$$
Its pdf is:
$$f_F(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} (\frac{\nu_1}{\nu_2})^{\nu_1/2} x^{\frac{\nu_1}{2} - 1} (1 + \frac{\nu_1}{\nu_2} x)^{-\frac{\nu_1 + \nu_2}{2}}$$

Thm: If $X \sim F(\nu_1, \nu_2)$, then

$$E(X^r) = \frac{\left(\frac{\nu_2}{\nu_1}\right)^r \Gamma\left(\frac{\nu_1}{2} + r\right) \Gamma\left(\frac{\nu_2}{2} - r\right)}{\Gamma\left(\frac{\nu_1}{2}\right) \Gamma\left(\frac{\nu_2}{2}\right)}, \nu_2 > 2r$$

$$\left(\frac{v_1}{2} + r\right)\Gamma($$

$$-r\Gamma(\frac{\imath}{r})$$

$$r\Gamma\left(\frac{\nu_2}{2}\right)$$

$$\Gamma\left(\frac{\nu_2}{2}\right)$$

$$\Gamma(\frac{\nu_2}{2})$$

 $E(X) = \frac{\nu_2}{\nu_2 - 2}, \nu_2 > 2$ Note: when $\nu_2 < 2$, then F has NO MEAN! $Var(X) = \frac{2\nu_2^2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)}, \nu_2 > 4$

F has a mean, but no variance!

And even stranger: when $2 < \nu_2 < 4$, then

Note: when $\nu_2 < 4$, then F has NO VARIANCE!

from $X_i \sim N(\mu_1, \sigma_1^2)$ and $Y_i \sim N(\mu_2, \sigma_2^2)$. If $\nu_1 = n_1 - 1$ and $\nu_2 = n_2 - 1$, then

Example: Let X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_n be independent random samples

$$\frac{\nu_1 S_1^2}{\sigma_1^2} \sim \chi^2(\nu_1) \text{ and } \frac{\nu_2 S_2^2}{\sigma_2^2} \sim \chi^2(\nu_2) \text{ and } \frac{\frac{\nu_1 S_1^2}{\sigma_1^2} / \nu_1}{\frac{\nu_2 S_2^2}{\sigma_2^2} / \nu_2} = \frac{S_1^2 \sigma_2^2}{S_2^2 \sigma_1^2} \sim F(\nu_1, \nu_2)$$

Percentiles are provided in Table 7 (Appendix C)

If
$$X \sim F(\nu_1, \nu_2)$$
, then $Y = \frac{1}{X} = F(\nu_2, \nu_1)$.
The γ th percentile, $f_{\gamma}(\nu_1, \nu_2)$, is defined by $P[X \leqslant f_{\gamma}(\nu_1, \nu_2)] = \gamma$

So $\gamma = P[X \leqslant f_{\gamma}(\nu_1, \nu_2)] = P[1/Y \leqslant f_{\gamma}(\nu_1, \nu_2)] = P \left| Y \geqslant \frac{1}{f_{\gamma}(\nu_1, \nu_2)} \right|$

So $1 - \gamma = 1 - P\left[Y \geqslant \frac{1}{f_{\gamma}(\nu_{1}, \nu_{2})}\right] = P\left[Y \leqslant \frac{1}{f_{\gamma}(\nu_{1}, \nu_{2})}\right]$ Since $1 - \gamma = P[Y \leqslant f_{1-\gamma}(\nu_{2}, \nu_{1})]$, then $f_{1-\gamma}(\nu_{2}, \nu_{1}) = \frac{1}{f_{\gamma}(\nu_{1}, \nu_{2})}$

The Beta Distribution

If $X \sim F(\nu_1, \nu_2)$, then

 $\mu = \frac{a}{a+b}$

 $Y = \frac{(\nu_1/\nu_2)X}{1 + (\nu_1/\nu_2)X} \qquad Y \sim BETA\left(\frac{\nu_1}{2}, \frac{\nu_2}{2}\right)$

Let $a = \frac{\nu_1}{2}, b = \frac{\nu_2}{2}$, The pdf is: $f(y; a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} y^{a-1} (1-y)^{b-1} I_{(0,1)}(y)$

 $\sigma^2 = \frac{ab}{(a+b+1)(a+b)^2}$